
THÈSE D’HABILITATION À DIRIGER LES RECHERCHES

presentée

À L’UNIVERSITÉ PARIS 7 - DENIS DIDEROT

soutenue par

Bruno Barras

le ?? ?? 2012

Title:

Semantical Investigations in Intuitionistic Set Theory
and Type Theories with Inductive Families

———–

Jury:

Contents

1 Introduction 5
1.1 Motivations for formal semantics . 5
1.2 Which model do we want ? . 6
1.3 How can we accept a formal model of Coq in Coq ? 7
1.4 Formalizing in the large . 7
1.5 Overview of the thesis . 9
1.6 Mathematical conventions . 10

I Intuitionistic Set Theory 11

2 Basics of Intuitionistic Set Theory 13
2.1 Introduction . 13
2.2 Basic Setup: Sets and Axiomatized Constructions 14
2.3 Derived constructions . 17
2.4 Relations and functions . 19
2.5 Grothendieck Universes . 21
2.6 Other axiomatizations of set theory in Coq 23

3 Ordinals and Fixpoint Theorems 25
3.1 Motivations for an intuitionistic theory of ordinals 25
3.2 Plump and Directed Ordinals . 27
3.3 Transfinite Iteration . 28
3.4 Supremum of ordinals . 32
3.5 Limits . 33
3.6 Least Fixpoint Theorems . 34
3.7 Cardinal numbers as isomorphism classes 39
3.8 Ordinals and Grothendieck Universes 42

4 Models of Set Theory in Coq 43
4.1 Logics . 43
4.2 Zermelo with functional replacement . 50
4.3 Extending Zermelo with Replacement or Collection 54
4.4 Models of IZF_R, IZF_C and ZF in type theory 56
4.5 Encoding Grothendieck universes . 58

3

4 CONTENTS

II Models of Type Theories with Inductive Types 61

5 CC with Universes and Natural Numbers 63
5.1 Introduction to Models of Type Theory 63
5.2 Calculus of Constructions . 66
5.3 Calculus of Constructions with natural numbers 75
5.4 Extended Calculus of Constructions . 76

6 Strong Normalization Models 79
6.1 Girard’s reducibility candidates and saturated sets 79
6.2 Abstract Strong Normalization of CC 82
6.3 Implementing the abstract model . 92
6.4 Strong elimination . 94
6.5 Natural numbers . 97
6.6 Related works . 102

7 Natural numbers and type-based termination 103
7.1 Natural numbers with stages . 105
7.2 Model construction . 108
7.3 Strong normalization . 114
7.4 Comparison with other works . 117

8 Inductive types 119
8.1 Theory of W -types . 121
8.2 Strictly positive inductive definitions . 125
8.3 Inductive types and universes . 132
8.4 Encoding ZF as an inductive type . 133
8.5 Inductive types in Prop . 135
8.6 Advanced features of inductive types . 136
8.7 Towards a strong normalization proof 150

III Conclusions 151

9 Conclusions 153
9.1 Summary of results . 153
9.2 Conclusions about the formalization . 155
9.3 Suggestions for future work . 158

Index and Notations 163

Bibliography 167

Chapter 1

Introduction

The goal of this manuscript is to give a formal presentation of the set-theoretical se-
mantics of the Calculus of Inductive Constructions (CIC),1 and related formalisms of
type theory. This calculus form the logical foundations upon which the proof assis-
tant Coq and others have been built. The presentation culminates with the proof of
essential properties of these formalisms, such as the logical consistency, and strong
normalization.

Logical consistency, the property that the absurd proposition cannot be derived,
is the least one can expect from a formal system intended to be used for encoding
proofs. The strong normalization property is sometimes considered as just a technical
lemma which is ultimately only useful because it implies logical consistency. But
philosophically, it provides a much more interesting guarantee. It tells that any proof
can be “simplified”, producing a normalized proof that uses possibly less principles
than the original proof. One can imagine a scenario where the formalism happens to be
inconsistent, but the normalized proof remains valid, because it uses a reduced subset
of principles which is consistent.

1.1 Motivations for formal semantics

Type theories have started to be thought as real alternatives to older formalism of set
theory such as ZFC in the 60s and 70s. An unavoidable milestone is Martin-Löf’s Type
Theory (MLTT). In 1985, Coquand and Huet have proposed an extension of this theory,
incorporating Girard’s system F. This theory, the Calculus of Constructions, incorpo-
rates an impredicative sort of propositions (inherited from system F’s polymorphism),
that reduced the gap between the strong intuitionist taste of MLTT and the usual first-
order style, which allowed to quantify propositions over any type. This calculus has
had many extensions, to make it even more suitable for the formalization of advanced
mathematical concepts and the refinement, without losing the original view that proofs
are computational objects. The Calculus of Inductive Constructions is among the most
popular of these extensions. Its main implementation, Coq, has over the years given
the demonstration that type theory could tame top-tier mathematical theorems (four-
color theorem, parts of Kepler’s conjecture, classification of simple finite groups), sup-
port significant results in computer science (correctness proof of a realistic C-compiler,

1...or at least one possible view of it.

5

6 CHAPTER 1. INTRODUCTION

large prime numbers certification), and have applications to software verification (smart
cards).

But the story of type theory, as that of set theory decades before, has also been
marked by paradoxes, and the properties that we mentioned, have always been an ac-
tive research topic. From the purely logical paradoxes of the early days (the famous
Type:Type paradox), the situation has slightly changed. Nowadays, issues rather come
from a bad interaction of the multiple features that have been studied independently.
Let us mention the Chicli-Pottier-Simpson paradox [14]. It results from mixing a com-
putational impredicative sort (Set), which has been studied by Werner [56], and a
description axiom, valid in set theory. The problem came from the fact that most of the
features of Coq had been studied in a set-theoretical model: mainly inductive types and
predicative universes, But it had not been checked whether the impredicative Set fea-
ture could be interpreted as a “locally non set-theoretical” type within a set-theoretical
model.

The impredicative Set feature has been dropped from the system by default, but
still one cannot exclude that such unfortunate scenario happen again. It is “widely ac-
cepted” that the intuitive set-theoretical model is sound. Many authors have contributed
to this, most of the time considering only a subset of the features. Very few works put
the focus on covering the full system. Lee and Werner [34], or H. Goguen [29] are
so far the best effort in that domain, but they are still complex pen-and-paper proofs.
Strong normalization proofs are amazingly tricky, and erroneous (reviewed) proofs are
not so uncommon.

A natural answer to this doubt that we may have on these informal proofs, is to try
and encode them in a formal system. First of all, let us specify what we expect from
the model.

1.2 Which model do we want ?

There might be different goals for constructing a model:

• to give an intuition of a formalism by providing a model that explains how the
primitives can be translated to a more familiar or widely accepted formalism (e.g.
set theory),

• or study what is the theoretical strength of a formalism.

In the second case, we want to build the “smallest” model. On the other hand, in
the first case, we do not have this constraint, and prefer a model that will validate more
properties than what is derivable, with the idea that then such properties can be safely
added as axiom to our formalism.

In this manuscript we focus more on the first alternative. This should help answer
questions of users of Coq that want to extend the system with standard set theoretical
axioms that are not provable in Coq. This ranges from the excluded-middle to powerful
description principles, or adding extensional principles.

If it is clear that the target formalism will be set theory (the exact system will be
made precise later on), it remains to decide which implementation is going to be used.
It should be a reliable system that we are familiar with. Coq is such a system.

Usually, the project to prove the soundness of a formalism within an implementa-
tion of the same formalism immediately raises objections that we are going to address.

1.3. HOW CAN WE ACCEPT A FORMAL MODEL OF COQ IN COQ ? 7

1.3 How can we accept a formal model of Coq in Coq ?

There are two kinds of reasons to object against such a goal. The first one is logical:
because of Gödel’s second incompleteness theorem, the proof of consistency (implied
by strong normalization) of the formalism of Coq cannot be done within Coq, unless it
is inconsistent.

This is addressed by remarking that consistency (and strong normalization) proofs
are never absolute proofs of a statement.2 Rather, they are relative to the formalism they
are expressed in. This is the reason why we insisted in developing the proof relying on
an encoding of set theory, which will be accepted by the majority of mathematicians.
In order to obtain stronger results and reduce the risk of objections, We have tried to
rely on as few axioms as possible.

The second objection is about the implementation itself: a bug in Coq may have
it accept an incorrect proof of its correctness. We dispatch the latter objection by
recalling that this is true of any implementation we may use. Hence the choice for
a system with a principled architecture (small kernel, explicit construction of proof
objects, etc.), and the ability to express proofs naturally, thanks to its higher-order
features. The point is not so much whether Coq implements correctly the Calculus of
Inductive Constructions,3 but rather whether the embedding of set theory is correctly
rendered.

This guarantee is not supposed to be given exclusively by Coq accepting the proofs.
Rather, the proofs seldom use automated tactics, which allows for a skeptical reader to
survey the proofs and have a look at every step to see if what was accepted by Coq
corresponds to its intuition.

1.4 Formalizing in the large

As we have explained above, the Calculus of Inductive Constructions is the result of
large number of extensions that have been integrated to the Calculus of Constructions:
a hierarchy of predicative universes and a primitive notion of inductive types. Since
then, the theory behind inductive types have changed with the notion of non-uniform
parameter and a form of universe polymorphism; the predicative hierarchy has also
changed several times. The Calculus of Inductive Constructions is a “moving target”.

Once one has decided to go for a formal development, one as to be aware of positive
and negative aspects of this choice.

On the negative side, beyond the obvious tediousness of formalizing (for instance,
it is not possible to leave easy claims as “exercises for the reader”, or resort to its intu-
ition), there is a significant risk of losing the informal sharing we do between “similar”
notions. If we are not careful, we may duplicate definitions, and then have to prove all
sorts of equivalence proofs. This is where administrative tasks start to overtake the real
logical content, which is the plague of formalization.

But if we are aware of these issues and try to address them properly, we are re-
warded with several interesting benefits:

2As a matter of fact, this holds for any proof. But when proving property in a specific field, the “rules of
logic” are taken for granted without further questioning.

3In some sense, the formalization of the syntactic meta-theory of CIC [8], culminating with the decid-
ability of type-checking, can be viewed as a formal verification of the algorithms used in the kernel of Coq.
The verification of the actual code is yet a magnitude of complexity higher.

8 CHAPTER 1. INTRODUCTION

• we are prompted to give more general definitions and properties and unify close
definitions, to avoid duplication;

• when a lemma is proven and we change the definitions it refers to, we immedi-
ately have an indication of which parts have been broken or not.4

More specifically, building a model of formal language is often the following:

• first define the syntax of the formal language (either terms or derivation trees),
under the form of an inductive type;

• write an interpretation function by induction on the syntax;

• and prove by induction that the interpretation is sound.

This picture, although simple, suffers the above issues: every single modification
of the syntax will require to redo all the proofs. Also, bureaucracy (like dealing with
substitution) and real problems are intertwined. We would rather design a method that
avoids this.

1.4.1 Method
Confronted to this large number of presentations (if we count all the variants of each
system, we may have the feeling of a “continuum”), we need a strategy to deal with
this complexity without losing the sharing between similar formalisms.

We first build an abstract model using a higher-order representation for binders,
which is very convenient w.r.t. substitution. This corresponds to the world of values
(or denotations of closed expressions). On top of that, we add a layer that deals with
free variables. It is only at this level that one chooses a representation of the binders
(de Bruijn, name-carrying terms, etc.). The translation of the model from the closed
world to the open world is routine work, and it is well separated from for the real work.

The sharing will be preserved by the fact that we represented our formal systems
by a shallow embedding rather than a deep embedding. The shallow embedding have
the good property (given our goals) that it is open to further extensions of the theory,
as long as they comply to the “invariants” settled by the definitions of the shallow
embedding (e.g. the final theorem we want to prove, like soundness of the model con-
struction). We consider that the meta-theoretical properties are far more important and
less subject to change than the exact formulation of the primitives. However, deal-
ing with completeness meta-theoretical are probably, though not totally clearly, less
straightforward.

This schema will occur several times in this thesis: first recall a presentation of a
classical proof in forward presentation, reaching to the final theorem. Then, determine
what are the key properties and invariants. From this point, we work in reverse order:
from the key properties, define the semantical domain of objects enjoying the expected
properties; figure out what is the most general theorem that ensures the properties; and
mimicking the proof carried out in forward style. This generally gives a hint of what
are most general features that can be supported but they often require side-conditions

4This is not really in contradiction with being skeptical with Coq. It is true that a valid proof might
become an invalid proof (accepted by Coq) by changing a definition if this change does make Coq use
feature that someone might object to. But this is of no comparison with the difficulty to track down the
effects of minor changes in definitions and how elementary logical reasoning may be broken, when doing it
informally.

1.5. OVERVIEW OF THE THESIS 9

that are not easily checked syntactically. Then, we refine these conditions to make them
more akin to be checked syntactically. It is the point where the syntax can (and should)
be designed and sealed.

In conclusion, we could say that it appeared essential to first introduce the seman-
tics, and delay as much as possible the exact syntax of the formal system.

1.5 Overview of the thesis
The first part of this thesis will be about modeling in Coq the meta-logic: set theory.
Since the ultimate goal is to prove the consistency of the formalism of Coq, we will
need to axiomatize a stronger formalism, which will be Intuitionistic Zermelo Fraenkel
(in its weaker form, with the Replacement axiom), and a number of Grothendieck
universes (equivalent to inaccessible cardinals in theories where the axiom of choice
holds).

Next chapter will set up the basic definitions. Chapter 3 will define more complex
notions, that will need to be adapted to intuitionistic logic: Taylor’s plump ordinals,
and new fixpoint theorems.

The following chapter will try to estimate which proportion of the axiomatized
theory can be actually defined in Coq. This follows from pioneering work of Aczel,
continued by Werner and Miquel. It also includes a proof that monads provide a generic
method to reason modulo proof-theoretic translations including Gödel’s negated trans-
lation and Friedman’s A-translation. The former will allow to embed classical set the-
ories within Coq.

