Complexité avancée - TD 5

Benjamin Bordais

October 21, 2020

Exercise 1 Family of circuits

Definition 1 A boolean circuit with n inputs is an acylic graph where the n inputs
X1,...,Tyn are part of the vertices. The internal vertices are labeled with A, V (with 2
incoming edges) or — (with 1 incoming edge), with an additional distinguished vertex o
that is the output (with no exiting edge). The size |C| of a circuit C is its number of
vertices (excluding the input ones). For a word x € {0,1}*, the notation C(x) refers to
the output of the circuit C if the input vertices of C are valued with the bits of x.

Definition 2 For a function t : N — N, a family of circuit of size t(n) is a sequence
(Cn)nen such that: Cy, is an n-input circuit and |Cy| < t(n).

Definition 3 A language L C {0,1}* is decided by a family of circuit (Cy,)nen if for all
n €N, for all w € {0,1}", we have: Cy(w) =1« w € L.

Definition 4 For a functiont : N — N, we define SIZE(t) := {L C{0,1}* | L is decided by
a family of circuits of size O(t(n))}.

Definition 5
P /poly := UenSIZE(n*)

1. Show that any language L C {0,1}* is in size SIZE(n - 2™).

2. Show that for all function ¢(n) = 2°("), there exists L & SIZE(t(n)).

w

. Show that P/poly contains undecidable language.

S

. Show that P/poly is not countable.

Solution:

1. Let L € {0,1}*. For all n € N, we define f, : {0,1}" — {0,1} by fo(w) =
1 & we L, for all w e {0,1}". Now, let n € N. Let us construct C,, with
O(n - 2") vertices such that C,(w) = fp(w) for all w € {0,1}". The function f,
can be represented as a two-column table with 2" entries where each valuation of n
variables to either 0 or 1 is associated 0 or 1. This table can represented as a DNF
¢ = Vicj<k(M<i<nzi = w]) where (w’);<j<i (for some k < 2") are the words of
{0,1}" ensuring f,(w;) = 1. Each clause (A1<i<n@; = w’) can be represented by a

circuit with O(n) vertices. As there are at most 2" of them, the formula ¢ can be

represented by circuit of size O(n - 2").



2. Let us find an upper bound on the number of circuits d(n) of size t(n). There are
at most t(n) internal vertices, each labeled by either V, A, or =. Furthermore, each
vertex has at most two predecessors taken among n + t(n) vertices. Overall, there
are at most:

d(n) < 31 . ((t(n) +n)?) ™ = (3 (t(n) + n)?)HM = 2t™) log((3-(t(n)+n)?))

In addition, there are 22" functions from {0,1}" — {0,1}. Since t(n) = 2°("), we
have t(n) - log((3 - (t(n) + n)?)) = 0(2"). We have d(n) = 2°"). Hence, asymptoti-
cally, there is not enough circuits of size ¢(n) to compute all Boolean functions.

3.
4.

Exercise 2 Some alternation

1. Exhibit a polynomial time alternating algorithm that solves QBF.

2. Let ONE — VAL be the problem of deciding whether a boolean formula is satisfied
by exactly one valuation. Show that ONE — VAL € 3F.

3. A boolean formula is minimal if it has no equivalent shorter formula where the
length of the formula is the number of symbols it contains. Let MIN — FORMULA
be the problem of deciding whether a boolean formula is minimal. Show that
MIN — FORMULA € II%.

Solution:

1. gbf(nu,phi):
case (phi):

— phi: propositional formula
return yes iff nu stisfies phi

— phi = exists x, phi’
(exists) choose i in [0,1]
gbf(nu[x = i],phi’)

— phi = forall x, phi’
(forall) choose i in [0,1]
gbf(nu[x = i],phi’)

Here, the number of alternations is unbounded.

2. OneVal(phi):
(exists) choose a valuation nu
if (nu satisfies phi)

then
(forall) choose a valuation nu’
if (nu’ does not satisfy phi) or (nu = nu’)
then return TRUE
else return FALSE
else

return FALSE



3.

Here we have one alternation, with first the existential states (exists) and then the
universal states (forall).

MinFormula(phi):
(forall) choose a formula psi with |psi| < |phi]
(exists) choose a valuation nu
if nu does not satisfy phi <—> psi
then
return TRUE
else
return FALSE

Here we have one alternation, with first the universal states (forall) and then the
existential states (exists).

Exercise 3 Collapse of PH

1.

Prove that if ] = X, for some k > 0 then PH = X7, (Remark that this is
implied by P = NP).

