Exercise 1: One-minute-long exercise

Prove that any language \(L \subset \{0,1\}^* \) that is neither empty nor \(\{0,1\}^* \) is hard for NL for polynomial-time reductions.

Exercise 2: Graph representation and why it does not matter.

Let \(\Sigma = \{0,1,\,\/\,,\,\bullet\,\,\#\} \) with \# the end-of-word symbol. For a directed graph \(G = (V,E) \) with \(V = [0, n-1] \) for some \(n \in \mathbb{N} \) and \(E \subseteq V \times V \), we consider the following two representations of \(G \) by a word in \(\Sigma^* \):

- By its adjacency matrix \(m_G \in \Sigma^* \):
 \[
 m_G \overset{\text{def}}{=} m_{0,0}m_{0,1} \cdots m_{0,n-1} \cdots m_{n-1,0} \cdots m_{n-1,n-1}\#
 \]
 where for all \(0 \leq i, j < n \), \(m_{i,j} \) is 1 if \((i,j) \in E\), 0 otherwise.

- By its adjacency list \(l_G \in \Sigma^* \):
 \[
 l_G \overset{\text{def}}{=} k_0^0/\cdots/k_m^0 \cdots k_0^{n-1}/\cdots/k_m^{n-1}\#
 \]
 where for all \(0 \leq i < n \), \(k_0^i,\ldots,k_m^i \) are binary words listing the (codes of) right neighbors of vertex \(i \).

1. Show that it is possible to check in logarithmic space that a word \(w \in \Sigma^* \) is a well-formed description of a graph (for any of the two representations).

2. Describe a logarithmic space bounded deterministic Turing machine taking as input a graph \(G \), represented by its adjacency matrix, and computing the adjacency list representation of \(G \).

Exercise 3: A few NL-complete problems

Show that the following problems are NL-complete for logspace reductions (you may use the fact that REACH is NL-hard for logspace reductions):

1. Deciding if a non-deterministic automaton \(A \) accepts a word \(w \).

2. Deciding if a directed graph has a cycle.

Exercise 4: Inclusions of complexity classes

Definition 1 A function \(f : \mathbb{N} \to \mathbb{N} \) is said to be space-constructible if \(\forall n \in \mathbb{N}, f(n) > \log(n) \) and there exists a deterministic Turing machine that computes \(f(|x|) \) in space \(O(f(|x|)) \) given \(x \) as input.

Show that for a space-constructible function \(f \),
\[
\text{NSPACE}(f(n)) \subseteq \text{DTIME}(2^{O(f(n))})
\]
Exercise 5: Restrictions in the definition of $\text{SPACE}(f(n))$

In the course, we restricted our attention to Turing machines that always halt, and whose computations are space-bounded on every input. In particular, remember that $\text{SPACE}(f(n))$ is defined as the class of languages L for which there exists some deterministic Turing machine M that always halts (i.e. on every input), whose computations are $f(n)$ space-bounded (on every input), such that M decides L.

Now, consider the following two classes of languages:

- $\text{SPACE}'(f(n))$ is the class of languages L such that there exists a deterministic Turing machine M, running in space bounded by $f(n)$, such that M accepts x iff $x \in L$. Note that if $x \not\in L$, M may not terminate.

- $\text{SPACE}''(f(n))$ is the class of languages L such that there exists a deterministic Turing machine M such that M accepts x using space bounded by $f(n)$ iff $x \in L$ (M may use more space and not even halt when $x \not\in L$).

1. Show that for a space-constructible function $f = \Omega(\log n)$, $\text{SPACE}'(f(n)) = \text{SPACE}(f(n))$
2. Show that for a space-constructible function $f = \Omega(\log n)$, $\text{SPACE}''(f(n)) = \text{SPACE}(f(n))$