
Complexité avancée - TD 1

Benjamin Bordais

September 23, 2020

Exercise 1: One-minute-long exercise
Prove that any language L ⊂ {0, 1}∗ that is neither empty nor {0, 1}∗ is hard for NL

for polynomial-time reductions.

Solution Consider such a language L with wy ∈ L and wn 6∈ L and an arbitrary problem
L′ in NL. We know that NL ⊆ P . We modify a TM running in polynomial time deciding
P by setting the output to wy instead of accepting and wn instead of rejecting.

Exercice 2: Graph representation and why it does not matter. Let Σ =
{0, 1, /, •,#} with # the end-of-word symbol. For a directed graph G = (V,E) with
V = [0, n− 1] for some n ∈ N and E ⊆ V × V , we consider the following two representa-
tions of G by a word in Σ∗:

• By its adjacency matrix mG ∈ Σ∗:

mG
def
= m0,0m0,1 . . .m0,n−1 • · · · •mn−1,0 . . .mn−1,n−1#

where for all 0 ≤ i, j < n, mi,j is 1 if (i, j) ∈ E, 0 otherwise.

• By its adjacency list lG ∈ Σ∗:

lg
def
= k00/ . . . /k

0
m1
• · · · • kn−10 / . . . /kn−1mn−1

#

where for all 0 ≤ i < n, ki0, . . . , k
i
mi

are binary words listing the (codes of) right
neighbors of vertex i.

1. Show that it is possible to check in logarithmic space that a word w ∈ Σ∗ is a
well-formed description of a graph (for any of the two representations).

2. Describe a logarithmic space bounded deterministic Turing machine taking as input
a graph G, represented by its adjacency matrix, and computing the adjacency list
representation of G.

Solution. We make two preliminary observations.
– Firstly, it is easy to implement a binary counter on an empty worktape TB. E.g., for
little-endian representation we increment by reading TB left to right, replacing 1s by 0s,
stopping at the first 0 and replacing it with a 1. If we reach the end of TB without seeing
a 0, we add a 1 to the right. Then, we reset the TM head to the start of the tape, and
the incrementation is over.
– Secondly, comparing two numbers written in binary (with no extra 0s on the right) just

1

needs logspace. If the counters are on different worktapes one needs no extra space and
only linear time: one checks that the counters have different sizes and deduces which is
larger, and if they have same size one checks if they coincide or reading from the right,
finds the first bit where they differ and deduces which counter is the largest. If the counters
are on the same worktape (usually the input tape) one just needs logarithmic space, e.g.,
to store pointers to the extremities of the counters before performing the comparison, or
to copy them on different auxiliary worktapes and reuse the previous method.

In the following, N will denote the size of the input.

1. First, consider the adjacency matrix case. Checking that w ∈ Σ∗ consists in se-
quences of 0s and 1s separated by the symbol • and ending with the symbol # is
straightforward1. But we also have to check that between any two consecutive •s
(and also before the first •) there are exactly m+1 symbols, where m is the number
of •s. To do so, we may use an additional tape TB as a counter, incrementing it
each time the symbol • or # is seen, so that in the end TB stores m+ 1. Note that
m + 1 written in binary takes O(logN) bits. Then, we consider another working
tape TW where, for each sequence in {0, 1}∗ we increment a counter until we reach
the next • symbol. Then, we can check that it is equal to the number m+ 1 on TB.

The case of adjacency list is analogous, but instead of checking the number of
symbols between two •s, we have to check that every number written (between /)
is smaller than the value of the counter written on the tape TB.

2. We first use the Turing Machine we described in the previous question to check that
the word considered is well-formed. Then, we consider a Turing Machine M with
a tape Ti where a counter will loop between 0 and k − 1 (where k is the number
of • symbol plus 1) assuming the word we consider is well formed. The counter
i is incremented whenever a new symbol 0 or 1 is seen and reinitialized at each
• symbol. Furthermore, whenever • is seen, • is written on the output tape and
whenever a 1 is seen, the counter i is copied on the output tape, preceded by symbol
/ if it is not the first time the counter i is copied since the last time a • symbol was
written. The space taken by this TM is in O(logN) since we only use a counter
whose value, written in binary is at most k and the logarithmic space taken by the
TM described in the first question. Then, we conclude with the speedup theorem.

Exercise 3: A few NL-complete problems
Show that the following problems are NL-complete for logspace reductions (you may

use the fact that REACH is NL-hard for logspace reductions):

1. Deciding if a non-deterministic automaton A accepts a word w.

2. Deciding if a directed graph has a cycle.

Solution

1. The problem is in NL as we can simply guess the path in the automaton corre-
sponding to the word and arrive in an accepting state. To be in logspace, we do
not however guess the whole path at once, but guess transition by transition while
keeping a counter to the current state.

1This is a “regular” constraint and any regular language is in TIME(n) ∩ SPACE(0).

2

Then, to establish NL-hardness, given a graph G, a starting node and an ending
node, we label all the edges with the lettre ε in order to create an automaton A,
with initial state (resp. final) the starting (resp. ending) node. Now, REACH is
equivalent to whether A accepts ε, we thus reduced REACH to our problem, which
is then NL-complete.

2. The problem is in NL, given G we guess an edge (x, y) of the cycle and run REACH
on (G, y, x).

Consider now the NL-hardness. Given an instance of REACH (G, s, t), we may
create G′ by first adding an edge between t and s, creating a cycle inside G′ if s
and t are connected in G. This is not enough, because G may have other cycles and
the equivalence would not hold. Thus, we must first eliminate all the cycles in G.
Let m be the number of nodes in G. We create m copies of G, which can be seen
as m levels. For every edge from i to j in G, we draw an edge from node i at each
level to node j at the next level. Additionally, we draw an edge from each node i
at each level to node i at the next level. We call s′ the s of the first level, and t′

the t of the last level. Now, there is a path from s to t in G if and only if there is
path from s′ to t′ in G′. Moreover, in G′ path are only ”going up” into the levels,
so there cannot be any circle. Thus if we add an edge from t′ to s′, we now have
that there is a path from s to t in G if and only if there is a cycle in G′. We can
check that this operation can be done in logarithmic space.

3

