
Complexité avancée - TD 6

Benjamin Bordais

November 18, 2020

We recall the definition of RP, coRP and BPP. A language L is in RP if there exists a
Turing machineM running in polynomial time p(n) on all input x such that |x| = n and
random tape r of size p(n) such that:

• If x ∈ L, then Prr[M(x, r) = >] ≥ 1/2;

• If x 6∈ L, then Prr[M(x, r) = >] = 0.

Similarly, a language L is in coRP if there exists such a Turing machine M ensuring:

• If x ∈ L, then Prr[M(x, r) = >] = 1;

• If x 6∈ L, then Prr[M(x, r) = >] ≤ 1/2.

Finally, a language L is in BPP if there exists such a Turing machine M ensuring:

• If x ∈ L, then Prr[M(x, r) = >] ≥ 2/3;

• If x 6∈ L, then Prr[M(x, r) = >] ≤ 1/3.

Exercise 1 One-Minute Long Exercise

Between RP and coRP which language is ”No-means-No” which language is ”Yes-means-
Yes”?

Solution:
RP is ”Yes-means-Yes”. Indeed, if x /∈ L then P [M(x, r) accepts] = 0. Therefore, if

P [M(x, r) accepts] 6= 0 then x ∈ L. That is, if M(x, r) accepts, then x ∈ L.
Similarly, coRP is ”No-means-No”.

Exercise 2 Expected Running Time

Given a probabilistic Turing Machine M , not necessarily halting, let TM (x, r) be the
random variable describing the running time of M on input x and random tape r (take
TM (x, r) = +∞ if M does not halt on x, r). That is for all x, Pr[TM (x, r) = T] is the
probability, taken over all possible (infinite) random tape contents, that M on input x
halts after exactly T steps.

The expected running time of M on input x is the expectation E[TM (x, r)].
Consider the definitions of RP and BPP: here the Turing machines considered are

required to halt in time at most nc steps for some c ≥ 1 on all inputs and for all possible
random tape strings (worst case running time). Define RPE and BPPE as RP and BPP,
but replacing the worst case running time with the expected running time.

Formally:

1

• RPE =
⋃

c∈N RTIMEE(nc, 0, 1/2)

• BPPE =
⋃

c∈N RTIMEE(nc, 1/3, 2/3)

where RTIMEE(nc, pacc, prej) is the class of languages L for which there exists a prob-
abilistic Turing machine M (which may not halt) such that, for each input x of size
n:

• Pr[TM (x, r) = +∞] = 0;

• E[TM (x, r)] ≤ |x|c;

• if x ∈ L then Pr[M(x, r)] = >] ≥ prej ;

• if x /∈ L then Pr[M(x, r)] = >] ≤ pacc.

Show that RPE = RP and BPPE = BPP.

Solution:

Idea: The idea is to put a timeout and, if the execution time runs out, do the right
thing (here reject). That is:

• We consider a function K as timeout.

• Use Markov’s inequality to have a boundary on the time when it exceeds the timeout.

• Set an appropriate value for K.

• Use error reduction.

There is no difference between RP and BPP here, except for the boundary K. More
formally:

1. • RP ⊆ RPE : Obvious, because if a TM halts in a polynomial time it halts with
a average polynomial time. �

• RPE ⊆ RP:

Given a Turing machine M such as in the definition of RPE for a language L
in RPE . By definition, there exists c s.t. E[TM (x, r)] < |x|c. For K ∈ R[X]
a polynom, we define MK a TM which executes M on x and rejects if the
number of steps taken exceeds K(|x|). Then:

– If x /∈ L, Pr[MK(x, r) = >] ≤ Pr[M(x, r) = >] = 0

– If x ∈ L, Pr[MK(x, r) = ⊥] ≤ Pr[M(x, r) = ⊥] + Pr[TM (x, r) ≥ K(|x|)]

By Markov’s inequality, Pr[TM (x, r) ≥ K(|x|)] ≤= E(TM (x,r))
K(|x|) = |x|c

K(|x|) .

