Homework (Solving generalized reachability games). In the two-player turn-based setting:

1. A generalized reachability condition is the following: given several target sets of states $T_1, \ldots, T_k \subseteq V$, Player A wins if and only if, for all $1 \leq i \leq k$, a state in T_i is seen at some point. The difference with the k-generalized reachability objective is that the number of targets is not bounded a priori. Show that deciding the winner of a generalized reachability game is PSPACE-complete.

 Hint: for the PSPACE membership, you can use without a proof that if Player A wins with k target sets of states, she can win in at most $k \cdot n$ steps where $n := |V|$. For the hardness, you may reduce from TQBF where the formula is in CNF.

2. Show that deciding the winner of a generalized reachability game when $V_B = \emptyset$ (i.e. only Player A is playing) is NP-hard.

Solution. 1. Let us denote by GenReach this decision problem. Let us first show that it is in PSPACE. Then, for all vertices $v \in V$, we denote by $t(x) \subseteq \{1, \ldots, k\}$ the set of indexes of target sets to which it belongs: $t(x) := \{i \leq k \mid x \in T_i\}$. Now, we define a recursive function $\text{win} : (v, \text{visit}, n) \mapsto \text{true}$ if and only if Player A wins in the graph $G = (V,E)$, starting from $v \in V$, for a version of the game where the targets in visit have already been seen the remaining target are to be seen in at most n steps”. Now win is a simple recursive procedure:

$$\text{win}(v, \text{visit}, n) = \begin{cases} \text{true} & \text{if visit} = \{1, \ldots, k\} \\ \text{false} & \text{otherwise, if } n = 0 \\ \exists (v, v') \in E, \text{win}(v', \text{visit} \cup h(v), n - 1) = \text{true} & \text{otherwise, if } v \in V_A \\ \forall (v, v') \in E, \text{win}(v', \text{visit} \cup h(v), n - 1) = \text{true} & \text{otherwise, if } v \in V_B \end{cases}$$

Then, Player A wins from v_0 if and only if $\text{win}(v_0, \emptyset, n \cdot k) = \text{true}$.

Then, an algorithm implementing this procedure can run in polynomial space: it explores every successors and calls itself recursively. The number of nested calls is at most $n \cdot k$ and each call takes polynomial space to store (the current vertex, the set of targets already seen and the index n).

Consider now the PSPACE-hardness. Let $\Phi = Q_1 x_1, Q_2 x_2, \ldots, Q_n x_n, \phi$ be a QBF formula with $Q_i \in \{\forall, \exists\}$ for all $i \leq n$ and $\phi = \bigwedge_{1 \leq j \leq k} C_j$ a CNF formula. We construct the following generalized reachability game:

- $G_\Phi := (V,E)$;
- $V := \{x_i, \neg x_i \mid 1 \leq i \leq n\} \cup \{s_j \mid 1 \leq j \leq n + 1\}$;
2. This decision problem is now in NP.

First, note that this can be computed in logspace as it only amounts to loop on the variables and clauses of the input to produce the output.

Let us show that $\Phi \in \text{QBF} \iff G_\Phi \in \text{GenReach}$. We prove it by induction with a partial valuation of the variables. For all $k \leq n$, a k-partial valuation is a valuation $v_k : \{x_1, \ldots, x_n\} \rightarrow \{\top, \bot\}$ of the variables x_1, \ldots, x_k. To each partial valuation, we can associate the corresponding path p_{v_k} in the graph G_Φ from s_1 to s_{k+1} that visits the variables x_i if $v_k(x_i) = \top$ and visits $\neg x_i$ otherwise. We denote by Φ_{v_k} the resulting QBF-formula:

$$\Phi_{v_k} = Q_{k+1}x_{k+1}, \ldots, Q_nx_n, \phi[v_k]$$

where $\phi[v_k]$ is the formula ϕ where each variable in $\{x_1, \ldots, x_k\}$ has been replaced by its value w.r.t. v_k. Similarly, we denote by $G_{\phi}^{p_{v_k}}$ the game that starts in s_{k+1} with the path p_{v_k} already seen. Then, let us prove the following property on $0 \leq k \leq n$ by induction $P(k)$: for all k-partial valuations v_k, we have $\Phi_{v_k} \in \text{QBF} \iff G_{\phi}^{p_{v_k}} \in \text{GenReach}$.

First, $P(n)$ holds by definition of the target sets T_i, they exactly correspond to the clauses in the formula. Hence, all the clauses are satisfied by a valuation v_n if and only if all the target sets are visited by the path p_{v_n}. Now, assume that the property P holds for some $0 < k + 1 \leq n$. Consider a k-partial valuation v_k, the QBF-formula Φ_{v_k} and the corresponding game $G_{\phi}^{p_{v_k}}$. Assume that $Q_k = \exists$. Then, we have the following equivalence:

$$\Phi_{v_k} \in \text{QBF} \iff \Phi_{v_k}[x_{k+1} \rightarrow \top] \in \text{QBF} \lor \Phi_{v_k}[x_{k+1} \rightarrow \bot] \in \text{QBF}$$

$$\iff G_{\phi}^{p_{v_k}, x_{k+1}, s_{k+2}} \in \text{GenReach} \lor G_{\phi}^{p_{v_k}, (\neg x_{k+1}), s_{k+2}} \in \text{GenReach}$$

$$\iff G_{\phi}^{p_{v_k}} \in \text{GenReach}$$

The case $Q_k = \forall$ is analogous. That is $P(k)$ holds. In, fact, it holds for all $0 \leq k \leq n$. In particular, $P(0)$ holds, which exactly corresponds to the equivalence $\Phi \in \text{QBF} \iff G_\Phi \in \text{GenReach}$.

2. This decision problem is now in NP: one can guess a path of length at most $k \cdot n$ and then check in polynomial time that indeed all target sets appear in that path. Furthermore, the previous reduction also applies here: indeed, SAT is a special case of QBF where there are no universal quantifiers. In the reduction, it induces that the set of states V_B is empty, which corresponds to the restriction of the problem we are considering. Hence, this decision problem can be reduced in logspace to SAT and is therefore NP-hard.