Exercise 1 RP*

We define RP* as the class of all languages L for which there exists a probabilistic Turing machine M running in polynomial time, such that:

- If $x \in L$ then $Pr[M(x, r) \text{ reject}] < 1$
- If $x \notin L$ then $Pr[M(x, r) \text{ accept}] = 0$

Do you recognize this class?

Solution:
This is in fact NP.

- RP* \subseteq NP: For the same reason than RP \subseteq NP

- NP \subseteq RP*: Let us show that SAT \in RP*. Let M be the probabilistic Turing machine that, on a formula ϕ with p free variable, and r a random tape of bits (of length $\geq p$), evaluates ϕ on r. We have that M runs in polynomial time. In addition, if we denote by $eval(\phi)$ the proportion of valuations that satisfy ϕ, we have $Pr[M(\phi, r) = \top] = eval(\phi)$ and $Pr[M(\phi, r) = \bot] = 1 - eval(\phi)$. Therefore:
 - If $\phi \in \text{SAT}$, $eval(\phi) > 0$ and we have $Pr[M(\phi, r) = \bot] < 1$.
 - If $\phi \notin \text{SAT}$, $eval(\phi) = 0$ and $Pr[M(\phi, r) = \top] = 0$.

It follows that SAT \in RP*. As RP* is closed under logspace reduction, we have NP \subseteq RP*.

Exercise 2 BPP and oracle machines

Prove that P^{BPP} = BPP.

Solution:

- BPP \subseteq P^{BPP}: This is straightforward, since one can ask the oracle the answer.

- P^{BPP} \subseteq BPP: Let $L \in P^{BPP}$. By definition, there exists $B \in BPP$ and M a TM (of execution time lower than a polynomial p) which decides L by calling the oracle B. We know that for all polynomial q, there exists a probabilistic Turing machine M_q running in polynomial time which decides B with a two-sided error lower than $2^{-q(n)}$. Consider now the probabilistic TM M' that executes M and
will define the
know that, for all polynomial
polynomial time which recognizes
In any case, we have
•
1. Show that the language
where
a probabilistic Turing machine and
accepts the input
is
is
This problem is in
•
1. Let now
be the language of words
where
accepts
in at most
steps, for at least
of the possible random tapes of size
Is
? Is it in
1. Let
be the code of a non-deterministic Turing machine, an input of
and
a natural number, is
complete.
2. Let
be the language of words
where
designates the encoding of a probabilistic Turing machine and
a string on
’s alphabet such that
accepts
in at most
steps, for at least
of the possible random tapes of size

Exercise 3 BPP-completeness?
1. Show that the language
\[L = \{ (M, x, 1^t) \mid M \text{ accepts on input } x \text{ in time at most } t \} \]
where
is the code of a non-deterministic Turing machine, an input of
and
a natural number. Notice that the timeout
we set for the execution of
is lower than the length of
.
So the algorithm which simulates
on
is non-deterministic and runs in polynomial time. Then we can check that
\[(M, x, 1^t) \in \{ (M, x, 1^t) \mid M \text{ accepts on input } x \text{ in time at most } t \} \]
Therefore, \(L \in \text{NP} \).

Exercise 4 NP and randomized classes
Show that if \(\text{NP} \subseteq \text{BPP} \) then \(\text{NP} = \text{RP} \).

Solution:
In any case, we have \(\text{RP} \subseteq \text{NP} \). Let’s now assume that \(\text{NP} \subseteq \text{BPP} \). So \(\text{SAT} \in \text{BPP} \). We know that, for all polynomial \(q \), we have \(M \) a probabilistic Turing machine running in polynomial time which recognizes \(\text{SAT} \), with an error lower than or equal to \(2^{-\Omega(n)} \). We will define the \(M' \) a PTM which works as the following pseudocode:
Input: \(\phi \) a formulae with \(p \) free variables; \(r \) randoms ; \(r' \) randoms

\[\psi := \phi; \]
for \(i < p \) do
 if \(M(\psi[x_i = \top], r_i) = \top \) then
 \(\psi := \psi[x_i = \top] \)
 else
 if \(M(\psi[x_i = \bot], r'_i) = \top \) then
 \(\psi := \psi[x_i = \bot] \)
 else
 return \(\bot \)
 end
end
return \(\psi \) is satisfied

Notice that \(p < |\phi| \). There is a at most 2\(p \) calls to \(M \). Hence, the running time of this algorithm is polynomial and total length of random word used is also polynomial.

Therefore, for \(\phi \) a formulae with \(p \) free variables, \(|\phi| = n \) and \(x = 2^{-q(n)} \):

- if \(\phi \notin L \) then \(Pr[M'(\phi, r) = \top] = 0 \) (since we check that the last \(\psi \) is satisfied, which implies that the valuation chosen satisfies \(\phi \)).
- if \(\phi \in L \) then \(Pr[M'(\phi, r) = \bot] \leq \sum_{i=0}^{2p-1}(1-x)^ix \) (it’s the probability that one simulation of \(M \) fails). That is, \(Pr[M'(\phi, r) = \bot] \leq \sum_{i=0}^{2p-1} x = 2p \cdot x = 2n \cdot 2^{-q(n)} \leq 2^{2n-q(n)} \).

So, with \(q(n) = 2n + 1 \) : if \(\phi \in L \) then \(Pr[M'(\phi, r) = \bot] \leq \frac{1}{2} \)

Then: \(\text{SAT} \in \text{RP} \).