The second part will detail a modular model construction for a wide variety of type-
theories. We start with a consistency model of Coquand’s Calculus of Constructions
(chapter 5) and its extension with universes (Luo’s ECC) and natural numbers.

The following chapter will show how the abstract specification of the strong nor-
malizations models for these theories are a mere extension of the consistency models.
We introduce a simplified approach to Altenkirch’s Λ-sets.

Chapter 7 starts with the actual work on inductive types, by dealing with the nat-
ural numbers. This time, they are treated as a particular instance of an inductive type,
with the following characteristics: the case-analysis and fixpoint operators are sepa-
rate, and termination of the latter is checked via type-based (or size-based) termination
techniques as done by Abel, or Grégoire and Sacchini.

The last chapter will consider a general approach to strictly positive inductive defi-
nitions, from the historical version of Paulin, and including advanced features: induc-
tive families, non-uniform parameters and inductive types in an impredicative sort. The
strong normalization model will only be sketched.

As the above description suggests, a large part of this thesis consists in modeling
formal systems that have been investigated by other authors. But it introduces new
results:

• all of the works mentioned co-exist in a single formal development, ensuring the
compatibility (and independence in a large part) of all the features of the full
system;

• this is done in an intuitionistic setting (IZFR), which yields, among others, more
precise results regarding the closure ordinals of inductive definitions;

• the design of a general but practical method to reason abstractly modulo a num-
ber of proof-theoretic translations, encoded as monads;

10 CHAPTER 1. INTRODUCTION

• relative consistency results between classical ZF extended with Grothendieck
universes and Coq extended with an axiom, similar to Miquel’s results.

1.6 Mathematical conventions
The electronic version of this thesis should contain hyperlinks to most of the formal
definitions. In the manuscript, the alphanumerical names of the formal constants have
often been replaced by nicer notations. The correspondence can be traced by either
clicking the hyper-links, or look at the index of notations.

1.6.1 Levels of discourse
In this manuscript, the reader will find statements at three distinct levels. The first level
is the level of the object theory. In our case, this is the formalism of Coq, the Calculus
of Inductive Constructions. The second level, which is the meta-level of the previous
one, is the one of set theory. The third level is the level in which the meta-level is
expressed: the one of Coq definitions.

In some case, it is important to distinguish these levels. In particular the notion of
function has different meaning depending on the level. At the Coq-level, it is possible
to express functions which domain expands to the full class of sets, while this is not
possible in the common way of encoding functions in set-theory. This is because the
whole class of sets will be one particular type of Coq. In other cases, like pairs, this is
not important and we will use the same notations in both levels.

These levels deserve to clearly set a notational convention to help the reader.

Meta-level (Coq) The few notations at the Coq-level have been chosen close to the
usual mathematical style. Function application will be written f(x), and the
explicit construction of functions will be x↦ f(x).

Set-level Most of the notations belong to the level of set theory: application M@N ,
abstraction λx∈A.M , dependent products Πx∈A.B, dependent pairs Σx∈A.B.

Object-level This is the level of the object theory. It consists mainly of the notations
of PTSs: application: M N , abstraction λx ∶A.M , dependent product Πx ∶A.B.

We might want to consider a fourth level, the level of abstract models. The point of
this level is to have an abstract description of the principles that are sufficient to build
a model. But it will often be identified with the level of set-theory. This is why we will
use the same notations (e.g. Πx∈A.B).

1.6.2 Subsets
To avoid complex notations, and to follow the informal usage, we consider the sig
type of Coq (notation { x:A | P(x) }) as a subtype of A. So objects of this type
are informally noted as objects of A. In the elimination direction (sig to A), we
simply hide the proj1_sig coercions. In the introduction direction (A to sig), we
leave implicit the fact that the object of A should satisfy P . Of course, formally, Coq
requires to produce such proof.

It is also implicit that the equality on such sig types is the same as the one used for
A. This is an instance of the proof-irrelevance principle, encoded using user-defined
equality (“setoids”), rather than relying on a postulate.

Part I

Intuitionistic Set Theory

11

Chapter 2

Basics of Intuitionistic Set
Theory

2.1 Introduction
Before proceeding to the main goal of our thesis, the construction of a model of the
Calculus of Inductive Constructions, we need to motivate the choice of the formalism
in which the proof will be encoded.

We have chosen set theory because it is the most widely accepted logical formalism.
There exists many flavors of set theory. The most common one ZFC (Zermelo-Fraenkel
with choice axiom), is also a very powerful one. This power is at the cost of losing
several valuable meta-theoretical properties. One of these is the ability to understand
the proofs as constructive methods that hide an explicit construction of witnesses of
existential.

Excluded-middle (which is a consequence of the choice axiom) is often the culprit.
Even though this limitation can be overcome in many situations (classical realizability,
etc.), we have chosen to work in IZF. Choices are not over since there are mainly two
variants of IZF, called IZFR [46] and IZFC . Both of them are equivalent to ZF when
extended with excluded-middle. They differ in the axiom that allow to collect images
of a set by a relation. IZFR admits an principle called replacement, and IZFC uses
collection, hence the name. These two alternatives will be discussed in more detail
once the more elementary principles of set theory are introduced.

Until then, we just mention that we have chosen to work in IZFR, which is the
weaker form. In the following, IZF will stand for IZFR.

2.1.1 Overview of the formalized concepts
In this chapter and the next one, we describe a library of set-theoretical constructions.
We are not only interested in showing the possibility to (or in which proportion we can)
encode set theoretical principles in Coq in theory. Rather, we want an encoding usable
in practice, turning Coq into a prover in set-theory (Coq/IZF).

Nonetheless, we have not tried to make the integration of set theory as smooth as
in other generic prover (such as Isabelle and its instance Isabelle/ZF).

The Calculus of Constructions (CC) has one type constructor: dependent product.
So, to produce a model of CC, we will need a theory of functions.

13

14 CHAPTER 2. BASICS OF INTUITIONISTIC SET THEORY

In order to deal with the Extended Calculus of Constructions (ECC), we will need
universes. The set-theoretical counterpart we used are Grothendieck universes, which
are models of set-theory within set-theory.

Finally, the main notion behind inductive types is that of fixpoint (a type defined by
a recursive equation, and also the possibility to write functions by structural induction).
For this purpose, we will develop a theory of intuitionistic ordinals, preliminary to the
proof of fixpoint theorems.

2.2 Basic Setup: Sets and Axiomatized Constructions
LIBRARIES: ZFDEF, ZF

The approach we have chosen is to axiomatize the constructions of IZF. The ques-
tion of the possibility to actually instantiate the symbols and axioms in Coq will be
studied in chapter 4.

We assume we have a type set ∶ Type. As in the traditional presentation, we con-
sider two predicate symbols: == (eq_set, equality) and ∈ (in_set, membership).
They are encoded as parameters of type set → set → Prop. Set equality is exten-
sional (two sets with the same elements are equal) and membership is compatible with
equality:

a == b ⇐⇒ ∀x. (x ∈ a ⇐⇒ x ∈ b) and a == a′ ∧ a ∈ bÔ⇒ a′ ∈ b.

In abstract presentations, there are no other function or predicate symbols. Basic
constructions are represented by axioms assuming the existence of a set satisfying a
certain specification. For instance, the pair axiom assumes the existence of set with
only elements a and b:

∃y,∀x.x ∈ y ⇐⇒ x == a ∨ x == b

Complex constructions become very awkward in this style, and most (if not all)
practical implementations of set theory use a presentation where the existential axioms
are replaced by Skolem symbols together with axioms specifying the set they return.
For instance, the pair axiom above is replaced by the following two declarations:

pair ∶ set→ set→ set x ∈ pair(a, b) ⇐⇒ x == a ∨ x == b

IZF set theory admits the following axioms, each one introduced by a Skolem sym-
bol and its specification:

• the empty set empty, noted informally ∅, which contains no element:

x ∉ ∅;

• the pair axiom assuming the existence of the unordered pair {a; b} (formally:
pair(a, b)), such that

x ∈ {a; b} ⇐⇒ x == a ∨ x == b;

• the union axiom assuming the existence the union of a set of sets: ⋃x (formally
union(x)), the union of all elements of x

x ∈⋃a ⇐⇒ ∃y ∈ a. x ∈ y;

ZFdef.html
ZF.html

2.2. BASIC SETUP: SETS AND AXIOMATIZED CONSTRUCTIONS 15

• the power-set axiom: ℘(a) (formally power(a)), the set of all the sets included
in a

x ∈ ℘(a) ⇐⇒ ∀y ∈ x.y ∈ a;

• the infinity axiom assuming the existence of an infinite set infinite

∅ ∈ infinite x ∈ infinite⇒⋃{x;{x}} ∈ infinite;

• the replacement axiom scheme, represented by a parameter

repl ∶ set→ (set→ set→ Prop)→ set

where repl(a,R) is the set formed of the images of set a by a functional rela-
tion R (i.e. ∀xy y′. x ∈ a ∧R(x, y) ∧R(x, y′)⇒ y == y′)

y ∈ repl(a,R) ⇐⇒ ∃x ∈ a.R(x, y).

Higher-order notation We preferred the higher-order encoding: the relation of the
replacement axiom is of type set → set → Prop. That is, we use the meta-level
functions and propositions. The main reason is that this way of representing formulas
is much easier to use, and we benefit of the support of tactics to write proofs.

The main drawback of this approach is that we are allowed to write formulas that
do not belong to the first-order language. One key difference is that quantification over
type set → Prop corresponds to quantification over classes, which potentially in-
creases the expressive power of the theory. Another one is that we might be allowed
to write functions that analyze their argument by other means than the Skolem sym-
bols above. In other word, we do limit ourselves to the Higher-Order Abstract Syntax
(HOAS) fragment.

Most of the time, the formal definitions of this thesis will only involve formulas that
follow the first-order syntax. In some specific cases, we will use higher-order quantifi-
cation. However, we believe that all the definitions using quantification over classes
could be modified to fit into the standard of first-order formulas, and we occasionally
look for first-order equivalent definitions, although this manuscript does not focus on
this.

Extensionality and dependencies At the level of Coq, throughout the development,
the equality on sets is not Leibniz equality, but the one we have introduced above. This
imposes that whenever we consider a function f of type set→ set or a predicate P of
type set → Prop (and accordingly for higher arities, like g ∶ (set → set) → set),
we implicitly assume that they are compatible w.r.t. set equality and propositional
equivalence:

∀x.∀x′. x == x′ ⇒ f(x) == f(x′)
∀x.∀x′. x == x′ ⇒ (P (x) ⇐⇒ P (x′))

∀f.∀f ′. (∀xx′. x == x′ ⇒ f(x) == f ′(x′)) ⇒ g(f) == g(f ′)

This requirement should not be confused with the syntactically close one that ex-
presses that some given construction uses only partial information about its input. As
an example, the formula

(∀x ∈ A.f(x) == f ′(x))⇒ g(f) == g(f ′)

expresses that g only depends on the value of the function given as input on domain A.
These requirements will always be mentioned.

16 CHAPTER 2. BASICS OF INTUITIONISTIC SET THEORY

Replacement or Collection As we have mentioned in introduction of this chapter,
IZF comes in two flavors that we briefly describe here.

The first variant of IZF, called IZFC , uses the collection axiom:

∃B.∀x ∈ A. (∃y.R(x, y))⇒ (∃y ∈ B.R(x, y))

Despite not accepting excluded-middle, this formalism still does not enjoy the exis-
tence property (the fact that any provable existential property can be strengthened into
a provable existential that is satisfied by exactly one object). Thanks to a negated trans-
lation and the so-called A-translation, Friedman [21, 22] has shown that IZFC has the
“same strength” as ZF, since it has the same set of provably total recursive functions.

The second one is Myhill’s IZF [46], named IZFR, which uses the replacement
axiom. Replacement can be viewed as a restriction of the collection axiom to functional
relations,

∃B.∀x ∈ A. (∃!y.R(x, y))⇒ (∃y ∈ B.R(x, y))

but other (more common) formulations exist. In IZFR, the existence property holds.
It has been shown that IZFC is stronger that IZFR [23], as there exists a recursive
function that can be proven total if IZFC but not in IZFR. It is still an open problem to
determine whether the consistency of IZFR can be proven within IZFC .

We have chosen to work in the weakest of those formalisms. Still, it appears that
we really use replacement in very few places. It would be interesting to see if we can
adapt our models to weaker (and possibly more constructive) set-theories.

Remarks on the encoding of replacement The side condition (R is functional) does
not require R to be total. So, repl(A,R) is the image of A by R, discarding those
that are not in the domain of R. This allows to derive the comprehension scheme
({x ∈ a ∣ P (x)}) from replacement:

subset(a,P) ≜ repl(a, (x, y)↦ x == y ∧ P (x))

To follow on the remark of the previous section, replacement could be split in two
independent principles:

• collecting the images of a set by a function (functional replacement),

• and introducing a notation for a set which has been uniquely specified by a pred-
icate (definite description or unique choice)

While the first one, does not seem to raise problems in interpreting it constructively,
the second is harder to justify. If we have been able to prove the existence of a unique
set satisfying a certain specification, then we should be able to replace invocations to
this principle by an explicit construction of that set.

Definition 2.1 (Functional replacement) The functional replacement is an instance
of the relation replacement, when the relation is expressed as a meta-level function:

replf(A,f) ≜ repl(A, (x, y)↦ y == f(x))

The usual notation for replf(A,f) is {f(x) ∣ x ∈ A}.

