Complexité avancée - TD 6

Benjamin Bordais

November 18, 2020

We recall the definition of RP, coRP and BPP. A language L is in RP if there exists a Turing machine \mathcal{M} running in polynomial time p(n) on all input x such that |x| = n and random tape r of size p(n) such that:

- If $x \in L$, then $Pr_r[\mathcal{M}(x,r) = \top] \ge 1/2;$
- If $x \notin L$, then $Pr_r[\mathcal{M}(x,r) = \top] = 0$.

Similarly, a language L is in coRP if there exists such a Turing machine \mathcal{M} ensuring:

- If $x \in L$, then $Pr_r[\mathcal{M}(x,r) = \top] = 1$;
- If $x \notin L$, then $Pr_r[\mathcal{M}(x,r) = \top] \leq 1/2$.

Finally, a language L is in BPP if there exists such a Turing machine \mathcal{M} ensuring:

- If $x \in L$, then $Pr_r[\mathcal{M}(x,r) = \top] \ge 2/3;$
- If $x \notin L$, then $Pr_r[\mathcal{M}(x,r) = \top] \le 1/3$.

Exercise 1 One-Minute Long Exercise

Between RP and coRP which language is "No-means-No" which language is "Yes-means-Yes"?

Exercise 2 Expected Running Time

Given a probabilistic Turing Machine M, not necessarily halting, let $T_M(x,r)$ be the random variable describing the running time of M on input x and random tape r (take $T_M(x,r) = +\infty$ if M does not halt on x, r). That is for all x, $Pr[T_M(x,r) = T]$ is the probability, taken over all possible (infinite) random tape contents, that M on input xhalts after exactly T steps.

The expected running time of M on input x is the expectation $E[T_M(x,r)]$.

Consider the definitions of RP and BPP: here the Turing machines considered are required to halt in time at most n^c steps for some $c \ge 1$ on all inputs and for all possible random tape strings (worst case running time). Define RP^E and BPP^E as RP and BPP , but replacing the worst case running time with the expected running time.

Formally:

- $\mathsf{RP}^E = \bigcup_{c \in \mathbb{N}} \mathsf{RTIME}^E(n^c, 0, 1/2)$
- $\mathsf{BPP}^E = \bigcup_{c \in \mathbb{N}} \mathsf{RTIME}^E(n^c, 1/3, 2/3)$

where $\mathsf{RTIME}^E(n^c, p_{acc}, p_{rej})$ is the class of languages L for which there exists a probabilistic Turing machine M (which may not halt) such that, for each input x of size n:

- $Pr[T_M(x,r) = +\infty] = 0;$
- $E[T_M(x,r)] \le |x|^c;$
- if $x \in L$ then $Pr[M(x,r)] = \top] \ge p_{rej};$
- if $x \notin L$ then $Pr[M(x,r)] = \top] \leq p_{acc}$.

Show that $\mathsf{RP}^E = \mathsf{RP}$ and $\mathsf{BPP}^E = \mathsf{BPP}$.

Exercise 3 BPP and PSPACE

- Argue that $\mathsf{BPP}(1/2) = \{ \text{ all languages } \}$ and $\mathsf{BPP} = \mathsf{coBPP}$.
- Give a direct proof that $\mathsf{BPP} \subseteq \mathsf{PSPACE}$.

Exercise 4 Probabilistic Logarithmic Space

Propose a definition of $\mathsf{RSPACE}(f(n), p_{acc}, p_{rej})$.

Consider $\mathsf{RL} = \bigcup_{k \in \mathbb{N}} \mathsf{RSPACE}(k \cdot \log(n), 0, 1/2)$ the class of languages that can be decided in probabilistic logarithmic space (the machine does not necessarily halt).

Show that:

- 1. Consider L in RL and \mathcal{M} a probabilistic Turing machine which decides L. If $x \notin L$, then $\forall r, M(x,r) \neq \top$
- 2. $\mathsf{RL} \subseteq \mathsf{NL}$
- 3. $\mathsf{RL} \subseteq \mathsf{RP}$

Exercise 5 Dunno Machine

Define a ?-probabilistic Turing machine as a probabilistic Turing machine that halts on all inputs but with three final states: an accepting state, a rejecting state and a dunno state. Given x an input and r a random tape content, we note $M(x,r) = \top$ (resp. \perp , resp. ?) if the computation of M on x with random tape r accepts (resp. rejects, resp. ends in the dunno state).

We define the probabilistic complexity class ?PP as follows:

 $L \in ?\mathsf{PP}$ if and only if there exists a ?-probabilistic Turing machine M working in (worst case) time p(n), with random tape size p(n) (for some polynomial p) and such that:

- for all x, $Pr[M(x,r) =?] \le \frac{1}{2}$
- if $x \in L$ then $Pr[M(x,r) = \bot] = 0$
- if $x \notin L$ then $Pr[M(x,r) = \top] = 0$

How does this class relate to the classical probabilistic complexity classes?