A Turing machine with certificate tape, called a verifier, is a deterministic Turing machine with an extra read-only input tape called the certificate tape, which moreover is read once (i.e. the head on that tape can either remain on the same cell or move right, but never move left). A verifier takes as input a word x, along with a word u written in the certificate tape.

Define $\text{NL}_{\text{certif}}$ to be the class of languages L such that there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a verifier V running in logarithmic space such that:

$$x \in L \iff \exists u, |u| \leq p(|x|) \text{ and } V \text{ accepts on input } (x, u).$$

1. Show that $\text{NL}_{\text{certif}} = \text{NL}$.

2. What complexity class do you obtain if you remove the read-once constraint in the definition of a machine with certification tape? Justify your answer. You may use the fact that SAT is NP-complete for logspace reductions.

Solution:

1. $\text{NL}_{\text{certif}} \subseteq \text{NL}$: Let A be a language in $\text{NL}_{\text{certif}}$. If V is a verifier for A, we can simulate the run of V on an input x by guessing the next letter of u and accepting x if and only if V would have accepted on (x, u). This runs in logarithmic space. Indeed, V runs in logarithmic space and we only need to remember one letter of u at a time, because the certificate tape is read only once.

$\text{NL} \subseteq \text{NL}_{\text{certif}}$: Let there be A in NL, and M a non deterministic Turing Machine running in logarithmic space and recognizing A. For a given input x, a run of M on x can be characterized by all the non deterministic choices done in its execution tree, which can be encoded in a word y over $\{0,1\}^*$ with $|y| \leq p_M(|x|)$ for some polynomial function p_M bounding the running time of M (which exists since M runs in logarithmic space hence polynomial time). Note that this polynomial function p_M does not depend on the input, but only on the Turing Machine M (specifically, its number of states, the size of its alphabet, and its number of work tape). We can then construct a verifier V simulating M that consults its certificate tape each time M uses non determinism. The runs of V are deterministic and require logarithmic space.

2. We call the new class $\text{NL}_{\text{certif}}'$. $\text{NL}_{\text{certif}}' \subseteq \text{NP}$: Let there be A in $\text{NL}_{\text{certif}}$ and consider a verifier V for A. We
build a non-deterministic Turing Machine M running in polynomial time accepting A. First, M guesses the certificate (which is polynomial in the size of the input), and stores it in a worktape since perhaps it will have to be read several times. And then, M runs V on (x,u), which takes polynomial time since a logspace verifier like V runs in polynomial time.

$\text{NP} \subseteq \text{NL}^{\text{certif}}$: First, let us show that $\text{SAT} \in \text{NL}^{\text{certif}}$. Consider a propositional formula φ. We build a verifier V that checks if the certificate given in the certification tape that gives a boolean valuation (a_1, \ldots, a_n) of the variables satisfies the formula φ. Specifically, V loops over all the clauses and over the literals in these clauses. The truth value of a literal is given by the certificate tape, that V checks to see the value of the literal. If one literal is satisfied by the valuation, V goes to the next clause, otherwise another literal is checked. If no literal is satisfied, V rejects. If all clauses are satisfied, V accepts. This takes logarithmic space since we only need a pointer on the clause and literal we are considering. Note that the certificate tape is consulted each time a literal is evaluated (which would not be possible in the read-only-once setting).

Let us now show that $\text{NL}^{\text{certif}}$ is closed under logspace reduction, that is if $L \in \text{NL}^{\text{certif}}$ and L' reduces in logspace to L, then $L' \in \text{NL}^{\text{certif}}$. Let us denote by f the reduction from L' to L that can be computed in logarithmic space and by V a verifier accepting L. We build a verifier V' running in logspace accepting L'. On an input w, V' simulates the verifier V on $f(w)$. $f(w)$ can be constricted in logarithmic space, however, as in the proof of Lemma 2.11 in the course, it is not possible, a priori, to copy $f(w)$ on a work tape since the space taken may exceed the logarithmic space bound. Instead, each time a bit of $f(w)$ is required by the simulation of V, it is computed once again in logarithmic space. This ensures that the space used is in $O(\log(|w|))$. By using the same trick than for the speed-up theorem, we obtain a verifier V' running in logarithmic space accepting L'.

We conclude that $\text{NP} \subseteq \text{NL}^{\text{certif}}$ by using the fact that SAT is NP-complete for logarithmic space reductions.