Complexité - TD 05

Benjamin Bordais

17 Décembre 2020

Exercise 1 Espace Poly-Logarithmique

On rappelle le théorème de hiérarchie en espace :

Théorème 1 Pour deux fonctions constructibles $f, g \ge \log$ telles que f(n) = o(g(n)), on a DSPACE $(f) \subseteq \mathsf{DSPACE}(g)$.

On définit à présent la classe de complexité :

$$\mathsf{PolyLog} = \bigcup_{k>0} \mathsf{SPACE}(\log^k(n))$$

.

- 1. Montrer que PolyLog n'a pas de problème complet pour des réductions en espace logarithmique. Que peut-on déduire quant à la comparaison entre les classes P et PolyLog?
- 2. On rappelle que $\mathsf{PSPACE} = \bigcup_{k>0} \mathsf{SPACE}(n^k)$. Est-ce que PSPACE a un problème complet pour des réductions en espace logarithmique? Pourquoi est-ce que la preuve de la question précédente ne s'applique pas à PSPACE ?

Exercise 2 Fonction de choix

Un langage L appartient à $\mathsf{P}\text{-}choice$, écrit $L \in \mathsf{P}_c$, s'il existe une fonction $f: \Sigma^* \times \Sigma^* \to \Sigma^*$, calculable en temps polynomial telle que pour tout $x, y \in \Sigma^*$:

- $--f(x,y) \in \{x,y\},\$
- si $x \in L$ ou $y \in L$, alors $f(x, y) \in L$.

Dans ce cas, f est appelé la fonction de choix pour L.

- 1. Montrer que $P \subseteq P_c$.
- 2. Monter que P_c est clos par complémentaire.
- 3. Monter que s'il existe un problème $\mathsf{NP}\text{-}\mathsf{dur}$ dans P_c alors $\mathsf{P}=\mathsf{NP}.$

Exercise 3 Clôture par morphisme

Étant donné un alphabet fini Σ , une fonction $f: \Sigma^* \to \Sigma^*$ est un morphisme si $f(\Sigma) \subseteq \Sigma$ et pour tout $a = a_1 \cdots a_n \in \Sigma^*$, $f(a) = f(a_1) \cdots f(a_n)$ (f est entièrement déterminée par les valeurs prises sur Σ).

Montrer que $\mathsf{P} = \mathsf{NP}$ si et seulement si P est clos par morphisme (i.e. si $L \in \mathsf{P}$, alors $f(L) \in \mathsf{P}$ pour tout morphisme f).

Exercise 4 Théorème de Ladner

On souhaite montrer que si $\mathsf{P} \neq \mathsf{NP}$ alors il existe $L \in \mathsf{NP} \backslash \mathsf{P}$ tel que L ne soit pas $\mathsf{NP}\text{-complet}.$

On considère un codage des machines de Turing dans les entiers tel que à toute machine de Turing correspondent un nombre infini d'entiers, on notera M_i la machine de Turing codé par l'entier i. On définie récursivement la fonction $H: \mathbb{N} \to \mathbb{N}$ et l'ensemble SAT_H comme suit :

$$\mathsf{SAT}_H = \{\psi.0.1^{n^{H(n)}} \mid \psi \in \mathsf{SAT} \land n = |\psi|\}$$

$$H(n) = \min \begin{cases} \log(\log(n)) \\ \min_{i < \log(\log(n))} \{i \mid M_i \text{ decide } \mathsf{SAT}_H \text{ en temps } i \cdot |x|^i \text{ pour tout } |x| < \log(\log(n))\} \end{cases}$$

La définition ci-dessus n'est pas valide en 0 et en 1, on prendra donc H(0) = H(1) = 0. On va maintenant montrer les résultats suivants :

- 1. Montrez que H et SAT_H sont bien définies, que H est croissante et qu'elle se calcule en temps polynomial.
- 2. Montrez que si SAT_H est dans P alors H est bornée.
- 3. Réciproquement montrez que si H est bornée alors SAT_H est dans P.

Établisser à présent les propriétés suivantes :

- (i) $SAT_H \in NP$;
- (ii) $SAT_H \notin P$;
- (iii) SAT_H n'est pas NP-complet.