
Complexité avancée - TD 4

Benjamin Bordais

October 14, 2020

Exercise 1 A translation result

Show that if P = PSPACE, then EXPTIME = EXPSPACE.

Solution:
In any case, we have EXPTIME ⊆ EXPSPACE. Let us assume that PSPACE = P and

let us show that EXPSPACE ⊆ EXPTIME. Let L1 ∈ EXPSPACE be a language accepted
by a Turing machine M1 running in 2n

c
space, for some c ≥ 1. We define:

L2 = {(x, 12|x|
c

) | x ∈ L1}

A Turing machine M2 which launches M1 on x for an input w = (x, 12
|x|c

) (after checking
the size of w) accepts L2 and runs in space O(|w|). Hence, L2 ∈ PSPACE ⊆ P. Therefore,
there exists a Turing machine M3 running in polynomial time accepting L2. Now, consider

a Turing machine M4 that, on an input x, computes w = (x, 12
|x|c

) in exponential time
and then launches M3. Then, M4 accepts L1 and runs in exponential time. That is,
L1 ∈ EXPTIME and EXPSPACE ⊆ EXPTIME.

Exercise 2 Unary languages

Recall that a unary language is any language over a one-letter alphabet.

1. Prove that if a unary language is NP-complete, then P = NP.

2. Prove that if every unary language in NP is actually in P, then EXP = NEXP.

Solution:

1. Consider a unary language L (say on the alphabet Σ = {1}) that is NP-complete
and a polynomial time reduction tr ensuring φ ∈ SAT⇔ tr(φ) ∈ L. There is a, c ≥ 1
such that we have |tr(φ)| ≤ a · |φ|c for all φ. We design a polynomial time algorithm
that solves SAT. Consider a SAT formula φ. For a variable x appearing in φ, we
denote by φ[x ← True] the (simplification of the) formula φ where x is set to True
(and similarly φ[x← False]). Note that |φ[x← True]| ≤ |φ| and |φ[x← False]| ≤ |φ|
We maintain a list l of pairs (tr(ϕ), ϕ) such that φ is satisfiable if and only if one of
the formula of l is satisfiable while ensuring |l| ≤ 2× a · |φ|c at all time. Initially, we
set l = {(tr(φ), φ)}. Then, we loop over the variables x1, . . . , xn of φ and, at each
iteration dealing with a variable xi for some 1 ≤ i ≤ n, we proceed in two steps:

• for every pair p = (tr(ϕ), ϕ) in l, we add (tr(ϕ[xi → True]), ϕ[xi → True]) and
(tr(ϕ[xi → False]), ϕ[xi → False]) and we remove p.

1

• for all 1 ≤ k ≤ a · |φ|c, we keep (at most) one pair of the shape (1k, ϕ) and
remove the other from l.

By construction, at the end of each iteration, we have |l| ≤ a · |φ|c because, for all
formula ϕ on which tr is applied, we have tr(ϕ) ∈ {1k | 1 ≤ k ≤ a · |φ|c}. Therefore,
l is of size at most 2 · a · |φ|c (this upper bound may be achieved at the end of the
first step). Furthermore, if at the beginning of an iteration we have the equivalence
that φ is satisfiable if and only if one of the formula of l is satisfiable, we still have
it at the end of the iteration. Indeed, it is straightforward that this holds at the
end of the first step. Furthermore, if tr(ϕ) = tr(ϕ′) for two formulas ϕ and ϕ′, then
ϕ ∈ SAT ⇔ ϕ′ ∈ SAT. It follows that the property still holds at the end of the
second step and at the end of the iteration. Then, once these iterations are over,
the final step consist in checking that the list l contains a pair (1k,True) for some k.
The algorithm we described runs in polynomial time and decides SAT. Therefore
SAT ∈ P.

Exercise 3 Regular language

Let REG denote the set of regular/rational languages.

1. Show that for all L ∈ REG, L is recognized by a TM running in space 0 and time
n+ 1.

2. Exhibit a language recognized by a TM running in space log n and time O(n) that
is not in REG.

Solution:

1. Consider L ∈ REG. It is recognized by a finite automaton A. We consider the TM
with the same states than A that, on an input w, simulates the execution of w on
A and accepts if A does. This TM does not consumes any space and runs in time
n+ 1 (the n+ 1-th step reads the first blank after the input and accepts/rejects).

2. The language L = {an · bn | n ≥ 0} is not regular and can be recognized by a TM
that counts the number of a with a binary counter, decrements it for each b seen
and accepts if, at the end of the word, the counter equal 0.

Exercise 4 On the existence of one-way functions

A one-way function is a bijection f from k-bit integers to k-bit integers such that f
is computable in polynomial time, but f−1 is not. Prove that if there exist one-way
functions, then

A
def
= {(x, y) | f−1(x) < y} ∈ (NP ∩ coNP)\P .

Solution:

1. A ∈ NP: consider a Turing machine that, on an input w = (x, y), guesses a number
c (with |c| = |x|) and checks in polynomial time that f(c) = x and c < y. This
non-deterministic TM runs in polynomial time and accepts the language A.

2

2. A ∈ coNP⇔ {(x, y) | f−1(x) ≥ y} ∈ NP , which we solve as previously.

3. Assume that A ∈ P . Then we build a Turing machine running in polynomial time
that computes f−1: On an input x such that |x| = n, there is 2n possibility for the
value of f−1(x). We consider a TM that proceeds by a dichotomic search on the
possible values v of f−1(x) until it finds some v with (x, v − 1) ∈ A and (x, v) 6∈ A
and deduce f−1(x) = v − 1. Since at most n tests are necessary and each test is
polynomial time, this TM runs in polynomial time.

Exercise 5 Too fast!

Show that ATIME(log n) 6= L.

Solution: When considering ATIME(log n), we do not even have the time to read the
full input. So any language which is in L and needs for the input to be completely read
will yield the result. For instance, one may use the palindromes language, or 0n on a two
letter alphabet, or 02k on a one letter alphabet.

3

