
Complexité avancée - TD 7

Benjamin Bordais

November 25, 2020

Exercise 1 RP∗

We define RP∗ as the class of all languages L for which there exists a probabilistic Turing
machine M running in polynomial time, such that:

• If x ∈ L then Pr[M(x, r) reject] < 1

• If x /∈ L then Pr[M(x, r) accept] = 0

Do you recognize this class?

Solution:
This is in fact NP.

• RP∗ ⊆ NP: For the same reason than RP ⊆ NP

• NP ⊆ RP∗: Let us show that SAT ∈ RP∗. Let M be the probabilistic Turing
machine that, on a formula φ with p free variable, and r a random tape of bits
(of length ≥ p), evaluates φ on r. We have that M runs in polynomial time. In
addition, if we denote by eval(φ) the proportion of valuations that satisfy φ, we
have Pr[M(φ, r) = >] = eval(φ) and Pr[M(φ, r) = ⊥] = 1− eval(φ). Therefore:

– If φ ∈ SAT, eval(φ) > 0 and we have Pr[M(φ, r) = ⊥] < 1.

– If φ /∈ SAT, eval(φ) = 0 and Pr[M(φ, r) = >] = 0.

It follows that SAT ∈ RP∗. As RP∗ is closed under logspace reduction, we have
NP ⊆ RP∗.

Exercise 2 BPP and oracle machines

Prove that PBPP = BPP.

Solution:

• BPP ⊆ PBPP: This is straightforward, since one can ask the oracle the answer.

• PBPP ⊆ BPP: Let L ∈ PBPP. By definition, there exists B ∈ BPP and M a
TM (of execution time lower than a polynomial p) which decides L by calling the
oracle B. We know that for all polynomial q, there exists a probabilistic Turing
machine Mq running in polynomial time which decides B with a two-sided error
lower than 2−q(n). Consider now the probabilistic TM M ′ that executes M and

1

simulates all calls to the oracle B by simulating the execution of the TM Mq.
Note that the complete size of random words we need is polynomial as we make at
most p(n) calls to Mq which uses polynomial size random tapes. Furthermore, if
no mistake is made in all the calls to Mq, then M ′ does not make a mistake and
correctly accepts or rejects inputs belonging or not to L. Hence, for n = |x|, we
have Pr[M ′(x, r) errs] ≤ (1 − 2−q(n))p(n) ≤ 1 − 2−q(n) · p(n) ≤ 1 − 2p(n)−q(n) ≤ 1/3
for p(n) = q(n) + 2. Note that q(n) can be chosen as a function of p(n) since p is
given by the Turing machine M . Therefore L ∈ BPP.

Exercise 3 BPP-completeness?

1. Show that the language L = {(M,x, 1t) | M accepts on input x in time at most t},
where M is the code of a non-deterministic Turing machine, x an input of M and t
a natural number, is NP-complete.

2. Let now L be the language of words (M,x, 1t) where M designates the encoding of
a probabilistic Turing machine and x a string on M ′s alphabet such that M accepts
x in at most t steps, for at least 2/3 of the possible random tapes of size t.

Is L BPP-hard? Is it in BPP ?

1. • L ∈ NP. Let M be the code of a non-deterministic Turing machine, x an
input of M and t a natural number. Notice that the timeout t we set for the
execution of M(x) is lower than the length of (M,x, 1t).

So the algorithm which simulates M on x on the input (M,x, 1t) is non-
deterministic and runs in polynomial time. Then we can check that (M,x, 1t) ∈
{(M,x, 1t) | M accepts on input x in time at most t}. Therefore, L ∈ NP.

• L is NP-hard. Given L′ ∈ NP, M a NDTM for L′, and p a polynomial as-
sociated. For an instance x of L′ we can build (in logspace) the instance
(M,x, 1p(|x|)). Then, by definition of L, (M,x, 1p(|x|)) ∈ L⇔ x ∈ L′ .

2. • L is BPP-hard: (for exactly the same reasons). Given L′ ∈ BPP, M a proba-
bilistic Turing machine for L′, and p his polynomial associated. For an instance
x of L′ we can build (in logspace) the instance (M,x, 1p(|x|)). And, by definition
of L, (M,x, 1p(|x|)) ∈ L⇔ x ∈ L′

• It is not known if this problem is in BPP. However, we know that we can not
use the same idea than with NP, that is simulating the machine M . Indeed, if
M accepts the input x with probability 1/2, so will the simulation, whereas it
should accept with probability lower than or equal to 1/3.

Exercise 4 NP and randomized classes

Show that if NP ⊆ BPP then NP = RP.
Hint: you may use the self-reducibility of SAT.

Solution:
In any case, we have RP ⊆ NP. Let’s now assume that NP ⊆ BPP. So SAT ∈ BPP. We

know that, for all polynomial q, we have M a probabilistic Turing machine running in
polynomial time which recognizes SAT, with an error lower than or equal to 2−q(n). We
will define the M ′ a PTM which works as the following pseudocode:

2

Input: φ a formulae with p free variables; r randoms ; r′ randoms
ψ := φ;
for i < p do

if M(ψ[xi = >], ri) = > then
ψ := ψ[xi = >]

else
if M(ψ[xi = ⊥], r′i) = > then

ψ := ψ[xi = ⊥]
else

return ⊥
end

end

end
return ψ is satisfied

Notice that p < |φ|. There is a at most 2p calls to M . Hence, the running time of
this algorithm is polynomial and total length of random word used is also polynomial.
Therefore, for φ a formulae with p free variables, |φ| = n and x = 2−q(n):

• if φ /∈ L then Pr[M ′(φ, r) = >] = 0 (since we check that the last ψ is satisfied,
which implies that the valuation chosen satisfies φ).