Definition 2.2 (Definite description)

uchoice(P) ≜ ∪{y ∣ ∃_ ∈ {∅}. P (y)}

ZF.html#replf
ZFrepl.html#uchoice

2.3. DERIVED CONSTRUCTIONS 17

Lemma 2.1 When P is a predicate satisfied by exactly one object

∃x.P (x) P (x) ∧ P (y)⇒ x == y

uchoice(P) has the following properties:

P (x)⇒ x == uchoice(P) P (uchoice(P))

2.3 Derived constructions
In the rest of this chapter, we briefly introduce common constructions of set theory,
and serves mainly to settle the notations. Readers familiar with set theory may want
to skip this part. Nonetheless, sections about Aczel’s encoding of functions 2.4.1 and
Grothendieck universes 2.5 are less common.

Next chapter deals with ordinals and fixpoint theorems, which really require a spe-
cific treatment in an intuitionistic setting.

2.3.1 Shorthands

Definition 2.3 (Intersection)

⋂a ≜ {y ∈ ∪a ∣ ∀x ∈ a. y ∈ x}

Definition 2.4 (Binary union and intersection)

x ∪ y ≜⋃{x; y} x ∩ y ≜⋂{x; y}

Definition 2.5 (Indexed union)

sup(A,f) ≜⋃{f(x) ∣ x ∈ A}

Indexed union sup(A,f) may also be written informally ⋃
x∈A

f(x).

Definition 2.6 (Conditional set)

cond_set(P, x) ≜ {y ∈ x ∣ P}

Lemma 2.2 Basic properties of cond_set:

P ⇒ cond_set(P, x) == x z ∈ cond_set(P, x)⇒ P ∧ z ∈ x

In other words, when P holds, cond_set(P, x) is x. When ¬P holds, it is the empty
set. Otherwise it is a set y such that ∅ ⊂ y ⊂ x.

2.3.2 Ordered pairs

LIBRARY: ZFPAIRS

We follow the common usage to encode the ordered pair couple(a, b) as {{a}; {a; b}}.
This is written (a, b) when this is not ambiguous with meta-level functions of arity two.

ZF.html#inter
ZF.html#union2
ZF.html#inter2
ZF.html#sup
ZF.html#cond_set
ZFpairs.html

18 CHAPTER 2. BASICS OF INTUITIONISTIC SET THEORY

The formalization is quite standard, so we simply list the definitions and main facts:

fst(p) ≜ ⋃{x ∈ ⋃p ∣ {x} ∈ p}
snd(p) ≜ ⋃{y ∈ ⋃p ∣ {fst(p); y} ∈ p}

prodcart(A,B) ≜ {p ∈ ℘(℘(A ∪B)) ∣ ∃a ∈ A.∃b ∈ B.p == (a, b)}
sigma(A,B) ≜ {p ∈ prodcart(A, ⋃

x∈A
B(x)) ∣ snd(p) ∈ B(fst(p))}

⋃(a, b) == {a; b} fst(a, b) == a snd(a, b) == b
p ∈ prodcart(A,B)⇒ p == (fst(p), snd(p))

a ∈ A b ∈ B
(a, b) ∈ prodcart(A,B)

p ∈ prodcart(A,B)
fst(p) ∈ A snd(p) ∈ B

a ∈ A b ∈ B(a)
(a, b) ∈ sigma(A,B)

p ∈ sigma(A,B)
fst(p) ∈ A snd(p) ∈ B(fst(p))

NotationA×B stands for prodcart(A,B), and dependent pairs sigma(A, x↦
B(x)), also called Σ-types, will be written Σx∈A.B(x).

Cartesian product prodcart and dependent pairs sigma are monotonic opera-
tors.

2.3.3 Natural numbers
LIBRARY: ZFNATS

Zero (zero) is the empty set, and successor (succ) of n is n ∪ {n}. The set of
natural numbers is a subset of infinite. It is thus easily defined as the intersection
of all sets that contain the empty set (0) and closed by successor.

Definition 2.7 (Natural numbers)

N ≜ {n ∈ infinite ∣ ∀a, ∈ a ∧ (∀m ∈ a.m ∪ {m} ∈ a)⇒ n ∈ a}

Given a base set x, a step function f , we want to compute the unique function g
over natural numbers such that

g(zero) == x and g(succ(k)) == f(k, g(k))

This recursor is defined using relational replacement. The main step of the con-
struction is the smallest set that associates x to 0 and f(k, z) to S(k) whenever it
associates z to k:

Definition 2.8 (Recursor of natural numbers)

natrec(x, f, n) ≜
uchoice(y ↦ ∀p, (zero, x) ∈ p ∧

(∀k z. (k, z) ∈ p⇒ (succ(k), f(k, z)) ∈ p)⇒
(n, y) ∈ p)

The possibility to define it using only functional replacement is discussed in chapter 4,
section 4.2.1.

ZFnats.html
ZFnats.html#N
ZFnats.html#natrec

2.4. RELATIONS AND FUNCTIONS 19

Lemma 2.3 The recursor satisfies the following equations:

natrec(f, g,∅) == f

n ∈ N
natrec(f, g,succ(n)) == g(n,natrec(f, g, n))

2.3.4 Disjoint union
LIBRARY: ZFSUM

The construction of a model for inductive types requires a notion of disjoint union,
in order to ensure that constructors build distinct elements. The definitions and ex-
pected properties about typing and elimination are the following:

inl(a) ≜ (0, a)
inr(b) ≜ (1, b)

inl(a) == inl(a′) ⇒ a == a′
inr(b) == inr(b′) ⇒ b == b′
inl(a) == inr(b) ⇒ �

sum(A,B) ≜ {∅} ×A ∪ {{∅}} ×B
sum_case(f, g, x) ≜ cond_set(fst(x) == ∅, f(snd(x)))∪

cond_set(fst(x) == {∅}, g(snd(x)))
sum_case(f, g,inl(a)) == f(a)
sum_case(f, g,inr(b)) == g(b)

a ∈ A ⇒ inl(a) ∈ sum(A,B)
b ∈ B ⇒ inr(b) ∈ sum(A,B)

p ∈ sum(A,B) ⇒ (∃a ∈ A,p == inl(a)) ∨
(∃b ∈ B,p == inr(b))

A ⊆ A′ ∧ B ⊆ B′ ⇒ sum(A,B) ⊆ sum(A′,B′)
The informal notation for sum(A,B) will be A +B.

2.4 Relations and functions
LIBRARY: ZFRELATIONS

A function f is coded as the set of couples (x, f(x)) where x ranges a given domain
set. Typing of functions lead to introduce dep_func(A,B) for B ∶ set → set, the
set of dependent functions from (x ∈ A) to B(x). The formalization is quite standard,
so we simply list the definitions and main facts:

lam(A,f) ≜ {(x, f(x)) ∣ x ∈ A}
app(a, b) ≜ snd(⋃{p ∈ a ∣ fst(p) == b})

func(A,B) ≜ {r ∈ P(prodcart(A,B)) ∣
∀x ∈ A.∃y ∈ B.(x, y) ∈ r∧
∀xy y′. (x, y) ∈ r ∧ (x, y′) ∈ r⇒ y == y′}

dep_func(A,B) ≜ {f ∈ func(A, ⋃
x∈A

B(x)) ∣ ∀x ∈ A.app(f, x) ∈ B(x)}

x ∈ a ⇒ app(lam(A,f), x) == f(x)
(∀x ∈ A,f(x) ∈ B(x)) ⇒ lam(A,f) ∈ dep_func(A,B)

f ∈ dep_func(A,B) ∧ x ∈ A ⇒ app(f, x) ∈ B(x)
f ∈ dep_func(A,B) ⇒ f == lam(A, x↦ app(f, x))

ZFsum.html
ZFrelations.html

20 CHAPTER 2. BASICS OF INTUITIONISTIC SET THEORY

2.4.1 Aczel’s encoding

The idea behind Aczel’s encoding is to represent a meta-function f by a set of couples
(x, y) for all y belonging to f(x).

Untyped encoding

Definition 2.9 λ-abstraction and application are encoded as:

cc_lam(A,f) ≜ ⋃
x∈A,y∈f(x)

{(x, y)}

cc_app(f, v) ≜ {snd(p) ∣ p ∈ f ∧ fst(p) == v}

Lemma 2.4 β-conversion holds:

v ∈ A ⇒ cc_app(cc_lam(A,f), v) == f(v)

The most important result that will serve to interpret impredicativity is the follow-
ing:

Lemma 2.5 A function constantly returning the empty set is encoded by the empty set:

(∀x ∈ A.f(x) == ∅)⇒ cc_lam(A,f) == ∅

Typing layer We define a predicate characterizing functions of a given domain (this
does not form a set):

Definition 2.10 (Class of functions) Functions of domain included in A are sets of
couples which first component belongs to A:

Dom(f) ⊆ A ≜ ∀p ∈ f.p == (fst(p),snd(p)) ∧ fst(p) ∈ A

Typing of this encoding of functions is derived from those of the usual encoding.
λ-abstraction provides a way to encode meta-level function within sets (given the

intended domain), and application decodes sets back to meta-level functions.
The set of functions using Aczel’s encoding can be derived from the usual one, by

first decoding usual functions and then re-encoding them with the new encoding:

Definition 2.11 The type of Aczel’s functions is the image of usual functions by the
composition of the usual application with Aczel’s constructor:

cc_prod(A,B) == {cc_lam(A, app(f)) ∣ f ∈ dep_func(A,B)}

We have the usual introduction and elimination properties.
Since this encoding of functions will be more convenient for our purposes, we will

reserve the usual notations to this encoding. For instance, cc_prod(A,B) will be
written Πx∈A.B(x).

ZFrelations.html#cc_lam
ZFrelations.html#cc_app
ZFrelations.html#is_cc_fun

2.5. GROTHENDIECK UNIVERSES 21

2.4.2 Function Extension

LIBRARY: ZFFUNEXT

This section introduces tools to deal with the incremental construction of functions
in set theory, or more generally in an extensional setting. It is developed with Aczel’s
encoding, but the same theory could be developed for the usual encoding, with minor
changes.

The use-case is the construction of a function defined by structural recursion. Ap-
plying the recursive equation on a partial function defined on a subset of the intended
domain produces a function defined on a larger domain. The total function is obtained
by taking the union (a specific case of limit) of all these partial functions. The result
will be a function only if the partial functions form a compatible family, which means
that any pair of such functions agree on their common domain.

Definition 2.12 (Function compatibility) Two function f and g agree on domain A
(notation f ⪯A g) iff:

f ⪯A g ≜ ∀x ∈ A.cc_app(f, x) == cc_app(g, x)

When A is the domain of f , we say that g extends f . Note that in this latter case,
the domain still has to be given because in Aczel’s encoding, the domain cannot be
determined from the function alone.

Assume we have a family of functions (fi)i∈I where the domain of each func-
tion is given by a family of types (Ai)i∈I . In other words, we assume that ∀i ∈
I.Dom(F (i)) ⊆ A(i).

Definition 2.13 (Compatible family) The family of functions (fi)i∈I is said compat-
ible if for every pair of indexes (i, j), functions fi and fj agree on Ai ∩Aj .

Lemma 2.6 (Existence of supremum) If (fi)i∈I is a compatible family, then the union
is a function defined on the union of domains:

Dom(⋃
i∈I
fi) ⊆⋃

i∈I
Ai

We can also show that the union of a function family is the least upper bound w.r.t.
the extension order:

Lemma 2.7 (Supremum property) If (fi)i∈I is a compatible family, we have

∀i ∈ I. fi ⪯Ai ⋃
i∈I
fi (∀i ∈ I. fi ⪯Ai g)⇒⋃

i∈I
fi ⪯⋃

i∈I
Ai g

2.5 Grothendieck Universes

LIBRARY: ZFGROTHENDIECK

The collection of Grothendieck universes grot_univ is the collection of transi-
tive sets U that are closed under all ZF operators: pairing, powerset, union and replace-
ment. They have been introduced by Grothendieck to avoid resorting to proper classes,
which can be replaced by subsets of a universe.

ZFfunext.html
ZFfunext.html#fcompat
ZFfunext.html#fdirected
ZFfunext.html#prd_union
ZFfunext.html#prd_sup
ZFgrothendieck.html

22 CHAPTER 2. BASICS OF INTUITIONISTIC SET THEORY

Definition 2.14 (Grothendieck universe) A set U is a Grothendieck universe (for-
mally grot_univ(U)) if it satisfies the following closure conditions:

y ∈ x ∧ x ∈ U ⇒ y ∈ U
x ∈ U ∧ y ∈ U ⇒ {x; y} ∈ U

x ∈ U ⇒ ℘(x) ∈ U
I ∈ U ∧ (∀x ∈ U.∀y.R(x, y) ⇒ y ∈ U) ⇒ ⋃{y ∣ ∃x ∈ I.R(x, y)} ∈ U

(R functional)

It is slightly unusual not to require that a universe contains an infinite set. When needed,
this assumption will be explicitly made. These will be called proper Grothendieck
universes.

It is straightforward to derive that Grothendieck universes are closed under depen-
dent product, this is the reason why they play an important role in the interpretation of
the Type hierarchies of CCω and CIC.

Lemma 2.8 (Closure by dependent product)

A ∈ U ∀x ∈ A.B(x) ∈ U
Πx∈A.B(x) ∈ U

Obviously, the set of natural numbers belong to any infinite Grothendieck universe.

Lemma 2.9 ()
ω ∈ U ⇒ N ∈ U

Grothendieck universes are stable by non-empty intersection, so we can define a
functional relation between a universe U and the least universe that contain U , called
the successor of U :

grot_succ(x, y) ≜ grot_univ(y)∧x ∈ y∧(∀U.grot_univ(U)∧x ∈ U ⇒ y ⊆ U)

Obviously, the successor universe cannot be built without an extra assumption.
The Tarski-Grothendieck set theory (the formalism of Mizar) is ZF where we as-

sume that for any set, there exists a universe that contains it.

Definition 2.15 The Tarski-Grothendieck axiom is

∀x.∃U.grot_univ(U) ∧ x ∈ U.

Clearly, in this theory, the replacement axiom lets us build an infinite sequence
of nested universes: we have seen that the successor of a Grothendieck universe is
uniquely specified (because the intersection of a non-empty family of universe is a
universe); the Tarski-Grothendieck axiom expresses there exists one that contain x, so
by replacement, we can define the successor function. An infinite sequence can be built
using a recursive definition.

