We recall the definition of \(BPP \). A language \(L \) is in \(BPP \) if there exists a Turing machine \(M \) running in polynomial time \(p(n) \) on all input \(x \) such that \(|x| = n \) and random tape \(r \) of size \(p(n) \) such that:

- If \(x \in L \), then \(\Pr_{r}[M(x, r) = \top] \geq 2/3 \);
- If \(x \notin L \), then \(\Pr_{r}[M(x, r) = \top] \leq 1/3 \).

We also recall the Chernoff’s bound: Let \(X_1, \ldots, X_N \) be random independent variables with value in \(\{0, 1\} \) with the same law \(\Pr(X_i = 1) = p \), then:

\[
\Pr(X_1 + X_2 + \ldots + X_N \geq (1 + \theta) \cdot p \cdot N) \leq e^{-\frac{\theta^2 \cdot p \cdot N}{3}}
\]

Exercise 1 (\(RP^* \)). We define \(RP^* \) as the class of all languages \(L \) for which there exists a probabilistic Turing machine \(M \) running in polynomial time, such that:

- If \(x \in L \) then \(\Pr[M(x, r) \text{ reject}] < 1 \)
- If \(x \notin L \) then \(\Pr[M(x, r) \text{ accept}] = 0 \)

Do you recognize this class?

Solution 1. This is in fact \(NP \).

- \(RP^* \subseteq NP \): For the same reason than \(RP \subseteq NP \)
- \(NP \subseteq RP^* \): Let us show that \(SAT \in RP^* \). Let \(M \) be the probabilistic Turing machine that, on a formula \(\phi \) with \(p \) free variable, and \(r \) a random tape of bits (of length \(\geq p \)), evaluates \(\phi \) on \(r \). We have that \(M \) runs in polynomial time. In addition, if we denote by \(\text{eval}(\phi) \) the proportion of valuations that satisfy \(\phi \), we have \(\Pr[M(\phi, r) = \top] = \text{eval}(\phi) \) and \(\Pr[M(\phi, r) = \bot] = 1 - \text{eval}(\phi) \). Therefore:
 - If \(\phi \in SAT \), \(\text{eval}(\phi) > 0 \) and we have \(\Pr[M(\phi, r) = \bot] < 1 \).
 - If \(\phi \notin SAT \), \(\text{eval}(\phi) = 0 \) and \(\Pr[M(\phi, r) = \top] = 0 \).

It follows that \(SAT \in RP^* \). As \(RP^* \) is closed under logspace reduction, we have \(NP \subseteq RP^* \).

Exercise 2 (A quick come back to oracles). Give a lower and upper bound on the following complexity classes: \(NP^{NP} \), \(RP^{RP} \) and \(BPP^{BPP} \).

Solution 2. The class \(NP^{NP} \) corresponds to the second level of the polynomial hierarchy. Furthermore:
• **BPP \subseteq BPP^{BPP}**: This is straightforward, since one can ask the oracle the answer.

• **BPP^{BPP} \subseteq BPP**: Let L ∈ BPP^{BPP}. By definition, there exists B ∈ BPP and M a PTM (of execution time lower than a polynomial p) which decides L (with a BPP semantic) by calling the oracle B. We know that for all polynomial q, there exists a probabilistic Turing machine M_{q} running in polynomial time which decides B with a two-sided error lower than 2^{-q(n)}. Consider now the probabilistic TM M' that executes M and simulates all calls to the oracle B by simulating the execution of the TM M_{q}. Note that the complete size of random words we need is polynomial as we make at most p(n) calls to M_{q} which uses polynomial size random tapes. Furthermore, if no mistake is made in all the calls to M_{q}, then M' does not make a mistake with probability at most 1/3 and correctly accepts or rejects inputs belonging or not to L. Hence, for n = |x|, we have \Pr[M'(x, r) \text{ errs}] = \Pr[M'(x, r) \text{ errs } | \text{ the simulation did no mistake }] + \Pr[M'(x, r) \text{ errs } | \text{ the simulation made a mistake }] \leq \Pr[M(x, r) \text{ errs}] + \Pr[\text{ the simulation made a mistake }] \leq 1/3 + 1 - (1 - 2^{-q(n)})^{p(n)} \leq 1/3 + 2^{-q(n)} \cdot p(n) \leq 2/5 \text{ for } q(n) = p(n) + 4. \text{ Note that } q(n) \text{ can be chosen as a function of } p(n) \text{ since } p \text{ is given by the Turing machine } M. \text{ Therefore } L \in BPP.

Then, we have RP \cup \text{coRP} \subseteq \text{RP}^{BPP} \subseteq BPP.

Exercise 3 (NP, RP and BPP). Show that if NP \subseteq BPP then NP = RP.

Solution 3. In any case, we have RP \subseteq NP. Let’s now assume that NP \subseteq BPP. So SAT ∈ BPP. We know that, for all polynomial q, we have M a probabilistic Turing machine running in polynomial time which recognizes SAT, with an error lower than or equal to 2^{-q(n)}. We will define the M' a PTM which works as the following pseudocode (with \phi a formulae with p free variables; r, r' random words):

\[
\psi = \phi \\
\text{For } (i < p) :
\begin{align*}
\text{If } (M(\psi[x_i = \top], r_i) = \top) & : \\
\psi := \psi[x_i = \top] \\
\quad \text{Else } M(\psi[x_i = \bot], r'_i) = \top : \\
\psi := \psi[x_i = \bot] \\
\text{Else :}
\end{align*}
\text{Return } \bot
\]

Notice that \(p < |\phi| \). There is a at most 2p calls to M. Hence, the running time of this algorithm is polynomial and total length of random word used is also polynomial. Therefore, for \(\phi \) a formulae with p free variables, \(|\phi| = n \) and \(x = 2^{-q(n)} \):

- if \(\phi \notin L \) then \(\Pr[M'(\phi, r) = \top] = 0 \) (since we check that the last \(\psi \) is satisfied, which implies that the valuation chosen satisfies \(\phi \)).