Exercise 5 The PP class

The class \(\text{PP} \) is the class of languages \(L \) for which there exists a polynomial time probabilistic Turing machine \(M \) such that:

- if \(x \in L \) then \(Pr[M(x, r) \text{ accepts}] > \frac{1}{2} \)
- if \(x \notin L \) then \(Pr[M(x, r) \text{ accepts}] \leq \frac{1}{2} \)

Also define \(\text{PP}_< \) as the class of languages \(L \) for which there exists a polynomial time probabilistic Turing machine \(M \) such that:

- if \(x \in L \) then \(Pr[M(x, r) \text{ accepts}] > \frac{1}{2} \)
- if \(x \notin L \) then \(Pr[M(x, r) \text{ accepts}] < \frac{1}{2} \)

1. Show that \(\text{BPP} \subseteq \text{PP} \) and \(\text{NP} \subseteq \text{PP} \);
2. Show that \(\text{PP} = \text{PP}_< \) and that \(\text{PP} \) is closed under complement;
3. Consider the decision problem \(\text{MAJSAT} \):
 (a) Input: a boolean formula \(\phi \) on \(n \) variables
 (b) Output: the (strict) majority of the \(2^n \) valuations satisfy \(\phi \).
Show that $\text{MAJSAT} \in \text{PP}$. In fact, MAJSAT is PP-complete.

One may also consider the decision problem MAXSAT:

(a) Input: a boolean formula ϕ on n variables, a number K

(b) Output: more than K valuations satisfy ϕ.

Show that MAXSAT is also PP-complete (to prove that $\text{MAXSAT} \in \text{PP}$ one may reduce MAXSAT to MAJSAT).

Solution:

1. • A language $L \in \text{BPP}$ is recognized by a PTM M such that if $x \in L$ then $\Pr[M(x,r) \text{ accepts}] \geq \frac{2}{3}$, and if $x \notin L$ then $\Pr[M(x,r) \text{ accepts}] \leq \frac{1}{3}$. It follows that $L \in \text{PP}$.

• The class PP is closed under logspace reduction. It suffice to show that $\text{SAT} \in \text{PP}$. Consider now a probabilistic Turing machine with an input that is a formula ϕ. According to the first bit of the random tape, it either accepts or reads what remains of the random tape for a valuation and accepts if and only if it satisfies ϕ. Then, if $\phi \in \text{SAT}$, we have $\Pr[M(x,r) \text{ accepts}] > \frac{1}{2}$, otherwise $\Pr[M(x,r) \text{ accepts}] = \frac{1}{2}$.

2. Trivially, we have $\text{PP}_e \subseteq \text{PP}$. Now, consider $L \in \text{PP}$ and its associated Turing machine M running in polynomial time p. Without loss of generality, we assume that the alphabet of the random tape is of size 2, hence the probability of a random word for M on an input x such that $|x| = n$ is $2^{-p(n)}$. Therefore, if $x \in L$ then $\Pr[M(x,r) \text{ accepts}] \geq \frac{1}{2} + \frac{1}{2^p(n)}$. Now, we construct another Turing machine M' that runs M on an input. If M would reject, M' rejects too, and if M would accept then M' rejects with probability $\frac{1}{2^p(n)}$ (for instance, by reading a word in the random tape of length $p(n)$ and accepting only if there are only 0s). Then:

- if $x \in L$: $\Pr[M(x,r) \text{ accepts}] \geq \left(\frac{1}{2} + \frac{1}{2^p(n)}\right) \cdot \left(1 - \frac{1}{2^p(n)}\right) = \frac{1}{2} + \frac{1}{2^p(n)+1} - \frac{1}{2^{2p(n)}} > \frac{1}{2}$
- if $x \notin L$: $\Pr[M(x,r) \text{ accepts}] \leq \left(\frac{1}{2}\right) \cdot \left(1 - \frac{1}{2^p(n)}\right) < \frac{1}{2}$

That is, $L \in \text{PP}_e$. The stability under complement then follows by inverting the accepting and rejecting states.

3. A probabilistic Turing machine that checks that a valuation read on the random tape satisfies the formula decides MAJSAT for PP. Then, MAJSAT can be reduced to MAXSAT in logarithmic (as one has to write on the output tape the number $2^{n-1} + 1$ in binary, which consists in a 1, $n - 2$ 0s and then a 1). Therefore, MAXSAT is also PP-hard. Let us now show that $\text{MAXSAT} \in \text{PP}$. To do so, let us reduce MAXSAT to MAJSAT. Consider an instance (ϕ, i) of MAXSAT with $0 \leq r_1 < r_2 < \ldots < r_k \leq n$ such that $2^n - i = 2^{n-r_1} + \ldots + 2^{n-r_k}$ (the values $n - r_j$ refers to the 1s in the binary decomposition of $2^n - i$). Let us denote x_1, \ldots, x_n the variables of ϕ. Then, we consider the formula ψ as:

$$\psi = (x_1 \land \ldots \land x_{r_1}) \lor (\neg x_1 \land \ldots \land \neg x_{r_1} \land x_{r_1+1} \land \ldots \land x_{r_2}) \lor \ldots \lor (\neg x_1 \land \ldots \land \neg x_{r_{k-1}} \land x_{r_{k-1}+1} \land \ldots \land x_{r_k})$$
We can see there are exactly 2^{n-r_j} valuations satisfying the j-th line of ψ. With the negation at beginning of the lines, no valuation satisfies two lines of ψ. Therefore, there are exactly $2^{n-r_1} + \ldots + 2^{n-r_k} = 2^n - i$ valuations satisfying ψ. Consider now a fresh variable y and the formula: $\phi' = (y \land \phi) \lor \neg (y \land \psi)$. Then, we have ϕ' computable in polynomial time from ϕ and ϕ is satisfied by more than i valuations if and only if ϕ' is satisfied by more than half of valuations, i.e. $\phi \in \text{MAXSAT} \iff \phi' \in \text{MAJSAT}$.