Grothendieck universes form an alternative to the notion of inaccessible cardinals,
which is often used to model the predicative universes of type theory. When the axiom
of choice holds, it can be shown that assuming the existence of a Grothendieck uni-
verse is equivalent to the existence of an inaccessible cardinal (the set of ordinals of a
Grothendieck universe is an inaccessible cardinal).

When the axiom of choice is not assumed, and in an intuitionistic setting, the clo-
sure property of Grothendieck are of greater help than abstract properties about ordi-
nals.

ZFgrothendieck.html#grot_univ
ZFgrothendieck.html#G_cc_prod
ZFgrothendieck.html#G_N

2.6. OTHER AXIOMATIZATIONS OF SET THEORY IN COQ 23

2.6 Other axiomatizations of set theory in Coq
In this section we briefly compare the present work with others that encode set theory
in Coq.

Depending on their goals, they can be classified in two categories. In the first cate-
gory, the intent is to understand the relative strength and consistency of set theories and
type theories, but no substantial standard library is provided to support developments.
Among this category, we name

• Alexandre Miquel’s contribution Rocq/IZF that models sets as pointed graphs;

• Benjamin Werner’s contribution Rocq/ZFC, following Aczel’s work

In both cases sets are a specific type, over which the set constructors operate.
In the second category, the goal is to build advanced concepts and theorems within

set theory. The focus is not on the foundations of set theory.

• Carlos Simpson’s contribution Sophia-Antipolis/CatsInZFC.

• José Grimm library Gaia [32], formalizing Bourbaki’s Elements of Mathematics.

Simpson (and Grimm) have implemented a different approach to sets within Coq: types
are sets (witnessed by the fact that set is an alias for Type). This makes it easy to
reuse Coq libraries: cartesian product is the usual type of pairs. They have some equa-
tional reasoning “for free”: for instance, the first projection applied to a constructed
pair is definitionally equal to the first component.

Our modelization of set theory follows Werner’s work. We also want to keep the
control on the foundations. But we also want our library to be usable at a large scale.
Building a model for the Calculus of Inductive Constructions with all the details is a
substantial theory.

24 CHAPTER 2. BASICS OF INTUITIONISTIC SET THEORY

Chapter 3

Ordinals and Fixpoint
Theorems

Ordinal theory is the place where it is blatant that intuitionistic set theory really de-
parts from the classical version, besides merely taking care of inserting or eliminating
double-negations when appropriate.

3.1 Motivations for an intuitionistic theory of ordinals

One common definition of ordinals is: ordinals are hereditary transitive well-founded
sets. In a classical setting, this definition implies many essential properties. In the fol-
lowing, we list several of such popular properties, without looking for exhaustiveness.

Basic ordering properties: the order on ordinals is inclusion, and the strict order is
membership. We expect the following properties (among others) to hold

α ≤ β ⇐⇒ α < β+ α ≤ β < γ ⇒ α < γ

where β+ is the successor of β.

Trichotomy: given two ordinals α and β, we have α < β ∨ α == β ∨ β < α.

Zero, successor and limit partition: ordinals can be totally classified in three non-
overlapping categories: an ordinal is either zero, the successor of another ordinal
or a limit ordinal (it is closed by successor). This is at the basis of the usage to
define transfinite sequences by giving an initial value, a step function and a limit
operation.

Well-ordering: ordinals give a canonical representation for well-orders. Well-orders
are orders such that any non-empty subset of the relation domain has a least
element. Among others, this gives a way to choose an element among a set of
ordinals.

Directedness: whenever β < α and γ < α, there should be an ordinal δ < α such that
β ≤ δ and γ ≤ δ.

25

26 CHAPTER 3. ORDINALS AND FIXPOINT THEOREMS

Intuitionistically, all these property fail in the general case of ordinals (although
they still hold in the restricted case of the natural numbers). This has already been
remarked by Grayson [30].

Retaining the idea that the order on ordinals is inclusion and the strict order is
membership, the smallest ordinal (0) is the empty set without discussion. Its successor,
1, is the least ordinal containing 0. This is {∅}, which is hereditary transitive. The
classical definition of 2, is {∅;{∅}} is going to raise problems as we shall see.

3.1.1 Ordinal 2 as the set of truth values

In order to show where the problem lies, we introduce an encoding of propositions
(seen as truth values) in sets.

prop2set ∶ Prop→ set ≜ P ↦ cond_set(P, {∅})
set2prop ∶ set→ Prop ≜ x↦ ∅ ∈ x

This forms an isomorphism between propositions (up to logical equivalence) and sets
included in {∅}. In other words, Ω, the set of truth values, is ℘({∅}), and so it forms
a complete Heyting algebra.

In classical logic, we have that ℘({∅}) = {∅;{∅}} which witnesses that the
set of truth values is isomorphic to the booleans. However, in an intuitionistic set-
ting, each undecidable proposition P (such that neither P nor ¬P is provable) yields
∅ ⊊ prop2set(P) ⊊ {∅}. All these sets are ordinals, according to the proposed
definition.

They can be used to show all of the properties mentioned above imply the excluded-
middle (adapting results of Grayson [30]). This is not too surprising of the Trichotomy,
Partition and Well-order properties, as ordinals are supposed to capture the complexity
of arbitrary well-founded relations. Trichotomy would somehow imply that the com-
parison of this complexity is decidable.

More worrying is the remark is that for all propositionP , we have prop2set(P) ⊆
{∅} but prop2set ∈ {∅;{∅}} only for decidable P . The first basic ordering property
fails, although it is not in contradiction with constructive principles.

We could try and fix the definition of successor in a way that defines ordinal 2 as the
set of ordinals smaller than 1, i.e. informally [0; 1] instead of {0; 1}. But this just shifts
the problem as the expected transitivity property (the second basic order property)

α ≤ β < γ ⇒ α < γ (*)

fails (consider prop2set(P) ≤ {∅} < {∅;{∅}}). The only way out is to fix the
definition of ordinals. We need to be more restrictive and exclude sets like {∅;{∅}}
of the class of ordinals.

Taylor [55] has introduced “plump ordinals”. His definition fixes the above issues
related to ordering properties. The idea is to generalize the notion of transitivity to
that of plumpness, that will imply property (*) by definition. He also gives another
definition, directed plump ordinals, that recovers the directedness property, as their
name suggests.

3.2. PLUMP AND DIRECTED ORDINALS 27

3.2 Plump and Directed Ordinals

3.2.1 Plump ordinals
Informally, a set x is a plump ordinal if (1) every element of x is an ordinal, and (2) for
all ordinals z such that z ⊆ y ∈ x for some y, then z ∈ x. Since the term ordinal occurs
negatively in condition (2), we define ordinals in two steps. Firstly, plump(u,x)
stands for x is a plump ordinal included in a well-founded set u; this is defined by
well-founded induction on u. Secondly, we define the class isOrd of well-founded
sets that are plump ordinals bounded by themselves:

plump(u,x) ≜ (∀y ∈ u, y ∈ x⇒ plump(y, y)) ∧
(∀z y. y ∈ u ∧ plump(y, z) ∧ z ⊆ y ∈ x⇒ z ∈ x)

isOrd(x) ≜ Acc(∈, x) ∧ plump(x,x)

3.2.2 Directed plump ordinals
LIBRARY: ZFORD

An ordinal α is said directed if it enjoys the following property:

∀β ∈ α.∀γ ∈ α.∃δ ∈ α.β ≤ δ ∧ γ ≤ δ

Definition 3.1 (Directedness) A set x is said directed (isDir(x)) iff

∀y ∈ x.∀y′ ∈ x.∃z ∈ x.y ⊆ z ∧ y′ ⊆ z

See figure 3.1.

Definition 3.2 (Ordinals) The class of directed plump ordinals (noted On) are well-
founded sets that satisfy the plumpness and directedness property hereditary:

plump(u,x) ≜ (∀y ∈ u, y ∈ x⇒ plump(y, y)) ∧
(∀z y. y ∈ u ∧ plump(y, z) ∧ z ⊆ y ∈ x⇒ z ∈ x) ∧
isDir(x)

isOrd(x) ≜ Acc(∈, x) ∧ plump(x,x)

Note that because of the plumpness property it is not clear whether directed plump
ordinals can be derived from plump ordinals.

Definition 3.3 (Ordinal successor) The successor of ordinal α is the set of ordinals
included in α:

α+ ≜ {β ∈ ℘(α) ∣ isOrd(β)}

From this definition, it is clear that we recover the equivalence

β ∈ α+ ⇐⇒ β ≤ α

that was lost with the usual definition of ordinals in an intuitionistic setting.
We remark that the plump ordinal 2 (∅++) cannot be proven finite anymore. The

existence of an ordinal with cardinality 2 amounts to finding a minimal truth value
that is not falsity. These remarks imply that (1) natural numbers are not a special case

ZFord.html
ZFord.html#isDir
ZFord.html#isOrd
ZFord.html#osucc

28 CHAPTER 3. ORDINALS AND FIXPOINT THEOREMS

x

y y′

z
∈ ∈∈

⊆ ⊆

Figure 3.1: Directed ordinals

of ordinals anymore, and (2) ordinals and cardinals sequences diverge at 2, instead of
ω = ℵ0 classically.

Due to the directedness requirement, the supremum of ordinals is more complex.
More precisely, it requires some form of transfinite iteration, that we are going to define
in the next section.

3.3 Transfinite Iteration

3.3.1 Ordinal recursion
The goal is to define a transfinite operator TR. Intuitionistically, we do not have the
trichotomy of ordinals into zero, successor and limit cases. Iteration is defined uni-
formly (i.e. without any attempt to discriminate between ordinals) by a step function
F ∶ (set → set) → set → set and the ordinal on which we iterate. Formally, TR
is defined by replacement using the following relation (defined impredicatively):

Definition 3.4 (Graph of TR)

TR_rel(α, y) ≜ ∀P. (∀f α.(∀β ∈ α.P (β, f(β)))⇒ P (α, F (f,α)))⇒ P (α, y),

which is functional on the class of ordinals.

Definition 3.5 (Transfinite recursion)

TR(F,α) ≜ {y ∣ TR_rel(α, y)}

This shows clearly the role of F : it produces the intended value for α, given (1) a
function collecting all intended values for ordinals β < α and (2) α itself. The general
induction scheme associated to TR is, given an ordinal α and a morphism P ,

(∀β ≤ α. (∀γ < β.P (γ, TR(F, γ)))⇒ P (β, F (TR(F,β))))⇒ P (α, TR(F,α))

An easy consequence of this scheme is the recursive equation

Lemma 3.1 (Equation of TR) For all ordinal α, we have

TR(F,α) == F (TR(F), α)

ZFord.html#TR_rel
ZFord.html#TR
ZFord.html#TR_eqn

3.3. TRANSFINITE ITERATION 29

We could have defined TR without resorting to the higher-order features of the
meta-logic (the quantification over P in the graph of TR is a quantification over arbi-
trary classes). We will not detail here the construction, which is slightly more technical
than the definitions above.

3.3.2 Case where the limit operator is union
We define a specialized version of TR for the common cases where the limit case cor-
responds to the union of the previous stages.

Definition 3.6 (Transfinite iteration) Given F ∶ set→ set,

TI(F, α) ≜ TR((f, β)↦ ⋃
γ<β

F (f(γ)), α)

The union corresponds to a limit for monotonic operators. For non-monotonic op-
erators we would need a more complex limit construction, like the union of all infimum
on the neighborhood (see section 3.5).

We also use the notation Fα for TI(F, α). For reasons that will appear in chap-
ter 7, we will say that sets Fα are stages of F .

Lemma 3.2 The main property of TI is that

TI(F,α) == ⋃
β<α

F (TI(F,β))

This iterator has several interesting properties when F is monotone w.r.t. set in-
clusion (∀xy. x ⊆ y ⇒ F (x) ⊆ F (y)): it forms an increasing sequence of sets all
included in any post-fixpoint of F .

Lemma 3.3

TI(F,α) == ⋃
β<α

F β
+

TI(F,α+) == F (TI(F,α))

α ⊆ β ⇒ TI(F,α) ⊆ TI(F,β) F (x) ⊆ x⇒ TI(F,α) ⊆ x

3.3.3 Function with constant domain
LIBRARY: ZFFIXFUN

In this section we define another specialized version of transfinite recursion where
the object to be built is a function over a fixed domain A. The co-domain is a set which
is obtained by union at limit ordinals.

Definition 3.7 (TIF) Given a step function F ∶ (set → set) → set → set, we
define

TIF(F,α) ≜
cc_app(TR((f, β)↦ cc_lam(A, x↦ ⋃

γ<β
F (cc_app(f(γ)), x)), β))

The step function F is expressed using higher-order, but it has to be translated to
set-theoretical function in order to reuse the TR iterator.

ZFwf.html#WithoutHigherOrder
ZFord.html#TI
ZFfixfun.html
ZFfixfun.html#TIF

30 CHAPTER 3. ORDINALS AND FIXPOINT THEOREMS

Definition 3.8 (Order on families) The order on families of domain A is defined as

F ⊑A G ≜ ∀a ∈ A. F (a) ⊆ G(a)

A monotonic family operator is an operator that preserves the order on families.

Lemma 3.4 Let F be a monotonic family operator, and a ∈ A.

TIF(F,α, a) == ⋃
β<α

F (TIF(F,β), a)

TIF(F,α+, a) == F (TIF(F,α), a)

Lemma 3.5 (Monotonicity of TIF) For any pair of ordinals α,β:

α ≤ β ⇒ TIF(F,α) ⊑A TIF(F,β)

3.3.4 Recursive functions
LIBRARY: ZFFIXREC

We also consider another iteration operator where the step function takes as argu-
ment the ordinal for which we want to iterate:

Definition 3.9 (Recursor) Given F ∶ set→ set→ set,

REC(F,α) ≜ TR((f, β)↦⋃{F (γ, f(γ)) ∣ γ ∈ β}, α)

Lemma 3.6 The following properties are easily derived from the definition of REC:

REC(F,α) == ⋃
β<α

F (β,REC(F,β)) α ≤ β ⇒ REC(F,α) ⊆ REC(F,β)

The main use-case of this iterator is to build a function by iterating a step function
that makes the domain grow.

