Complexité - TD 01

Benjamin Bordais

19 Novembre 2020

Ici, on confond les notions de langage et de problème de décision. En effet, à partir d'un problème de décision, on peut considérer le langage associé qui est le langage des instances positives de ce problème de décision. De même, à partir d'un langage, on peut considérer le problème qui consiste à décider si une instance appartient à ce langage.

Les réductions considérées sont en espace logarithmique (sauf spécification contraire). On rappelle la définition du problème de décision SAT :

- ENTRÉE : une formule propositionnelle ϕ sous forme normale conjonctive
- SORTIE : ϕ est satisfiable

Ce problème est NP-complet.

On donne également la définition suivante d'une coloration d'un graphe. Une k-coloration d'un graphe non orienté G=(V,E) est une fonction $c:V\to\{0,\ldots k-1\}$ telle que si $\{u,v\}\in E$ alors $c(u)\neq c(v)$. Le problème 3 – COLORATION est défini ainsi :

- ENTRÉE : un graphe non orienté G
- SORTIE : il existe une 3-coloration de G

Ce problème est NP-complet.

Échauffement

Réduction en temps polynomial

Soit $L \subseteq \Sigma^*$ un langage sur l'alphabet Σ . À quelles conditions L est PTIME-dur pour des réductions en temps polynomial?

Un simple problème NP-complet

Soit L le langage $\{(M, x, 1^t) \mid M \text{ accepte sur } x \text{ en temps au plus } t\}$ avec M le code d'une machine de Turing non-déterministe. Montrer que L est NP-complet.

Problème NP-complet sur des graphes

Ensemble indépendent

Un ensemble indépendant dans un graphe non orienté G=(V,E) est un ensemble $C\subseteq V$ de sommets dont aucun n'est relié à aucun autre par une arête de G, c'est-à-dire tel que $u,v\in C$ implique $\{u,v\}\not\in E$. Démontrer que le langage INDEPENDENT – SET défini comme suit est NP-complet.

ENTRÉE : un graphe non orienté G = (V, E), un entier $m \in \mathbb{N}$;

SORTIE: G a-t-il un ensemble indépendant de cardinal au moins m

Ensemble couvrant

Un recouvrement C d'un graphe non orienté G=(V,E) est un ensemble $C\subseteq V$ de sommets tel que toute arête de E est incidente à C, c'est-à-dire à au moins un élément de C. Démontrer que le langage NODE — COVER défini comme suit est NP-complet.

ENTRÉE : un graphe non orienté G = (V, E), un entier $m \in \mathbb{N}$;

SORTIE: G a un recouvrement de cardinal au plus m

Clique

Une clique C d'un graphe non orienté G=(V,E) est un sous-ensemble $C\subseteq V$ induisant un sous-graphe complet de G, c'est-à-dire tel que pour tous $u,v\in C$ avec $u\neq v$, on a $\{u,v\}\in E$. Montrer que le problème CLIQUE défini comme suit est NP-complet.

ENTRÉE : un graphe non orienté G = (V, E), un entier $m \in \mathbb{N}$;

SORTIE: G a une clique de cardinal au moins m

Homomorphisme de graphe

Un homomorphisme d'un graphe G=(V,E) à un graphe G'=(V',E') est une fonction $h:V\to V'$ telle que pour tout $\{v_1,v_2\}\in E$, on a $\{h(v_1),h(v_2)\}\in E'$. Montrer que le problème GRAPH – HOMOMORPHISM défini ci-après est NP-complet.

ENTRÉE : deux graphes non orientés, G_1 et G_2 ;

SORTIE : il existe un homomorphisme de G_1 à G_2

Isomorphisme de graphe

Deux graphes G=(V,E) et G'=(V',E') sont isomorphes si |V|=|V'| et |E|=|E'| et il existe une fonction bijective $h:V\to V'$ telle que $\{v_1,v_2\}\in E$, si et seulement si $\{h(v_1),h(v_2)\}\in E'$. Montrer que le problème GRAPH—ISOMORPHISM défini ci-après est NP-complet.

ENTRÉE : Deux graphes G et H.

QUESTION : G contient un sous-graphe isomorphe à H

Bonus

Prouver que le problème 3—COLORATION est NP-complet. Pour prouver la NP-dureté de ce problème, on pourra effectuer une réduction depuis le problème 3-SAT, également NP-complet, qui une restriction de SAT aux formules avec au plus trois literaux par clause.