
Complexité avancée - TD 1

Benjamin Bordais

September 23, 2020

Exercise 1: One-minute-long exercise
Prove that any language L ⊂ {0, 1}∗ that is neither empty nor {0, 1}∗ is hard for NL

for polynomial-time reductions.

Exercice 2: Graph representation and why it does not matter. Let Σ =
{0, 1, /, •,#} with # the end-of-word symbol. For a directed graph G = (V,E) with
V = [0, n− 1] for some n ∈ N and E ⊆ V × V , we consider the following two representa-
tions of G by a word in Σ∗:

• By its adjacency matrix mG ∈ Σ∗:

mG
def
= m0,0m0,1 . . .m0,n−1 • · · · •mn−1,0 . . .mn−1,n−1#

where for all 0 ≤ i, j < n, mi,j is 1 if (i, j) ∈ E, 0 otherwise.

• By its adjacency list lG ∈ Σ∗:

lg
def
= k00/ . . . /k

0
m1
• · · · • kn−10 / . . . /kn−1mn−1

#

where for all 0 ≤ i < n, ki0, . . . , k
i
mi

are binary words listing the (codes of) right
neighbors of vertex i.

1. Show that it is possible to check in logarithmic space that a word w ∈ Σ∗ is a
well-formed description of a graph (for any of the two representations).

2. Describe a logarithmic space bounded deterministic Turing machine taking as input
a graph G, represented by its adjacency matrix, and computing the adjacency list
representation of G.

Exercise 3: A few NL-complete problems
Show that the following problems are NL-complete for logspace reductions (you may

use the fact that REACH is NL-hard for logspace reductions):

1. Deciding if a non-deterministic automaton A accepts a word w.

2. Deciding if a directed graph has a cycle.

Exercise 4: Inclusions of complexity classes

Definition 1 A function f : N → N is said to be space-constructible if ∀n ∈ N, f(n) >
log(n) and there exists a deterministic Turing machine that computes f(|x|) in space
O(f(|x|)) given x as input.

Show that for a space-constructible function f ,

NSPACE(f(n)) ⊆ DTIME(2O(f(n)))

1

Exercise 5: Restrictions in the definition of SPACE(f(n))
In the course, we restricted our attention to Turing machines that always halt, and

whose computations are space-bounded on every input. In particular, remember that
SPACE(f(n)) is defined as the class of languages L for which there exists some determin-
istic Turing machine M that always halts (i.e. on every input), whose computations are
f(n) space-bounded (on every input), such that M decides L.

Now, consider the following two classes of languages:

• SPACE′(f(n)) is the class of languages L such that there exists a deterministic
Turing machine M , running in space bounded by f(n), such that M accepts x iff
x ∈ L. Note that if x /∈ L, M may not terminate.

• SPACE′′(f(n)) is the class of languages L such that there exists a deterministic
Turing machine M such that M accepts x using space bounded by f(n) iff x ∈ L
(M may use more space and not even halt when x /∈ L).

1. Show that for a space-constructible function f = Ω(logn), SPACEE′(f(n)) = SPACE(f(n))

2. Show that for a space-constructible function f = Ω(logn), SPACE′′(f(n)) = SPACE(f(n))

2