In general, the union of two functions is not a function. In order to ensure that the
limit of the functions at previous stages is an extension of these functions, we need
a coherence invariant expressing that these functions agree on their common domain
(see 2.4.2).

The first assumption we make is that we are given a function T that gives the
domain of the function at each stage, and an invariant Q, parameterized by the stage
ordinal. This invariant can be the characterization of the co-domain, or more complex
ones, such as being an isomorphism (see section 3.7.1).

The idea is that whenever we give F an ordinal α and a function with domain
T (α) that satisfies invariant Q(α), it produces a function with domain T (α+) and
which satisfies invariant Q(α+). These parameters T and Q needs to be continuous, to
ensure that this condition remains valid at limit stages.

The last requirement we make is called “stage-irrelevance”. It means two things:
one is that the functions produced by F should not depend on the ordinal argument,
only the function domain can. Secondly, the values returned on domain T (α + 1) on
the body depends only on recursive calls on T (α).

All these requirements are gathered in the following definition:

ZFfixfun.html#incl_fam
ZFfixfun.html#TIF_mono
ZFfixrec.html
ZFfixrec.html#REC

3.3. TRANSFINITE ITERATION 31

Definition 3.10 (Recursor specification) A recursor specification at ordinal α is a
structure

⟨F ∶ set→ set→ set

T ∶ set→ set

Q ∶ set→ set→ Prop⟩

enjoying the following properties for all β ≤ α:

• T is continuous: T (β) == ⋃
γ<β

T (γ+)

• Q is continuous:

Dom(f) ⊆ T (β) ∧ (∀γ < β. f ∈ Q(γ+))⇒ f ∈ Q(β)

• F is well-typed:

Dom(f) ⊆ T (β) ∧ f ∈ Q(β)⇒
Dom(F (β, f)) ⊆ T (β+) ∧ F (β, f) ∈ Q(β+)

• F is stage-irrelevant: for all γ ≤ β:

Dom(f) ⊆ T (γ) ∧ f ∈ Q(γ) ∧
Dom(g) ⊆ T (β) ∧ g ∈ Q(β) ∧
f ⪯T (γ) g⇒ F (γ, f) ⪯T (γ+) F (β, g)

In the rest of this section, we assume we have a recursor specification ⟨F,T,Q⟩ at
ordinal α. We shall not give the technical details of how the proof is carried out.

Lemma 3.7 (Typing of REC) The recursor produces a function of domain T (α) and
satisfies invariant Q(α):

Dom(REC(F,α)) ⊆ T (α) REC(F,α) ∈ Q(α)

Lemma 3.8 (Stage-irrelevance of REC) REC is a stage-irrelevant function:

γ ≤ β ≤ α ⇒ REC(F, γ) ⪯T (γ) REC(F,β)

Lemma 3.9 (Recursive equation of REC) REC(F,α) enjoys the following recursive
equation:

REC(F,α) == cc_lam(T (α), x↦ cc_app(F (α, REC(F,α))), x)

As a corollary, we have

cc_app(REC(F,α), x) == cc_app(F (α, REC(F,α))), x)

for all x ∈ T (α). The general recursive equation

REC(F,α) == F (α, REC(F,α))

does not hold because both hand-sides have a priori different domains.
We will just mention that typing and stage irrelevance are proven simultaneously

by induction on α. The recursive equation follows from the definition of REC.

ZFfixrec.html#recursor
ZFfixrec.html#REC_wt
ZFfixrec.html#REC_ord_irrel
ZFfixrec.html#REC_eqn

32 CHAPTER 3. ORDINALS AND FIXPOINT THEOREMS

3.4 Supremum of ordinals
With directed ordinals, an arbitrary union of ordinals is not always an ordinal. We give
the following counter-example:

Example 3.1 Assume we have two independent propositions P and Q (neither P ⇒
Q nor Q ⇒ P hold). Ordinal 2 contains both {A ∣ A ⇒ P} and {A ∣ A ⇒ Q}
(assimilating propositions with elements of ordinal 2 as already seen). Suppose the
union of these sets were directed. Then it would contain P ∪ Q which is P ∨ Q. So
either, P ∨ Q ⇒ P which would imply Q ⇒ P , or P ∨ Q ⇒ Q which would imply
P ⇒ Q. In both cases, we have a contradiction.

Taylor already proposed to fix this by defining the supremum of two ordinals by
completing the raw union with the missing “cross-terms”, recursively:

x⋓ y == x ∪ y ∪ {x′ ⋓ y′ ∣ x′ ∈ x, y′ ∈ y}

Of course, this definition requires the use of transfinite recursion. At this stage of
the construction, we do not have yet an easy way to build a recursive function with two
variable arguments. It appeared simpler to recode another transfinite operator with two
arguments by transfinite recursion over one argument.

We first define the graph of ⋓, which is then turned into a (meta-)function thanks
to the replacement axiom:

Definition 3.11 (Graph of ⋓) The graph of ⋓ is defined as

R(x, y, z) ≜ ∀P. (∀xy f,
(∀x′ ∈ x.∀y′ ∈ y.P (x′, y′, f(x′, y′)))⇒
P (x, y, x ∪ y ∪ {f(x′, y′) ∣ x′ ∈ x, y′ ∈ y}))⇒

P (x, y, z)

This is a functional relation and it admits an image z whenever x (or y) is a well-
founded set.

Definition 3.12 (Binary ordinal supremum) The binary ordinal supremum is defined
using unique choice:

x⋓ y ≜ {z ∣ R(x, y, z)}

We have to check that the function graph is actually a functional relation, which is done
by induction on ordinal x.

Lemma 3.10 If x is an ordinal and y a directed set, then x⋓ y is a directed set.

Lemma 3.11 Given x and y two ordinals, then we have:

• x⋓ y is an ordinal,

• z ∩ (x⋓ y) == (z ∩ x)⋓ (z ∩ y) for any ordinal z.

Proof These two statements are proved simultaneously by induction on x (cf Taylor).

The second proposition states that x⋓ y is the smallest ordinal including x and y.

ZFord.html#osup2_rel
ZFord.html#osup2

3.5. LIMITS 33

Lemma 3.12 Let x, y and z be ordinals. We have:

x⋓ x == x (x⋓ y)⋓ z == x⋓ (y ⋓ z) x ⊆ z ∧ y ⊆ z ⇒ x⋓ y ⊆ z

Given a family of ordinals (αi)i∈I , we build the ordinal supremum by iterating
binary supremum:

F (X) ≜ {x⋓ y ∣ x, y ∈X}

Lemma 3.13 (Indexed ordinal supremum) The set of ordinals defined by

⋓
i∈I
αi ≜ ⋃

n∈N
Fn(⋃

i∈I
αi)

is an ordinal and it is the least upper bound of (αi)i∈I .

3.5 Limits
LIBRARY: ZFLIMIT

For some reasons, we may want a way to build a function by iterating steps that
incrementally define the function on larger and larger domains. However, if we want
the construction to be independent from the domain on which we know the function is
correctly defined (with the counterpart that it may return garbage outside this domain),
it would be useful to have a more general notion of convergence.

Definition 3.13 (Limit) Given a sequence (Fα)α∈Ord of sets indexed by ordinals. The
limit of F at ordinal α is defined as:

lim
β→α

Fβ = {z ∈ ⋃
β∈α

Fβ ∣ ∃β ∈ α.∀γ. β ≤ γ < α⇒ z ∈ Fγ}

Less formally, this definition is equivalent to

lim
β→α

Fβ = ⋃
β<α

⋂
γ∈[β;α[

Fγ

This notion of limit allows to define a recursive function with properties similar to
REC except that the step function does not need to be informed of the current value of
the ordinal.

Lemma 3.14 (Transfinite Iteration TRF) We can define a transfinite operator TRF,
such that for any functional F ∶ (set → set) → set → set, TRF(F) is a function
(of type set → set), with the following property: if we are given a family of domain
T which satisfies:

• T is continuous: T (α) == ⋃
β∈α

T (β+)

• F produces functions of domain T (α+), given a function of domain T (α):

(∀x ∈ T (α). f(x) == g(x)) ⇒ ∀x ∈ T (α+). F (f, x) == F (g, x)

then TRF(F) has the following property:

α < β ∧ x ∈ T (α+) ⇒ TRF(F, β, x) == F (TRF(F,α), x)

The point is that the definition of TRF does not depend on the family of domains T ,
which would not be the case with REC. Only the properties about this recursor will
depend on a specified domain T .

ZFord.html#osup
ZFlimit.html
ZFlimit.html#lim
ZFlimit.html#TRF

34 CHAPTER 3. ORDINALS AND FIXPOINT THEOREMS

3.6 Least Fixpoint Theorems

An operator F (a meta-function from sets to sets) for which we want to build a fixpoint
(i.e. a set X such that F (X) == X), is generally required to be monotonic. But
monotonicity is not a sufficient condition for the existence of a fixpoint.

The simplest counter-example is the powerset. This is a monotonic operator (X ⊆
Y ⇒ ℘(X) ⊆ ℘(Y)), but it has no fixpoint, as Cantor’s diagonal argument shows.

Often, the additional criterion is to have a complete semi-lattice L such that F ∈
L→ L. The typical example is the powerset lattice where L is the powerset of a set A,
and the supremum is union. The fixpoint theorem has two sides.

The first side is often coined as “from above”. The least fixpoint of a bounded
monotonic operator F is defined as the intersection of allX such that F (X) ≤X . This
definition is impredicative because it introduces the least fixpoint as the intersection of
a family that precisely contains this least fixpoint. Let’s call this set µ(F).

The second side, “from below”, consists in transfinitely iterating F from the least
element. This gives an ascending chain ∅ ≤ F (∅) ≤ F (F (∅)) ≤ . . . ≤ Fα(∅) ≤ . . . ≤
µ(F). Classically, it can be shown that the union of all the elements of this ascending
chain (but the last one) is µ(F). Additionally, this fixpoint is reached for some ordinal
κF , called the closure ordinal of F .

This closure ordinal κF has an upper bound which is the successor of the cardinal
ofA. The (classical) reasoning is the following: at each step of the construction, unless
we have reach a fixpoint there is a element that does not appear in the previous stages.
There cannot be two stages with the same “fresh” element. If we did not reached a
fixpoint at the successor of the cardinal ofA, we would have an injective function from
the successor of the cardinal of A into A, which contradicts the definition of a cardinal.
Thus, we must have reached a fixpoint. In section 3.6.2, we will give a counter-example
of this characterization of the closure ordinal.

However, it is not always obvious to have a simple construction of such a set A.
Another useful criterion is continuity. It expresses that F commutes with limits:

F (⋃
n∈N

Xn) == ⋃
n∈N

F (Xn)

This criterion is especially convenient in the case of first-order datatypes, that are
solution of a type operator using the language formed of the composition of cartesian
product, binary union and finite sets. This allows to define natural numbers, lists, and
finitely branching trees. Besides implying the existence of a least fixpoint, continuity
also gives a mean to build the least fixpoint by the formula Fω(∅).

We have formalized both situations. In next section, we give a short account of con-
tinuity and apply it to the construction of two simple datatypes: lists and pure λ-terms.
Then we will focus on the case where we can find a bound A. This will be the main ar-
gument that we will use to prove the soundness of strictly positive inductive definitions,
which are the most significant feature of the Calculus of Inductive Constructions.

3.6.1 Continuity

LIBRARY: ZFCONT

The continuity criterion we have given in the introduction can be generalized to
higher cardinality than that of natural numbers.

ZFcont.html

3.6. LEAST FIXPOINT THEOREMS 35

Definition 3.14 (I-continuity) Given a set I , an operator F is said I-continuous if it
satisfies:

∀(Xi)i∈I . F (⋃
i∈I
Xi) ==⋃

i∈I
F (Xi)

Remark that if there exists an isomorphism between I and J , then I-continuity and
J-continuity coincide. Thus, I should be thought of as a cardinal.

Lemma 3.15 (Least fixpoint) If an operator F is α-continuous for some limit ordinal
α, then Fα is a fixpoint of F .

Proof
F (Fα) = F (⋃

β∈α
F β

+
) (lemma 3.3)

= ⋃
β∈α

F (F β
+
) (by continuity)

= ⋃
γ∈α

F γ
+

(α limit, γ = β+)

= Fα (lemma 3.3)

The usual notion of continuity (ω-continuity) allows us to define first-order datatypes.
First-order datatypes are solution of recursive equations such that each data has

only a finite number of recursive subterms (e.g. natural numbers, lists or finitely
branching trees). In the following, we detail only those needed in the rest of this
manuscript: lists and pure λ-terms.

Lists

LIBRARY: ZFLIST

Lists of elements of set A, noted A∗, are either the empty list or a pair formed of
an element of A and a list.

Definition 3.15 The operator of lists is

LISTfA(X) ≜ {∅} ∪A ×X

LISTf is an ω-continuous monotonic operator, so LISTfωA is a fixpoint of LISTfA.

Definition 3.16 The constructors of lists are:

List(A) ≜ LISTfωA
Nil ≜ ∅

Cons(x, l) ≜ (x, l)

Pure λ-terms

LIBRARY: ZFLAMBDA

Definition 3.17
LAMf(X) ≜ N +X ×X +X

The first member of the sum corresponds to variables (in de Bruijn notation), the second
one to application, and the last one to λ-abstractions.

Again, LAMf is an ω-continuous monotonic operator, so LAMfω is a fixpoint of
LAMf.

