We recall the definition of \(\text{BPP} \). A language \(L \) is in \(\text{BPP} \) if there exists a Turing machine \(M \) running in polynomial time \(p(n) \) on all input \(x \) such that \(|x| = n \) and random tape \(r \) of size \(p(n) \) such that:

- If \(x \in L \), then \(\Pr_{r}[M(x, r) = \top] \geq 2/3 \);
- If \(x \notin L \), then \(\Pr_{r}[M(x, r) = \top] \leq 1/3 \).

Exercise 1 (\(\text{RP}^* \)). We define \(\text{RP}^* \) as the class of all languages \(L \) for which there exists a probabilistic Turing machine \(M \) running in polynomial time, such that:

- If \(x \in L \) then \(\Pr[M(x, r) \text{ reject}] < 1 \)
- If \(x \notin L \) then \(\Pr[M(x, r) \text{ accept}] = 0 \)

Do you recognize this class?

Exercise 2 (A quick come back to oracles). Give an lower and upper bound on the following complexity classes: \(\text{NP}^{\text{NP}}, \text{RP}^{\text{RP}} \) and \(\text{BPP}^{\text{BPP}} \).

Exercise 3 (\(\text{NP} \), \(\text{RP} \) and \(\text{BPP} \)). Show that if \(\text{NP} \subseteq \text{BPP} \) then \(\text{NP} = \text{RP} \).

Exercise 4 (Logarithmic space \(\text{BPP} \)). Define \(\text{BPL} \) as the class of languages decided by a probabilistic Turing machine running in logarithmic space and polynomial time (with a \(\text{BPP} \)-like semantic). Show that \(\text{BPL} \subseteq \text{P} \).

Exercise 5 (The \(\text{PP} \) class). The class \(\text{PP} \) is the class of languages \(L \) for which there exists a polynomial time probabilistic Turing machine \(M \) such that:

- if \(x \in L \) then \(\Pr[M(x, r) \text{ accepts}] > \frac{1}{2} \)
- if \(x \notin L \) then \(\Pr[M(x, r) \text{ accepts}] \leq \frac{1}{2} \)

1. Show that \(\text{BPP} \subseteq \text{PP} \) and \(\text{NP} \subseteq \text{PP} \);
2. Exhibit a \(\text{PP} \)-complete language;
3. Show that \(\text{PP} \) is closed under complement;
4. Consider the decision problem \(\text{MAJSAT} \):

 (a) Input: a boolean formula \(\phi \) on \(n \) variables
 (b) Output: the (strict) majority of the \(2^n \) valuations satisfy \(\phi \).
Show that MAJSAT ∈ PP. In fact, MAJSAT is PP-complete.

One may also consider the decision problem MAXSAT:

(a) Input: a boolean formula φ on n variables, a number K
(b) Output: more than K valuations satisfy φ.

Show that MAXSAT is also PP-complete (to prove that MAXSAT ∈ PP one may reduce MAXSAT to MAJSAT).

Exercise 6 (A little come back to P and RP). We define a random language A by setting that each word $x \in \{0, 1\}^*$ is in A with probability $1/2$. Show that almost surely (on the probabilistic choice on the language A) we have $P^A = RP^A$.

Hint: Fix an $\epsilon > 0$ and an enumeration $(M_i)_{i \in \mathbb{N}}$ of probabilistic Turing machine running in polynomial time with an oracle. Exhibit deterministic polynomial time Turing machines $(N_i)_{i \in \mathbb{N}}$ and consider the probability (over the random language considered) that there is one i such that M_i and N_i does not coincide.