• if φ ∈ L then Pr[M ′(φ, r) = ⊥] ≤
∑i=2p−1

i=0 (1 − x)ix (it’s the probability that

one simulation of M fails). That is, Pr[M ′(φ, r) = ⊥] ≤
∑i=2p−1

i=0 x = 2p · x =
2n · 2−q(n) ≤ 22n−q(n).

So, with q(n) = 2n+ 1 : if φ ∈ L then Pr[M ′(φ, r) = ⊥] ≤ 1
2

Then: SAT ∈ RP.

Exercise 5 The PP class

The class PP is the class of languages L for which there exists a polynomial time
probabilistic Turing machine M such that:

• if x ∈ L then Pr[M(x, r) accepts] > 1
2

• if x /∈ L then Pr[M(x, r) accepts] ≤ 1
2

Also define PP< as the class of languages L for which there exists a polynomial time
probabilistic Turing machine M such that:

• if x ∈ L then Pr[M(x, r) accepts] > 1
2

• if x /∈ L then Pr[M(x, r) accepts] < 1
2

1. Show that BPP ⊆ PP and NP ⊆ PP;

2. Show that PP = PP< and that PP is closed under complement;

3. Consider the decision problem MAJSAT:

(a) Input: a boolean formula φ on n variables

(b) Output: the (strict) majority of the 2n valuations satisfy φ.

3

Show that MAJSAT ∈ PP. In fact, MAJSAT is PP-complete.

One may also consider the decision problem MAXSAT:

(a) Input: a boolean formula φ on n variables, a number K

(b) Output: more than K valuations satisfy φ.

Show that MAXSAT is also PP-complete (to prove that MAXSAT ∈ PP one may
reduce MAXSAT to MAJSAT).

Solution:

1. • A language L ∈ BPP is recognized by a PTM M such that if x ∈ L then
Pr[M(x, r) accepts] ≥ 2

3 and if x /∈ L then Pr[M(x, r) accepts] ≤ 1
3 . It

follows that L ∈ PP.

• The class PP is closed under logspace reduction. It suffice to show that SAT ∈
PP. Consider now a probabilistic Turing machine with an input that is a
formula φ. According to the first bit of the random tape, it either accepts or
reads what remains of the random tape for a valuation and accepts if and only
if it satisfies φ. Then, if φ ∈ SAT, we have Pr[M(x, r) accepts] > 1

2 , otherwise
Pr[M(x, r) accepts] = 1

2 .

2. Trivially, we have PP< ⊆ PP. Now, consider L ∈ PP and its associated Turing
machine M running in polynomial time p. Without loss of generality, we assume
that the alphabet of the random tape is of size 2, hence the probability of a random
word for M on an input x such that |x| = n is 2−p(n). Therefore, if x ∈ L then
Pr[M(x, r) accepts] ≥ 1

2 + 1
2p(n) . Now, we construct another Turing machine M ′

that runs M on an input. If M would reject, M ′ rejects too, and if M would accept
then M ′ rejects with probability 1

2p(n) (for instance, by reading a word in the random
tape of length p(n)and accepting only if there are only 0s). Then:

• if x ∈ L: Pr[M(x, r) accepts] ≥ (12 + 1
2p(n)) ·(1− 1

2p(n)) = 1
2 + 1

2p(n)+1 − 1
22·p(n) >

1
2

• if x /∈ L: Pr[M(x, r) accepts] ≤ 1
2 · (1−

1
2p(n)) < 1

2

That is, L ∈ PP<. The stability under complement then follows by inverting the
accepting and rejecting states.

3. A probabilistic Turing machine that checks that a valuation read on the random
tape satisfies the formula decides MAJSAT for PP. Then, MAJSAT can be reduced to
MAXSAT in logarithmic (as one has to write on the output tape the number 2n−1+1
in binary, which consists in a 1, n− 2 0s and then a 1). Therefore, MAXSAT is also
PP-hard. Let us now show that MAXSAT ∈ PP. To do so, let us reduce MAXSAT to
MAJSAT. Consider an instance (φ, i) of MAXSAT with 0 ≤ r1 < r2 < . . . < rk ≤ n
such that 2n − i = 2n−r1 + . . . + 2n−rk (the values n − rj refers to the 1s in the
binary decomposition of 2n − i). Let us denote x1, . . . , xn the variables of φ. Then,
we consider the formula ψ as:

ψ = (x1 ∧ . . . ∧ xr1)

∨ (¬x1 ∧ . . . ∧ ¬xr1 ∧ xr1+1 ∧ . . . ∧ xr2)

∨ · · ·
∨ (¬x1 ∧ . . . ∧ ¬xrk−1

∧ xrk−1+1 ∧ . . . ∧ xrk)

4

We can see there are exactly 2n−rj valuations satisfying the j-th line of ψ. With the
negation at beginning of the lines, no valuation satisfies two lines of ψ. Therefore,
there are exactly 2n−r1 +. . .+2n−rk = 2n−i valuations satisfying ψ. Consider now a
fresh variable y and the formula: φ′ = (y∧φ)∨(¬y∧ψ). Then, we have φ′ computable
in polynomial time from φ and φ is satisfied by more than i valuations if and only if
φ′ is satisfied by more than half of valuations, i.e. φ ∈ MAXSAT⇔ φ′ ∈ MAJSAT.

5