ZFcont.html#continuous
ZFcont.html#cont_least_fix
ZFlist.html
ZFlambda.html

36 CHAPTER 3. ORDINALS AND FIXPOINT THEOREMS

3.6.2 An intuitionistic fixpoint theorem
LIBRARY: ZFFIX

The “from above” side of the fixpoint theorem can be proven:

Theorem 1 (Least fixpoint) Given a monotonic operator F such that F (A) ⊆ A, the
set

µ(F) ≜⋂{X ∈ ℘(A) ∣ F (X) ⊆X}
is the least fixpoint of F :

F (µ(F)) == µ(F) ∀X,F (X) ⊆X ⇒ µ(F) ⊆X

Lemma 3.16 (Inclusion of all stages) The least fixpoint contains all the stages of F :

Fα ⊆ µ(F)

The “from below” side extends this lemma by showing the existence of an ordinal
such that we have an equality. Such an ordinal is said to close F . The least ordinal that
closes F , if it exists, is called the closure ordinal of F .

As a first remark, the union of all stages of F form a set.

Definition 3.18 (Union of all stages)

F∞ ≜ {x ∈ A ∣ ∃α ∈ On.x ∈ Fα}

If we admit the collection axiom, it is easy to build the closure ordinal of F . Con-
sider the relation R(x,α) ≜ x ∈ Fα: any element of F∞ has an image by R, so by
collection, there exists a set B of ordinals such that for all x ∈ F∞, there is an ordinal
α ∈ B such that x ∈ Fα. Thus, F∞ ⊆ F⋃B . Using excluded-middle, the existence of
the set B can be turned into a definition, the closure ordinal of F is the least ordinal α
such that Fα == F∞.

With just the replacement axiom in an intuitionistic logic, we have to give a more
precise ordinal assignment to the elements of F∞. The gist of the proof would be to
build an ordinal assignment φF to any element of F∞, such that x ∈ FφF (x). The proof
could then be finished as above. But we will not be able to do so without making an
assumption on F .

As already pointed out, a classical lemma says that the successor of the cardinal of
A closes F . In an intuitionistic setting, this bound is not correct. Here is a counter-
example.

Example 3.2 Consider a monotonic operator F ∈ ℘(1) → ℘(1), corresponding to
A = 1. Classically, the fixpoint is reached after the first step: either F (∅) is empty and
we got a fixpoint, or F (∅) = 1 and we reached the upper bound. So the number of steps
is bounded by the cardinality of 1. In IZF, ℘(1) is the set of truth values. Assuming we
have a third truth value P , take F (X) = P ∨ (P ⇒X). We have F (�) = P ∨¬P , and
F (P ∨ ¬P) = P ∨ (P ⇒ P ∨ ¬P) = ⊺. But since P ∨ ¬P is neither true nor false, we
do not get a fixpoint after one step.

The more truth values there is, the longest it can take to get a fixpoint. In the worst
case, the fixpoint is reached at the ordinal of the implication order on truth values.

Our conclusion is that the fixpoint ordinal has to be related to the cardinal of ℘(A)
rather than A. Still it is not clear that this is provable intuitionistically.

We have left open the problem to show what is the fixpoint ordinal of an arbitrary
propositional operator. Rather we have introduced new requirements to the operator F
to allow the above (classical) reasoning.

ZFfix.html
ZFfix.html#knaster_tarski
ZFfix.html#TI_FIX
ZFfix.html#Ffix

3.6. LEAST FIXPOINT THEOREMS 37

3.6.3 Stability
LIBRARY: ZFSTABLE

The notion of stable function was introduced by Berry [13] as a generalization
of that of sequential function. In this thesis, we only consider the functions over the
domain of sets ordered by inclusion. We call atoms, the objects of these sets. Atoms
need not be seen as sets themselves.

One key property of a stable functions F is that for any atom of the an image F (X),
there exists a unique minimal setX0 ⊆X such that F (Y) contains the considered atom
iff X0 ⊆ Y .

Definition 3.19 (Stability) An operator F is stable iff

⋂
i

F (Xi) ⊆ F (⋂
i

Xi)

Compared to the original definition of stability, we have only an inclusion. The reverse
inclusion is a consequence of monotonicity. This is why in the following we may
consider stable and monotone functions, when according to the standard definition,
stable functions are monotone.

Another difference is that we consider arbitrary intersection, not just binary inter-
section.

The idea of this requirement is that it will let us compute, for any element x in the
image of F , a unique minimal set sub(x) (the set X0 above), such that x ∈ fsub(x).
That is, whenever x belongs to F (X), then sub(x) ⊆ X . We can view sub(x) as
the necessary premise to obtain a set containing x by F . Another view, related to the
notion of tree, is to consider sub(x) as the sub-trees of x.

This is the key ingredient of the construction of an ordinal assignment for F∞,
assigning to each element the earliest stage the contains it.

Lemma 3.17 The following type operators are stable:

• Constants: _↦ A

• Identity: X ↦X

• Powerset: X ↦ ℘(X)

• Cartesian product: X ↦ F (X) ×G(X)

• Disjoint sum: X ↦ F (X) +G(X)

• Σ-types:

X ↦ Σx ∈ A.Hx(X) X ↦ Σx ∈ F (X).H ′
x(X)

• Exponentiation (Π-types with fixed domain):

X ↦ Πx∈A.Hx(X)

• Transfinite iteration (TI), with a variant of stable on the class of ordinals:
α ↦ TI(F,α) is stable for any monotonic and stable operator F .

(we assume F and G are stable operators, and (Hx)x∈A, (H ′
x) two families of stable

operators, H ′ being unbounded)

ZFstable.html
ZFstable.html#stable
ZFstable.html#cst_stable
ZFstable.html#id_stable
ZFstable.html#power_stable
ZFstable.html#prodcart_stable
ZFstable.html#sum_stable
ZFstable.html#sigma_stable'
ZFstable.html#cc_prod_stable
ZFstable.html#TI_stable

38 CHAPTER 3. ORDINALS AND FIXPOINT THEOREMS

A canonical counter-example is union. It is an adaptation of the fact that parallel
disjunction is not a stable function [28]. Binary union is not stable because it allows an
element to be induced by two different sets of premises (one for each member of the
union), just like the parallel disjunction can be true as a consequence of two incompa-
rable inputs.

Example 3.3 ConsiderF (X) = cond_set(A ⊆X, {∅})∪cond_set(B ⊆X, {∅}).
We have F (A) = {∅} = F (B), but F (A ∩B) = ∅ unless one of A or B is included in
the other. Each member of the union is stable.

3.6.4 Closure ordinal
In this section, the goal is to show that the least fixpoint µ(F) is equal to Fα for some
ordinal α.

Definition 3.20 (Sub-elements) The sub-elements of x is the smallest set X such that
x ∈ F (X):

fsubF (x) ≜ {y ∈ F∞ ∣ ∀X ⊆ F∞.x ∈ F (X)⇒ y ∈X}

Note that this definition assumes that there exists a unique smallest set X , that we
define in terms of intersection. This is not always the case. Hopefully, the uniqueness
is a consequence of the stability of F .

Lemma 3.18 (Sub-elements soundness) If F is stable then for all x ∈ F∞:

x ∈ F (fsubF (x))

Proof It is easy to see that fsub(x) == ⋂{X ∈ ℘(F∞) ∣ x ∈ F (X)}. By stability, it
suffices to show that x ∈ ⋂{F (X) ∣ X ∈ ℘(F∞) ∧ x ∈ F (X)}. This is obvious, given
that the intersection is not empty, by x ∈ F∞.

Definition 3.21 (Ordinal assignment)

φF (x) ≜ ⋓
y∈fsubF (x)

φF (y)+

This is a recursive definition. We will not detail here the justification. We just point out
that it follows the definition of transfinite iteration, but with an order based on fsubF
instead of membership. This relation is well-founded on F∞.

Lemma 3.19 (Soundness of assignment) If F is a stable operator, then for all x ∈
F∞

x ∈ FφF (x)+ .

Proof This is where the stability of F is necessary. The main step is to prove that for
all x ∈ F∞, then x ∈ F (fsubF (x)).

Definition 3.22 (Closure ordinal)

κF ≜ ⋓
x∈F∞

φF (x)+

ZFfix.html#fsub
ZFfix.html#F_intro
ZFfix.html#F_a
ZFfix.html#F_a_tot
ZFfix.html#Ffix_ord

3.7. CARDINAL NUMBERS AS ISOMORPHISM CLASSES 39

More precisely, we should say that κF closes F . There is no hint that there exists a
unique minimal ordinal that closes F .

Lemma 3.20 (Totality of κF)
F∞ ⊆ FκF

Proof By definition of κF and soundness of assignment.

Theorem 2 (Soundness of closure ordinal) For any stable and monotonic operator
F such that F (A) ⊆ A, the least fixpoint of F is the stage FκF :

µ(F) == FκF

Proof We have already seen FκF ⊆ µ(F). We have shown F∞ ⊆ FκF , so F (F∞) ⊆
F (FκF) == Fκ

+
F ⊆ F∞. By the minimality of µ(F), we conclude µ(F) ⊆ F∞ ⊆ FκF

3.6.5 Related work
Coquand [17] proposed an intuitionistic fixpoint theorem. It somehow provides a “from
below” construction of the fixpoint by iterating general union of the stages of the oper-
ator. Yet it does not prove that the fixpoint is one of the stages. In other words, it does
not give a construction of the closure ordinal.

3.7 Cardinal numbers as isomorphism classes
Another important specificity of intuitionistic set theory is that cardinal theory is com-
pletely changed. In classical set-theory with choice, cardinal numbers are ordinals that
are not isomorphic to any of its element. The natural numbers are the finite cardinal
numbers, and ω is ℵ0, the first infinite cardinal number. ω+ is not a cardinal number
since it is isomorphism to ω.

All this elementary piece of cardinal theory falls apart in intuitionistic logic. At the
root of this, we remark that we have no information about the cardinality of ordinal 2
(the set of truth values). It might well be infinite. The existence of an ordinal of cardinal
2 is not clear. We haven’t investigated thoroughly this issue, but it seems plausible that
there are models that do not have any ordinal with cardinal 2.

So we have to find an alternative to the idea of representing cardinal numbers by
ordinals. A quite natural idea is to consider that cardinal numbers are the equivalence
classes of isomorphism. We thereby recover all finite cardinals. Clearly, isomorphic
types have the same cardinal, but we do not have a canonical representative for each
class. This will force us to always carry explicit isomorphism function whenever we
mean that two sets have the same cardinality.

Some very basic theorems of cardinal theory fail to be provable. Let us just mention
κ = κ×κ for any infinite cardinal κ. Here, a priori, these two sets do not have the same
cardinality, short of providing an isomorphism between these two sets.

As a rudimentary alternative theory of cardinal numbers, we develop a library of
isomorphisms. In the lemmas below, the isomorphisms are sometimes omitted. They
are left as an exercise to the reader.1

1The lazy reader can also cheat and have a look at the formal proofs.

ZFfix.html#Ffix_post
ZFfix.html#Ffix_closure

40 CHAPTER 3. ORDINALS AND FIXPOINT THEOREMS

3.7.1 Isomorphisms
LIBRARY: ZFISO

Definition 3.23 (Isomorphism) f is an isomorphism betweenA andB (writtenA ≈f
B) iff:

∀x ∈ A.f(x) ∈ B ∀x ∈ A.∀y ∈ A.f(x) == f(y)⇒ x == y
∀y ∈ B.∃x ∈ A.y == f(x)

Identity is an isomorphism between A and A (for all A), if f is an isomorphism
between A and B and g is an isomorphism between B and C, then composition g ○ f
is an isomorphism between A and C.

Definition 3.24 (Inverse)

f−1(X,y) ≜⋃{x ∈X ∣ f(x) == y}

The inverse function f−1 is an isomorphism between B and A whenever f is an iso-
morphism between A and B. It enjoys the properties of bijections:

∀x ∈X.f−1(X,f(x)) == x ∀y ∈ Y. f(f−1(X,y)) == y

Disjoint sum

Lemma 3.21

A ≈f A′ B ≈g B′

A +B ≈sum_case(f○inl, g○inr) A′ +B′

A +B ≈sum_case(inr,inl) B +A

A +B +C ≈sum_case(sum_case(inl,inr○inl),inr○inr) A + (B +C)

Σ-types

Lemma 3.22

A ≈f A′ ∀x ∈ A.B(x) ≈g(x) B′(f(x))
Σx ∈ A.B(x) ≈(a,b)↦(f(a),g(a,b)) Σx ∈ A′.B′(x)

Σx∈{y}.B(x) ≈snd B(y)

Σx∈A.{∅} ≈fst A

Σx∈A.Σy ∈B(x).C(x, y) ≈ Σ(x, y) ∈ (Σx∈A.B(x)).C(x, y)

Σx∈A.B(x) + Σx∈A′.B′(x) ≈ Σy ∈A +A′.sum_case(B,B′, y)

ZFiso.html
ZFiso.html#iso_fun
ZFiso.html#iso_inv

3.7. CARDINAL NUMBERS AS ISOMORPHISM CLASSES 41

Cartesian product Similar results can be deduced for cartesian product. In addition,
we prove more results.

Lemma 3.23

Σx∈A.B(x) × Σx′ ∈A′.B′(x′) ≈ Σ(x,x′)∈A ×A′. (B ○ fst ×B′ ○ snd)

Dependent product

Lemma 3.24

A′ ≈f A ∀x′ ∈A′. B(f(x′)) ≈gx′ B
′(x′)

cc_prod(A, B) ≈(h,x′)↦gx′(cc_app(h, f(x))) cc_prod(A
′,B′)

cc_prod(∅,B) ≈_↦∅ {∅}

cc_prod({y}, B) ≈f↦f(y) B(y)

cc_prod(A, _↦ {∅}) ≈_↦∅ {∅}

cc_prod(A, x↦ cc_prod(B(x), y ↦ C(x, y))) ≈(f,(x,y))↦f(x,y)
cc_prod(Σx∈A.B(x), (x, y)↦ C(x, y))

cc_prod(A, x↦ Σy ∈B(x).C(x, y)) ≈
Σf ∈cc_prod(A,B).cc_prod(A, x↦ C(x, cc_app(f, x)))

cc_prod(A,B) × cc_prod(A′,B′) ≈ cc_prod(A +A′, sum_case(B,B))

Isomorphisms and transfinite iteration In this section, we show that the transfinite
iteration of two isomorphic operator produce isomorphic stages.

