Exercise 1 Family of circuits

Definition 1 A boolean circuit with n inputs is an acyclic graph where the n inputs x_1, \ldots, x_n are part of the vertices. The internal vertices are labeled with \lor, \land (with 2 incoming edges) or \neg (with 1 incoming edge), with an additional distinguished vertex o that is the output (with no exiting edge). The size $|C|$ of a circuit C is its number of vertices (excluding the input ones). For a word $x \in \{0, 1\}^*$, the notation $C(x)$ refers to the output of the circuit C if the input vertices of C are valued with the bits of x.

Definition 2 For a function $t : \mathbb{N} \to \mathbb{N}$, a family of circuit of size $t(n)$ is a sequence $(C_n)_{n \in \mathbb{N}}$ such that: C_n is an n-input circuit and $|C_n| \leq t(n)$.

Definition 3 A language $L \subseteq \{0, 1\}^*$ is decided by a family of circuit $(C_n)_{n \in \mathbb{N}}$ if for all $n \in \mathbb{N}$, for all $w \in \{0, 1\}^n$, we have: $C_n(w) = 1 \iff w \in L$.

Definition 4 For a function $t : \mathbb{N} \to \mathbb{N}$, we define $\text{SIZE}(t) := \{L \subseteq \{0, 1\}^* \mid L$ is decided by a family of circuits of size $O(t(n)) \}$.

Definition 5 $\text{P/poly} := \bigcup_{k \in \mathbb{N}} \text{SIZE}(n^k)$

1. Show that any language $L \subseteq \{0, 1\}^*$ is in size $\text{SIZE}(n \cdot 2^n)$.
2. Show that for all function $t(n) = 2^{o(n)}$, there exists $L \notin \text{SIZE}(t(n))$.
3. Show that P/poly contains undecidable language.
4. Show that P/poly is not countable.

Exercise 2 Some alternation

1. Exhibit a polynomial time alternating algorithm that solves QBF.
2. Let ONE-VAL be the problem of deciding whether a boolean formula is satisfied by exactly one valuation. Show that $\text{ONE-VAL} \in \Sigma_2^p$.
3. A boolean formula is minimal if it has no equivalent shorter formula where the length of the formula is the number of symbols it contains. Let MIN-FORMULA be the problem of deciding whether a boolean formula is minimal. Show that $\text{MIN-FORMULA} \in \Pi_2^p$.

Exercise 3 Collapse of PH
1. Prove that if $\Sigma^P_k = \Sigma^P_{k+1}$ for some $k \geq 0$ then $\text{PH} = \Sigma^P_k$. (Remark that this is implied by $\mathbf{P} = \mathbf{NP}$).

2. Show that if $\Sigma^P_k = \Pi^P_k$ for some k then $\text{PH} = \Sigma^P_k$ (i.e. PH collapses).

3. Show that if $\text{PH} = \text{PSPACE}$ then PH collapses.

4. Do you think there is a polynomial time procedure to convert any QBF formula into a QBF formula with at most 10 variables?

Exercise 4 Oracles

Consider a language A. A Turing machine with oracle A is a Turing machine with a special additional read/write tape, called the oracle tape, and three special states: $q_{\text{query}}, q_{\text{yes}}, q_{\text{no}}$. Whenever the machine enters the state q_{query}, with some word w written on the oracle tape, it moves in one step to the state q_{yes} or q_{no} depending on whether $w \in A$.

We denote by \mathbf{P}^A (resp. \mathbf{NP}^A) the class of languages decided in by a deterministic (resp. non-deterministic) Turing machine running in polynomial time with oracle A. Given a complexity class \mathcal{C}, we define $\mathbf{P}^\mathcal{C} = \bigcup_{A \in \mathcal{C}} \mathbf{P}^A$ (and similarly for \mathbf{NP}).

1. Prove that for any \mathcal{C}-complete language A (for logspace reductions), $\mathbf{P}^\mathcal{C} = \mathbf{P}^A$ and $\mathbf{NP}^\mathcal{C} = \mathbf{NP}^A$.

2. Show that for any language A, $\mathbf{P}^A = \overline{\mathbf{P}^A}$ and $\mathbf{NP}^A = \overline{\mathbf{NP}^A}$.

3. Prove that if $\mathbf{NP} = \mathbf{P}^{\text{SAT}}$ then $\mathbf{NP} = \overline{\text{coNP}}$.

4. Show that there exists a language A such that $\mathbf{P}^A = \mathbf{NP}^A$.

5. We define inductively the classes $\mathbf{NP}_0 = \mathbf{P}$ and $\mathbf{NP}_{k+1} = \mathbf{NP}_{k}^{\mathbf{NP}_k}$. Show that $\mathbf{NP}_k = \Sigma^P_k$ for all $k \geq 0$.

\footnote{In fact, there also exists a language B such that $\mathbf{P}^B \neq \mathbf{NP}^B$, which does not prove that $\mathbf{P} \neq \mathbf{NP}$.}