Complexité avancée - TD 7

Benjamin Bordais

November 25, 2020

Exercise 1 RP^*

We define RP^* as the class of all languages L for which there exists a probabilistic Turing machine M running in polynomial time, such that:

- If $x \in L$ then Pr[M(x, r) reject] < 1
- If $x \notin L$ then Pr[M(x, r) accept] = 0

Do you recognize this class?

Exercise 2 BPP and oracle machines

Prove that $P^{BPP} = BPP$.

Exercise 3 BPP-completeness?

- 1. Show that the language $L = \{(M, x, 1^t) \mid M \text{ accepts on input } x \text{ in time at most } t\}$, where M is the code of a non-deterministic Turing machine, x an input of M and t a natural number, is NP-complete.
- 2. Let now L be the language of words (M, x, 1^t) where M designates the encoding of a probabilistic Turing machine and x a string on M's alphabet such that M accepts x in at most t steps, for at least 2/3 of the possible random tapes of size t.
 Is L BPP-hard? Is it in BPP ?

Exercise 4 NP and randomized classes

Show that if $NP \subseteq BPP$ then NP = RP. Hint: you may use the self-reducibility of SAT.

Exercise 5 The PP class

The class PP is the class of languages L for which there exists a polynomial time probabilistic Turing machine M such that:

- if $x \in L$ then $Pr[M(x,r) \text{ accepts }] > \frac{1}{2}$
- if $x \notin L$ then $Pr[M(x,r) \text{ accepts }] \leq \frac{1}{2}$

Also define $PP_{<}$ as the class of languages L for which there exists a polynomial time probabilistic Turing machine M such that:

- if $x \in L$ then $Pr[M(x,r) \text{ accepts }] > \frac{1}{2}$
- if $x \notin L$ then $Pr[M(x,r) \text{ accepts }] < \frac{1}{2}$
- 1. Show that $\mathsf{BPP} \subseteq \mathsf{PP}$ and $\mathsf{NP} \subseteq \mathsf{PP}$;
- 2. Show that $PP = PP_{<}$ and that PP is closed under complement;
- 3. Consider the decision problem MAJSAT:
 - (a) Input: a boolean formula ϕ on n variables
 - (b) Output: the (strict) majority of the 2^n valuations satisfy ϕ .

Show that $MAJSAT \in PP$. In fact, MAJSAT is PP-complete.

One may also consider the decision problem MAXSAT:

- (a) Input: a boolean formula ϕ on n variables, a number K
- (b) Output: more than K valuations satisfy ϕ .

Show that MAXSAT is also PP-complete (to prove that $MAXSAT \in PP$ one may reduce MAXSAT to MAJSAT).