Let F andG be two monotonic operators. They are said isomorphic if they preserve
isomorphisms. This is witnessed by the existence of a functional g such that:

Fα ≈f Gα ⇒ Fα
+
≈g(f) Gα

+

We also require that the values of g(f) on domain Fα
+

depends only on values of f on
Fα:

(∀x ∈X.f(x) == f ′(x))⇒ ∀x ∈ F (X). g(f, x) == g(f ′, x)

Definition 3.25 (Stage isomorphism) The isomorphism between stages Fα and Gα

is

TI_iso(F,α) ≜ cc_app(REC((β, f)↦ cc_lam(F β
+
, g(cc_app(f))), α))

Lemma 3.25 (Recursor) The step function of TI_iso is recursor (def. 3.10) with
domain α ↦ Fα and invariant

(α, f)↦ Fα ≈cc_app(f) Gα

ZFiso.html#TI_iso
ZFiso.html#TI_iso_recursor

42 CHAPTER 3. ORDINALS AND FIXPOINT THEOREMS

It is then straightforward to conclude:

Lemma 3.26 (Isomorphic stages) Under the assumptions above, stages Fα and Gα

are isomorphic:
Fα ≈TI_iso(F,α) Gα

The stage-irrelevance properties of REC apply to the stage isomorphism:

Lemma 3.27 (Stage-irrelevance of TI_iso)

∀x ∈ Fα.TI_iso(F,α, x) == g(TI_iso(F,α), x)
α ≤ β ⇒ ∀x ∈ Fα.TI_iso(F,α, x) == TI_iso(F,β, x)

As a consequence, F and G have the same closure ordinal:

Lemma 3.28 (Closure ordinals)

F (Fα) == Fα ⇐⇒ G(Gα) == Gα

3.8 Ordinals and Grothendieck Universes
LIBRARY: ZFGROTHENDIECK

All the notions seen so far are contained within any Grothendieck. It is important
to bear in mind that all forms of transfinite iteration also require the ordinal argument
to belong to the same universe.

Lemma 3.29 (Closure by transfinite iteration) Given a Grothendieck universe U ,

α ∈ U ∀X ∈ U.F (X) ∈ U
Fα ∈ U

The only restriction to this is the indexed ordinal supremum 3.4 that relies on the
infinity axiom, due to the iteration at ω. Only Grothendieck universes containing ω are
proved to be closed by indexed ordinal supremum. This also applies to the datatypes
of lists, λ-terms, and the closure ordinal κF .

Lemma 3.30 (Closure by indexed ordinal supremum) LetU be a Grothendieck uni-
verse with ω ∈ U .

I ∈ U ∀i ∈ I.αi ∈ U
⋓i∈I αi ∈ U

Lemma 3.31 (Closure ordinal) Let U be a Grothendieck universe with ω ∈ U , and
F a monotonic operator.

A ∈ U F (A) ⊆ A
κF ∈ U

ZFiso.html#TI_iso_fun
ZFiso.html#TI_iso_irrel
ZFiso.html#TI_iso_fixpoint
ZFgrothendieck.html
ZFgrothendieck.html#G_TI
ZFgrothendieck.html#G_osup
ZFgrothendieck.html#G_Ffix_ord

Chapter 4

Models of Set Theory in Coq

It is not yet clear what is the ordinal strength of the Calculus of Inductive Constructions
compared to variations of ZF.

It has been shown that a subsystem of ECC is enough to interpret Zermelo set
theory (Miquel [42]). In the first section we reproduce a weaker result by encoding
Zermelo in an inductive type of sets, as Aczel and Werner already did.

Myhill’s version of IZF uses replacement (IZFR). Friedman has shown that it is
strictly less powerful than his own IZF, that uses collection (IZFC). He also showed
that the latter formalism is of comparable strength with (classical) ZF [22].

One contribution to this topic is to devise an axiom that allows to build a model
of IZFC . It obviously provides a model for IZFR, but also a model for ZF via the
well-known negated translation. This will be compared with Miquel’s domination ax-
iom [43].

This improves the result of Werner by showing the same interleaving of theoretical
strength between type theories and set theories but this time, our axioms compares to
ZF instead of ZFC. We also give an attempt to have the same kind of results for IZFR
by introducing a type-theoretical replacement axiom but the equivalence is not clear.

It also improves another result from Werner that gives a model of ZF using the
type-theoretical description axiom. But this axiom seems too powerful, especially in a
proof-irrelevant setting.

4.1 Logics

LIBRARY: LOGICS

4.1.1 Abstract higher-order logics

Many constructions can be done using the standard rules of first-order logic, indepen-
dently of the specific properties each one may have. This also a convenient way to
express translations from one logic to another, as we will see in section 4.1.2.

Definition 4.1 (Abstract higher-order logc) An abstract higher-order logic is a struc-
ture

⟨L, ⊢L, �L ∧L, ∨L, ⇒L, ∀L, ∃L⟩

43

Logics.html
Logics.html#HOLogic

44 CHAPTER 4. MODELS OF SET THEORY IN COQ

�-E
⊢L �L
⊢L P

∧-I
⊢L A ⊢L B
⊢L A ∧L B

∧-E
⊢L A ∧L B
⊢L A ⊢L B

∨-I1
⊢L A

⊢L A ∨L B
∨-I2

⊢L B
⊢L A ∨L B

∨-E
⊢L A ∨L B

[⊢L A]
⋮

⊢L C

[⊢L B]
⋮

⊢L C
⊢L C

⇒-I

[⊢L A]
⋮

⊢L B
⊢L A⇒L B

⇒-E
⊢L A⇒L B ⊢L A

⊢L B

∀-I
∀x ∶A. ⊢L P (x)
⊢L ∀Lx ∶A.P (x)

∀-E
⊢L ∀Lx ∶A.P (x) t ∶ A

⊢L P (t)

∃-I
⊢L P (t)

⊢L ∃Lx ∶A.P (x)

∃-E
⊢L ∃Lx ∶A.P (x) ∀x ∶A. ⊢L P (x)⇒L C

⊢L C

Figure 4.1: Inference rules of higher-order logic L

where L is the type of propositions, with the standard collection of logical connec-
tives. Quantifiers are constants of type ∀A. (A → L) → L. The judgment ⊢L P (of
type Prop for any L-proposition P) means that proposition P is derivable. It shall
implement the logical rules of figure 4.1.

Consistency of logic L is expressed as ¬ ⊢L �L.
We remark that in a consistent logic, the non-informative logical connectives are

equivalent to their counterpart at the meta-level:

⊢L A⇒L B ⇐⇒ ⊢L A ⇒ ⊢L B
⊢L A ∧L B ⇐⇒ ⊢L A ∧ ⊢L B

⊢L ∀L x ∶A.P (x) ⇐⇒ ∀x ∶A. ⊢L P (x)

Lemma 4.1 The logic of Coq is an abstract higher-order logic.

⟨Prop, P ↦ P, False, and, or, ->, forall, ex⟩

Any proposition can be injected in that logic.

4.1. LOGICS 45

4.1.2 Negated translation
Definition 4.2 Given a logic L, we define a new logic Cl(L) by negated translation:

Cl(L) ≜ {P ∶L ∣⊢L ((P ⇒L �L)⇒L �L)⇒L P}
⊢Cl(L) P ≜ ⊢L P

A ∨Cl(L) B ≜ ((A ∨L B)⇒L �L)⇒L �L
∃Cl(L) x ∶A.P (x) ≜ ((∃L x ∶A.P (x))⇒L �L)⇒L �L

...

The non-informative connectives of Cl(L) are defined as those of L.

We can show that, in addition to be a logic, the double negation rule holds:

∀P. ⊢L ((P ⇒Cl(L) �Cl(L))⇒Cl(L) �Cl(L))⇒Cl(L) P,

which is obvious given the definition of Cl(L). We also have the obvious introduction
rule, to be used for atomic formulas:

∀P. (⊢L ((P ⇒L �L)⇒L �L)⇒L P)→ Cl(L).

Lemma 4.2 The negated translation of intuitionistic logic is a model of classical logic

This lemma applies only to predicate logic. For logics with axioms (like set theory),
we need to check that those axioms are equivalent to their negated form.

4.1.3 A-translation
The A-translation consists in replacing every atomic formula P with P ∨A.

Definition 4.3 Given a logic L, the A-translation L/A is defined by

L/A ≜ {P ∣⊢L A⇒⊢L P}
⊢L/A P ≜ ⊢L P (A)
�L/A ≜ A
PL/A ≜ P ∨L A (for any L-proposition P)

P ∨L/A Q ≜ P (A) ∨L Q(A)
P ∧L/A Q ≜ P (A) ∧L Q(A)
P ⇒L/A Q ≜ P (A)⇒L Q(A)

∀L/A x ∶T.P (x) ≜ ∀L x ∶T.P (x,A)
∃L/A x ∶T.P (x) ≜ (∃L x ∶T.P (x,A)) ∨L A

Note that the definition for the existential quantifier had to be modified to be correct
in intuitionistic logic. Indeed, the original definition needs the equivalence (indepen-
dence of premises)

A⇒ ∃x.P (x) ⇐⇒ ∃x.A⇒ P (x)

which does not hold in intuitionistic logic. Adding an extra disjunction on the existen-
tial fixes this issue.

A second remark is that the A-translated logic is inconsistent when A is provable
in L. Still, it is an abstract higher-order logic:

Lemma 4.3 Given a logic L and an L-proposition A, then L/A is a logic.

46 CHAPTER 4. MODELS OF SET THEORY IN COQ

Following Friedman, we can prove that double negation of existential can be re-
moved:

Lemma 4.4 Let P an L-predicate. The following holds:

(∀A. ⊢L/A ((∃x.P (x)L/A)⇒ �)⇒ �)⇒⊢L ∃x.P (x)

However, this method is not very convenient because we are forced to use these
logical connectives. Only the head conjunctions, implications and universal quantifica-
tions can be represented with those of Coq. In the next section, we suggest to consider
these alternative proposition types as subsets of Coq’s Prop.

4.1.4 Sublogics

LIBRARY: SUBLOGIC

We would like to reuse the logical connectives of Coq whenever possible. Of
course, intuitionistic and classical disjunction cannot be identified, since the intuition-
istic one enjoys canonicity: every closed proof of A ∨B reduces to either a proof of A
or a proof of B. But the classical disjunction does not have this property. It would be
convenient to have an alternative connective ∨L. It should support the introduction rule
A ∨B ⇒ A ∨L B. But the elimination rule ∀P ∶Prop. (A ⇒ C) ⇒ (B ⇒ C) ⇒ C
cannot hold in general because if C is an intuitionistic disjunction, then both disjunc-
tions would be equivalent. The idea is to restrict the elimination rule by restricting C
to a subset of Prop.

We will call a sublogic L a subset of Prop that enjoys closure properties to be
precised later on. This subset will be the image of a projection. These are the reasons
that motivated the name “sublogic”.

Definition 4.4 (Sublogic) A sublogic L is a projection operator #_ ∶ Prop → Prop
such that

P ⇒ #P

##P ⇒ #P

(P ⇒ Q) ∧#P ⇒ #Q

We recognize the basic operations of a monad (return, join and map). The equations
are not needed here because we basically use our logic in a proof-irrelevant way, but it
could be done.

Definition 4.5 (L-propositions) The propositions of a sublogic L is the set of propo-
sitions such that

#P ⇒ P

Informally, the notation P ∈ L expresses that P is an L-proposition. Since # is a
projection, #P is an L-proposition for all proposition P . This provides a way to
modify any connective into an L-connective. For instance (P,Q) ↦ #(P ∨Q) is the
disjunction of sublogic L. It enjoys the same introduction rule, and the elimination
rule applies, as long as the conclusion is an L-proposition. This is expressed by the
following lemma.

Sublogic.html
Sublogic.html#Sublogic
Sublogic.html#SublogicTheory.isL

4.1. LOGICS 47

Lemma 4.5 (Elimination rule) The projection operator enjoys the following elimi-
nation rule:

∀P.∀Q ∈ L. (P ⇒ Q)⇒#P ⇒ Q

Note that P can be any proposition.
Without further assumption, a significant piece of logic can be carried out within

L-propositions. Using the monotonicity property, we can show that L is closed under
all negative connectives:1

Lemma 4.6 (Negative connectives)

P ⇒ P ∈ L
P ∈ L ∧Q ∈ L ⇒ P ∧Q ∈ L

Q ∈ L ⇒ (P ⇒ Q) ∈ L
∀x ∶A.(P (x) ∈ L) ⇒ (∀x ∶A.P (x)) ∈ L

The first rule says that any intuitionistically provable proposition is an L-proposition.
This is the case for True. The last three rules show that conjunction, implication and
universal quantification naturally produce L-propositions, and they can be used when
reason in the sublogic L, as long as the appropriate sub-propositions are in L. In the
case of implication, it is not needed that P be an L-proposition. This is so because the
rule for implication and conjunction or special cases of the universal quantification rule:
in a higher-order logic based on the Curry-Howard isomorphism (like Coq), P ⇒ Q is
a quantification of Q over the type of proofs of P , and P ∧Q is a quantification over
booleans of if b then P else Q.

Otherwise said, the fact of proving that L is closed under implication means that
such propositions can be proven using the elimination of #, so the usual elimination
rules holds.

The question remains for the other connectives: falsity, disjunction and existential.

Definition 4.6 (Consistent sublogics) A sublogic L is said consistent iff False ∈ L

In consistent logics, � and ¬P can be used to represent falsity and negation. Otherwise,
we use #� and P ⇒#�.

