Complexité avancée - TD 3

Benjamin Bordais

October 07, 2020

Exercise 1 Space hierarchy theorem

Consider two space-constructible functions f and g such that f(n) = o(g(n)). Prove that $\mathsf{DSPACE}(f) \subsetneq \mathsf{DSPACE}(g)$.

Hint: You may consider a language $L = \{(M, w') \mid \text{ the simulation of } M \text{ on } (M, w') \text{ rejects } \}$ with an appropriate restriction on the simulation of M.

Exercise 2 Polylogarithmic space

- 1. Let $polyL = \bigcup_{k \in \mathbb{N}} SPACE(\log^k)$. Show that polyL does not have a complete problem for logarithmic space reduction.¹
- 2. We recall that $\mathsf{PSPACE} = \bigcup_{k \in \mathbb{N}} \mathsf{SPACE}(n^k)$. Does PSPACE have a complete problem for logarithmic space reduction ? Why doesn't the proof of the previous question apply to PSPACE ?

Exercise 3 Padding argument

1. Show that if $\mathsf{DSPACE}(n^c) \subseteq \mathsf{NP}$ for some c > 0, then $\mathsf{PSPACE} \subseteq \mathsf{NP}$.

Hint: for $L \in \mathsf{DSPACE}(n^k)$ one may consider the language $\tilde{L} = \{(x, 1^{|x|^{k/c}}) \mid x \in L\}.$

2. Deduce that $\mathsf{DSPACE}(n^c) \neq \mathsf{NP}$.

¹From this, we can deduce that $polyL \neq P$.