Show that if £ = II¥ for some k then PH = S£ (i.e. PH collapses).

. Show that if PH = PSPACE then PH collapses.

. Do you think there is a polynomial time procedure to convert any QBF formula

into a QBF formula with at most 10 variables ?

Solution:
First, note that ZkP =co Hf for all £ > 0. In the following, all quantification are made
with is polynomial bound on the size of the variables considered.

1.

Let us assume that Ef = EkP 4, for some k > 0 , we prove by induction that
Vi >k xP = Zf, This holds for j = i. Now, consider some j > ¢ and assume

that ZkP =...= Ef_l. Let L € Ef. There exists a language B € P ensuring:
x e L& Iy, Yy, ..., Qiyj, (x,u1,...,y;) € B (with the size of all y; bounded
by p(|z|) for some polynomial function p).

Let L' = {(z,y1) | [y1] < p(|2]) AVy2, ..., Qjy;, (z,y1,92,...,y;) € B}. We have

L'elll | =co¥l | =coX =1. Thatis, € L & 3y1, (x,y1) € L' with

L' eTIE. In fact, L € EkP_H = 2 by hypothesis.

P

. With the previous question, we just have to prove that ka =X

Let L € Z‘f +1- As previously, There exists a language B € P ensuring: =z € L &

Jy1, Yyo, -y QrraYks1, (2,91, Yk11) € B .

We define L' = {(z,y1) | [y1| < p(|z]) AVy2, - Qes1¥k+1, (T,Y1, Y25 Ykt1) €
B}. We have L' € I = X by hypothesis.

That is, there exists B’ € P such that x € L' & 3y, Yo, ..., Qryk, (T, y1,---,Yx) €
B’. But then, we have x € L < 3y, (x,y) € L. This is equivalent to =z €
L & Jy, 3, Yy, ...y Quyk, (x,y,y1,...,yx) € B’. This can be rephrased as
zeLe I, Yy, ..., Qruk, (2,Y,...,yk) € B'. It follows that L € X



3. If PH = PSPACE, then QBF is in Ekp for some k. But QBF is a complete problem
for PSPACE, and thus PH. Let there be B € PH, it can be reduced to QBF € Ef in
logspace, so B € Zf. That is, PH = ka

4. Tt is unlikely that PH collapses, and the statement would imply the previous ques-
tion.

Exercise 4 Oracles

Consider a language A. A Turing machine with oracle A is a Turing machine with a special
additional read/write tape, called the oracle tape, and three special states: gguery, Gyess qno-
Whenever the machine enters the state qquery, With some word w written on the oracle
tape, it moves in one step to the state gyes or ¢, depending on whether w € A.

We denote by P4 (resp. NPA) the class of languages decided in by a deterministic
(resp. non-deterministic) Turing machine running in polynomial time with oracle A.
Given a complexity class C, we define P¢ = J 4, P* (and similarly for NP).

1. Prove that for any C-complete language A (for logspace reductions), P¢ = P4 and
NP¢ = NP4,

2. Show that for any language A, P4 = PA and NP4 = NPA.
3. Prove that if NP = PSAT then NP = coNP.
4. Show that there exists a language A such that P4 = NP4

5. We define inductively the classes NPy = P and NPy, = NPNP+. Show that NP, =
EZ for all £ > 0.

Solution:

1. We do the proof for NP. Obviously, we have NP¢ D NP4. Now, B € NP€. There
exists a non-deterministic Turing machine running in polynomial time deciding B
with an oracle C' € C. We also have a logspace (and hence polynomial time) re-
duction f such that: =z € C & f(x) € A since A is hard for C. We build the
non-deterministic Turing machine N’ that executes N while replacing a call u € C?
with a call f(u) € A?. The Turing machine N’ also runs in polynomial time and
decides B with the oracle A. That is, B € NP4,

2. We simply have to swap the states gyes and g, in the computation.

3. P5AT is a deterministic class, so it is closed by complementation. Hence, if NP =
PSAT, we have coNP = NP

4. Consider A = QBF. By question 1, we have PQBF — PPSPACE 4,4 NPQBF —
NPPSPACE, Furthermore, NPPSPACE C NPSPACE since one can simulate the calls

to the oracle in polynomial space (as there is a polymial number of calls). There-
fore, NPPSPACE ¢ NPSPACE C PSPACE C PPSPACE,

n fact, there also exists a language B such that P? % NPZ, which does not prove that P # NP.