- if \(\phi \in L \) then \(\Pr[M'(\phi, r) = \bot] \leq \sum_{i=0}^{2p-1} (1 - x)^i x \) (it’s the probability that one simulation of M fails). That is, \(\Pr[M'(\phi, r) = \bot] \leq \sum_{i=0}^{2p-1} x = 2p \cdot x = 2n \cdot 2^{-q(n)} \leq 2^{2n-q(n)} \).

So, with \(q(n) = 2n + 1 \) : if \(\phi \in L \) then \(\Pr[M'(\phi, r) = \bot] \leq \frac{1}{2} \)

Then: SAT ∈ RP.
Exercise 4 (Logarithmic space BPP). Define BPL as the class of languages decided by a probabilistic Turing machine running in logarithmic space and polynomial time (with a BPP-like semantic). Show that BPL ⊆ P.

Solution 4. Consider a language $L \in \text{BPL}$ and the corresponding PTM running time p. Consider the polynomial size (since the space used is logarithmic) configuration graph. It can be seen as a Markov chain where the probability transition are either 0,1 or $1/2$ (when a random bit is read). One can then compute the probability to reach p_{acc} from q_0 in at most $p(n)$ for an input of size n. This can be done in polynomial time (by an iteration of matrix multiplication). Then, we accept iff the computed probability is at least $2/3$.

Exercise 5 (The PP class). The class PP is the class of languages L for which there exists a polynomial time probabilistic Turing machine M such that:

1. If $x \in L$ then $\Pr[M(x,r) \text{ accepts}] > 1/2$
2. If $x \notin L$ then $\Pr[M(x,r) \text{ accepts}] \leq 1/2$

1. Show that BPP ⊆ PP and NP ⊆ PP;
2. Exhibit a PP-complete language;
3. Show that PP = PP< and that PP is closed under complement;
4. Consider the decision problem MAJSAT:
 a. Input: a boolean formula ϕ on n variables
 b. Output: the (strict) majority of the 2^n valuations satisfy ϕ.

Show that MAJSAT ∈ PP. In fact, MAJSAT is PP-complete.

One may also consider the decision problem MAXSAT:

a. Input: a boolean formula ϕ on n variables, a number K

b. Output: more than K valuations satisfy ϕ.

Show that MAXSAT is also PP-complete (to prove that MAXSAT ∈ PP one may reduce MAXSAT to MAJSAT).

Solution 5. 1. A language $L \in \text{BPP}$ is recognized by a PTM M such that if $x \in L$ then $\Pr[M(x,r) \text{ accepts}] \geq 2/3$ and if $x \notin L$ then $\Pr[M(x,r) \text{ accepts}] \leq 1/3$. It follows that $L \in \text{PP}$.

The class PP is closed under logspace reduction. It suffice to show that SAT ∈ PP. Consider now a probabilistic Turing machine with an input that is a formula ϕ. According to the first bit of the random tape, it either accepts or reads what remains of the random tape for a valuation and accepts if and only if it satisfies ϕ. Then, if $\phi \in \text{SAT}$, we have $\Pr[M(x,r) \text{ accepts}] > 1/2$, otherwise $\Pr[M(x,r) \text{ accepts}] = 1/2$.

2. The language $L = \{(M,x,t) \mid \text{ the PTM } M \text{ accepts } x \text{ in time } t \text{ with proba } > 1/2\}$ is PP-complete.

3. Let us define PP< as the class of languages L for which there exists a polynomial time probabilistic Turing machine M such that:
• if \(x \in L \) then \(\Pr[M(x, r) \text{ accepts}] > \frac{1}{2} \)
• if \(x \notin L \) then \(\Pr[M(x, r) \text{ accepts}] < \frac{1}{2} \)

Trivially, we have \(\text{PP}_< \subseteq \text{PP} \). Now, consider \(L \in \text{PP} \) and its associated Turing machine \(M \) running in polynomial time \(p \). Without loss of generality, we assume that the alphabet of the random tape is of size 2, hence the probability of a random word for \(M \) on an input \(x \) such that \(|x| = n \) is \(2^{-p(n)} \). Therefore, if \(x \in L \) then \(\Pr[M(x, r) \text{ accepts}] \geq \frac{1}{2} + \frac{1}{2^{2p(n)}} \). Now, we construct another Turing machine \(M' \) that runs \(M \) on an input. If \(M \) would reject, \(M' \) rejects too, and if \(M \) would accept then \(M' \) rejects with probability \(\frac{1}{2^{p(n)}} \) (for instance, by reading a word in the random tape of length \(p(n) \) and accepting only if there are only 0s). Then:

• if \(x \in L \): \(\Pr[M(x, r) \text{ accepts}] \geq (\frac{1}{2} + \frac{1}{2^{2p(n)}}) \cdot (1 - \frac{1}{2^{p(n)}}) = \frac{1}{2} + \frac{1}{2^{2p(n)}} - \frac{1}{2^{2p(n)}} > \frac{1}{2} \)
• if \(x \notin L \): \(\Pr[M(x, r) \text{ accepts}] \leq \frac{1}{2} \cdot (1 - \frac{1}{2^{p(n)}}) < \frac{1}{2} \)

That is, \(L \in \text{PP}_< \). The stability under complement then follows by inverting the accepting and rejecting states.