If we set K(n) to 4 · nc (for instance), we have Pr[MK(x, r) = >] = 1 −
Pr[MK(x, r) = ⊥] ≥ 1− (12 + 1

4) ≥ 1
4 . It follows that L ∈ RP(1/4) = RP.

2. BPPE = BPP: it’s exactly the same proof.

• BPP ⊆ BPPE : similarly.

2

• BPPE ⊆ BPP:

Given a Turing machineM such as in the definition of BPPE for a language L
in BPPE . By definition, there exists c s.t. E[TM (x, r)] < |x|c. For K ∈ R[X]
a polynom, we define MK a TM which executes M on x and rejects if the
number of steps taken exceeds K(|x|). Then:

– If x /∈ L, Pr[MK(x, r) = >] ≤ Pr[M(x, r) = >] ≤ 1/3

– If x ∈ L, Pr[MK(x, r) = ⊥] ≤ Pr[M(x, r) = ⊥] + Pr[TM (x, r) ≥ K(|x|)]
By Markov’s inequality, Pr[TM (x, r) ≥ K(|x|)] ≤ E(TM (x,r))

K(|x|) = |x|c
K(|x|) .

If we set K(n) to 12 · nc (for instance), we have Pr[MK(x, r) = >] = 1 −
Pr[MK(x, r) = ⊥] ≥ 1− (13 + 1

12) ≥ 7
12 . Hence, in both cases, the probability

of error is lower than or equal to 5/12. That is, L ∈ BPP(5/12) = BPP.

Exercise 3 BPP and PSPACE

• Argue that BPP(1/2) = { all languages } and BPP = coBPP.

• Give a direct proof that BPP ⊆ PSPACE.

Solution:

• For an arbitrary language L, we can consider the randomized Turing machine that
accepts an input with probability 1/2 regardless of that input. Furthermore, from a
probabilistic Turing machine such that L ∈ BPP, we can swap the accept and reject
so that we also have L̄ in BPP.

• Consider M a PTM for a language L in BPP . By definition, we have c ∈ N, such
that TM (x, r) ≤ |x|c, for all r of length lower than |x|c. Let x be a word and n = |x|.
There are Max(x) = |Σ|nc

different r to test if r is written on the finite alphabet
Σ. We use the following pseudocode:

S imulat ion (x) :
l e t nacc = 0
l e t n r e j = 0
f o r r = 0 to Max(x) − 1 do

r e s = Execute M(x , r)
i f (r e s)
then nacc ++
e l s e n r e j ++
end i f

endfor
re turn (nacc > n r e j)

The values r,nacc and nrej have a (bit) length lower than nc. Moreover, by defini-
tion, executing M(x, r) takes polynomial time, so a fortiori, also polynomial space.
It follows that L ∈ PSPACE.

Exercise 4 Probabilistic Logarithmic Space

Propose a definition of RSPACE(f(n), pacc, prej).
Consider RL =

⋃
k∈N RSPACE(k · log(n), 0, 1/2) the class of languages that can be decided

in probabilistic logarithmic space (the machine does not necessarily halt).
Show that:

3

1. Consider L in RL andM a probabilistic Turing machine which decides L. If x /∈ L,
then ∀r, M(x, r) 6= >

2. RL ⊆ NL

3. RL ⊆ RP

Solution:

Idea: What’s difficult here is the possibility that the Machine doesn’t stop. Moreover
(for the same reason) we don’t have a boundary on our random word so we have a
probability on an infinite set (as in ZPP). For the definition we won’t use the usual
definition by contraposition because there is not two but three cases.

Proof: We define RSPACE(p(n), pacc, prej) as the class of all languages L such that
there is a randomized Turing machine M, working in space p(n), that terminates with
probability 1, and such that:

• If x ∈ L, then Pr[M(x, r) = >] ≥ prej

• If x /∈ L, then Pr[M(x, r) = ⊥] ≤ pacc

There is no bound in the working tape.

1. Consider x /∈ L and assume that there exists r (on a finite alphabet Σ) such that
M(x, r) = >. Let n ∈ N be number of steps taken by the execution M(x, r). Then
for all infinite words w, we have M(x, r≤n · w) = >. It follows that Pr[M(x, r) =
>] ≥ 1/|Σ|n > 0. Hence the contradiction since Pr[M(x, r) = ⊥] < 1.

2. RL ⊆ NL : Given L ∈ RL, M a randomized Turing Machine which decides L, we
build the non deterministic Turing machine M′ which follows the execution of the
machine M and, when a random bit is required, guesses it. In that case:

• if x ∈ L then Pr[M(x, r) = >] ≥ 1
2 , so (∃r,M(x, r) = >) then M′(x) = >

• if x /∈ L then (∀r,M(x, r) = ⊥) hence M′(x) = ⊥

Therefore: M′ recognize L. Moreover, the resulting NL machine runs in space
k · log(n) for some k, but may fail to terminate. As in the lectures, we know that
any run of more than ak·log(n) steps (where a is the alphabet size) will visit the same
configuration twice. So we can stop any run when it exceeds that number of steps,
and reject. This requires a counter of size k · log(n). Then L ∈ NL.

3. RL ⊆ NL ⊆ P ⊆ RP.

We actually have that RL = NL: one can prove that a random walk on an undirected
graph solves the reachability problem with high probability, and one can adapt this idea
to directed graph, proving REACH ∈ RL.

Exercise 5 Dunno Machine

4

Define a ?-probabilistic Turing machine as a probabilistic Turing machine that halts
on all inputs but with three final states: an accepting state, a rejecting state and a dunno
state. Given x an input and r a random tape content, we note M(x, r) = > (resp. ⊥,
resp. ?) if the computation of M on x with random tape r accepts (resp. rejects, resp.
ends in the dunno state).

We define the probabilistic complexity class ?PP as follows:
L ∈?PP if and only if there exists a ?-probabilistic Turing machine M working in

(worst case) time p(n), with random tape size p(n) (for some polynomial p) and such
that:

• for all x, Pr[M(x, r) =?] ≤ 1
2

• if x ∈ L then Pr[M(x, r) = ⊥] = 0

• if x /∈ L then Pr[M(x, r) = >] = 0

How does this class relate to the classical probabilistic complexity classes?

Solution: The answer is ZPP, the idea is that the Dunno state can be rejected or
accepted to simulate respectively RP or coRP. Moreover if you have the two machines
(for RP and coRP) and if you ask to both of them the same question, you have a good
probability to be sure of the answer, whatever it is, else you return a Dunno state.

• ?− PP ⊆ RP:

Given M a ?-PTM for a language L in ?− PP.

We define M′ which simulates M but rejects if the answer is ?. Therefore :

– if x ∈ L then Pr[M′(x, r) = ⊥] ≤ 1
2

– if x /∈ L then Pr[M′(x, r) = >] = 0

So L ⊆ RP.

• ?− PP ⊆ coRP:

Given M a ?-PTM for a language L in ?− PP.

We define M′ which simulates M but accepts if the answer is ?. Therefore :

– if x ∈ L then Pr[M′(x, r) = ⊥] = 0

– if x /∈ L then Pr[M′(x, r) = >] ≤ 1
2

So L ⊆ coRP.

• ZPP ⊆?− PP

Consider M1 (for RP) and M2 (for co − RP) for a language L ∈ ZPP. We define
M which simulates M1 and M2 and accepts if M1 does, rejects if M2 does and
ends in a dunno state otherwise.

Therefore:

– if x ∈ L then Pr[M(x, r) =?] ≤ Pr[M1(x, r) = ⊥] ≤ 1
2

– if x /∈ L then Pr[M(x, r) =?] ≤ Pr[M2(x, r) = >] ≤ 1
2

5

So, for all x Pr[M(x, r) =?] ≤ 1
2

Moreover:

– if x ∈ L then Pr[M(x, r) = ⊥] = Pr[M2(x, r) = ⊥] = 0

– if x /∈ L then Pr[M(x, r) = >] = Pr[M1(x, r) = >] = 0

6