So, to reason abstractly on an arbitrary sublogic, it is enough (and needed) to use
the alternative connectives ∨L, ∃L or �L, defined as

P ∨L Q ≜ #(P ∨Q)
∃Lx ∶A.P (x) ≜ #∃x ∶A.P (x)

�L ≜ #�

If we target a specific sublogic it might be the case that some of these connectives do
not have to be modified. See below for examples of sublogics. It is worth noting that
inconsistent sublogics can be of interest.

The above comments can be summarized in a proposition showing that any sublogic
(i.e. any monad) can be extended to an higher-order logic.

1We recall that negative connectives are those for which introduction rules are reversible. In predicate
logic, this includes conjunction, implication and universal quantification.

Sublogic.html#SublogicTheory.Tr_ind
Sublogic.html#SublogicTheory.Tr_isL
Sublogic.html#ConsistentSublogic

48 CHAPTER 4. MODELS OF SET THEORY IN COQ

Lemma 4.7 (Sublogics⊆HOLogic) The signature

⟨L, P ↦ P, �L, and, ∨L, ->, forall, ∃L⟩

is an higher-order logic.

In practice, this showed to be extremely convenient, and incomparably more ef-
fective than the abstract higher-order logic approach. With little support of the tactic
language (to provide elimination tactics behaving closely to the usual ones, and tac-
tics to automatize the proof that a proposition is indeed an L-proposition), the user can
adapt easily (when possible) a proof made in the original Coq logic to an abstract logic.
The restriction of elimination is already familiar to Coq users due to the similarity with
the restriction of eliminations of inductive definitions in Prop. Sublogics can be viewed
as a kind of sub-sort of Prop, with elimination restricted to itself.

4.1.5 Examples of sublogics
Intuitionistic logic

Definition 4.7 (Intuitionistic sublogic) The identity projection generates the full set
of Coq’s (intuitionistic) propositions. Without surprise, we call it Prop.

Obviously, all Coq proposition belong to that logic and none of the connectives
need to be modified.

Classical logic

Definition 4.8 (Classical sublogic) Classical sublogic C is generated by the projec-
tion #CP = ¬¬P .

The C-propositions are those P such that ¬¬P ⇒ P , which is a widely-known fact
that they form a model of classical logic.

Lemma 4.8 Sublogic C is consistent.

To reason in this logic, disjunction and existential need to be modified.

Lemma 4.9 (Excluded-middle) The proposition ∀P.P ∨C ¬P holds.

Proof ∀P.P ∨C ¬P is the negated translation

∀P,¬¬ (P ∨ ¬P)

which is intuitionistically provable.

A-translation

Definition 4.9 (A-translated sublogic) Given a propositionA, Friedman’sA-translation
is generated by #AP = P ∨A, which is a sublogic.

The set of A-translated propositions are those P such that A⇒ P .

Lemma 4.10 The A-sublogic is inconsistent when A holds.

Sublogic.html#SublogicToHOLogic
Sublogic.html#CoqSublogic
Sublogic.html#ClassicSublogic
Sublogic.html#ClassicSublogicThms.nnpp
Sublogic.html#ASublogic

4.1. LOGICS 49

Now we show that disjunction do not have to be modified.

Lemma 4.11 (A-translated disjunction)

P ∈ A ∨ Q ∈ A ⇒ (P ∨Q) ∈ A

Note that the disjunction of an A-proposition with an arbitrary proposition is still an
A-proposition. This extends to existential:

Lemma 4.12 (A-translated existential)

(∃x. (P (x) ∈ A)) ⇒ (∃x.P (x)) ∈ A

Note that this lemma does not fit well with the idea that being anA-proposition should
be mostly proved automatically by inspecting the shape of P . When the inhabitability
of the quantified domain cannot be decided, the premise of this lemma cannot be dis-
charged in an automated way. Most of the times, the domain is trivially inhabited, and
the following weaker lemma is used:

(∃x ∶T) ∧ (∀x ∶T. (P (x) ∈ A))⇒ (∃x ∶T.P (x)) ∈ A

Falsity and atomic formulas have to be modified (unless they are already implied
by A), as in the original presentation of Friedman.

The basic property of A-translation is that the translation of falsity is equivalent to
the intuitionistic proposition A.

Lemma 4.13
�A ⇐⇒ A

This fact can be used to show the elimination of double negated existential, which
admits the Markov rule as an instance: if the A-translation of ¬¬∃x.P (x) can be
proven for a well-chosen A, then ∃x.P (x) holds intuitionistically.

Lemma 4.14 ()
(∀A.¬A¬A∃A x,P (x))⇒ ∃x.P (x)

Proof Assume ∀A.¬A¬A∃A x.P (x) and take A = ∃x.P (x). By lemma 4.13, we
just need to prove �A. Using our assumption, we only need to prove �A under the
assumption ∃A x.P (x). The latter assumption can be eliminated since �A in an A-
proposition. So we can assume ∃x.P (x), which is equivalent to �A.

Peirce translation

Following Escado and Oliva [20], we can encode Peirce’s translation.

Definition 4.10 (Peirce translation) Given a proposition R, Peirce translation is the
sublogic generated by #R P = (P ⇒ R)⇒ P .

This is a consistent sublogic.

Sublogic.html#ASublogicThms.or_isL
Sublogic.html#ASublogicThms.ex_isL_raw
Sublogic.html#AtransExample.markov_rule
Sublogic.html#PeirceTrans

50 CHAPTER 4. MODELS OF SET THEORY IN COQ

4.2 Zermelo with functional replacement
LIBRARY: ENSEM

In the following, we consider an abstract sublogic L. Unless explicitly mentioned,
we are not making any assumption over the sublogic L. This means that the theory de-
veloped in this section, supports intuitionistic logic, classical logic (through the negated
translation) and others.

Following Aczel and Werner [57] we define a type of sets.

Definition 4.11 (Sets) A set is a well-founded tree a where each node is labeled by a
type of index, noted ∣a ∣, and a accessor function from ∣a ∣ to sets. Notation x.α stands
for the element of x at index α.

This corresponds to the following Coq definition:

Definition Thi := Type.
Definition Tlo : Thi := Type.
Inductive set : Thi := sup (X:Tlo) (f:X->set).

Tlo is the universe of indexes and Thi is the universe of sets. The universe con-
straint Tlo < Thi resulting from the predicativity of inductive types in Type is nec-
essary to avoid inconsistency (Tlo = Thi would allow an encoding of naive set theory
with a set of all sets).

In this section,2 Thi will never be used as an object of the meta-logic, rather as
a judgment allowing to form higher types. We intend to suggest that set theories (as
a generic term) without Grothendieck universes can be interpreted in Coq with one
universe (Tlo). This provides relative consistency results. If we consider Thi as an
object of the meta-logic, then we will have a model of set-theory within Coq with two
universes, thus providing a strict logical strength comparison.

Definition 4.12 (Equality) Set equality x == y is the bisimulation of the sub-element
access functions:

(∀α.∃Lβ.x.α == y.β) ∧ (∀β.∃Lα.x.α == y.β)

Definition 4.13 (Membership) The set x belongs to y (written x ∈ y) iff:

∃Lα.x == y.α

Equality and membership satisfy the basic requirements:

Lemma 4.15 (Characterization of set equality)

x == y ⇐⇒ (∀z.z ∈ x ⇐⇒ z ∈ y)

Lemma 4.16 (Membership is compatible with equality)

a == a′ ∧ a ∈ b⇒ a′ ∈ b

It remains to model the constructors of our set theory. Most of them can be encoded
directly in their skolemized form.

2This will not be the case anymore in section 4.5

EnsEm.html
EnsEm.html#Ensembles.set_
EnsEm.html#Ensembles.eq_set
EnsEm.html#Ensembles.in_set
EnsEm.html#Ensembles.eq_set_ax
EnsEm.html#Ensembles.in_reg

4.2. ZERMELO WITH FUNCTIONAL REPLACEMENT 51

Definition 4.14 (Empty set) The empty set ∅ is defined by

∣∅ ∣ = False

Definition 4.15 (Pair) The pair {a; b} is defined by

∣ {a; b} ∣ = bool {a; b}.α = if α then a else b

Singleton {a} stands for {a; a}.

Definition 4.16 (Union) The union ⋃a is defined by

∣ ⋃a ∣ = Σα ∈ ∣a ∣. ∣a.α ∣
⋃a.(α,β) = a.α.β

Definition 4.17 (Separation) The separation scheme (or bounded comprehension sch-
eme) {x ∈ a ∣ P (x)} is defined by

∣ {x ∈ a ∣ P (x)} ∣ = {α ∶ ∣a ∣ ∣ P (a.α)} {x ∈ a ∣ P (x)}.α = a.α

Formally, and to have a valid definition even in the case where P is not compatible
with set equality, we have

∣ {x ∈ a ∣ P (x)} ∣ ≜ {α ∣ ∃Lb. b == a.α ∧ P (b)}.

Definition 4.18 (Power-set) The power-set ℘(a) is defined by

∣℘(a) ∣ = ∣a ∣→ Prop

℘(a).P = {b ∈ a ∣ ∃α. b == a.α ∧ P (α)}

The domain predicate has to be the index type of a, and not the sets themselves. Oth-
erwise the predicate would be in the same universe level as sets, and not at the level of
indices.

Definition 4.19 (infinity) The infinite set infinite is defined by

∣infinite ∣ = nat infinite.n = nat_rec(∅, a↦⋃{a;{a}}, n)

Definition 4.20 (Functional replacement) The functional replacement {f(x) ∣ x ∈
a} is defined by

∣ {f(x) ∣ x ∈ a} ∣ = ∣a ∣ {f(x) ∣ x ∈ a}.α = f(a.α)

All these definitions enjoy the properties of the first group in figure 4.2 (Zermelo
with functional replacement). Conjunction and universal quantification are directly
coded by the intuitionistic connectives, since they are not affected by the encoding in
the sublogic. Later in this chapter, we will show under which conditions skolemized
versions of replacement and collection can be derived.

EnsEm.html#Ensembles.empty
EnsEm.html#Ensembles.pair
EnsEm.html#Ensembles.union
EnsEm.html#Ensembles.subset
EnsEm.html#Ensembles.power
EnsEm.html#Ensembles.infinite
EnsEm.html#Ensembles.replf

52 CHAPTER 4. MODELS OF SET THEORY IN COQ

Zermelo with functional replacement:

x ∈ empty Ô⇒ �L
x ∈ pair(a, b) ⇐⇒ x == a ∨L x == b
x ∈ union(a) ⇐⇒ ∃L y ∈ a. x ∈ y

x ∈ subset(a,P) ⇐⇒ x ∈ a ∧ P (x)
x ∈ power(a) ⇐⇒ ∀y ∈ x. y ∈ a

y ∈ replf(a,F) ⇐⇒ ∃L x ∈ a. y == F (x)
x ∈ infinite ⇐Ô x == empty ∨L

∃L y ∈ infinite. x == ⋃{y;{y}}

Replacement:

y ∈ repl(a,R) ⇐⇒ ∃L x ∈ a.R(x, y))

if ∀xy y′. x ∈ a ∧R(x, y) ∧R(x, y′)⇒ y == y′

Collection:

∀x ∈ a. (∃Ly.R(x, y))⇒ ∃Ly ∈ coll(a,R).R(x, y)

Figure 4.2: Skolemized axioms of Zermelo-Fraenkel

4.2.1 Expressivity of functional replacement

An important notion in the analysis of the strength of theories is that of rank. The rank
of a set generalizes the notion of height of a tree. Since sets can may have an infinite
number of elements, the rank of a set x is an ordinal. It is defined by recursion on x.
Each element of x has a rank. The rank of x is the supremum of the successor of the
rank of each element of x.

The collection of sets of rank at most α is indeed a set, noted Vα. This is the Veblen
hierarchy. The union of Vα for all ordinals α is written V . It is the proper collection of
well-founded sets.

It is well-known that the sets of rank smaller than ω.2 (Vω.2) form a model of
Zermelo set theory (ZF without replacement). This appears clearly by analyzing the
above constructions: the set (infinite) has rank ω (it may be of higher rank, but the
axioms of ZF cannot prove it), and each of the constructions (not considering replace-
ment) increase the rank of their input of at most one (pairing and power-set).

Relational replacement allows to build sets with greater rank: by ordinary recursion
over natural numbers, a set of rank ω can be transformed into a set of rank ω + n by
applying the power-set n times. By functional replacement, it is possible to form the
union of this family of sets, which is a set of rank ω.2.

We conjecture that functional replacement is weaker and suggest that Vω.2 is also
a model of Zermelo with functional replacement. This would imply that the primi-
tive recursor on natural numbers cannot be expressed with functional replacement and
the relational version is needed. The argument is a slight strengthening of the above
reasoning about Zermelo.

We make the additional observation that for any first-order term ewith free variable
x1, . . . , xn, there exists two natural numbers k and l such that all the sets of e (given
a valuation for the free variables) at the k-th generation are sets of that valuation at a

4.2. ZERMELO WITH FUNCTIONAL REPLACEMENT 53

generation smaller than l. The intuition is that e can only inspect its “input” x1, . . . , xn
up to a finite depth l, and stack only a finite number (k) of “brackets” to recombine
them. (The infinite set is treated as a free variable.) Thus, closed expressions (or
having as free variable the one denoting the infinite set) have a rank < ω.2. We have
not formalized this claim.

This result might extend to the higher-order presentation of Zermelo. The idea
behind this weak claim is that a closed Coq expression of type set in normal form
only involve subterms in a context where all variables have type set, introduced by
separation and functional replacement.3 An enumeration of the possible form of a well-
typed term in normal form should conclude that we cannot write closed set expressions
beyond the class of first-order formulas.

However, a slight modification of the set-theory can change this. Let us consider
a generalization of functional replacement (repl1), such that in repl1(A,f), f is
also given a proof that its argument is an element of A. This is definable in Coq:

Definition 4.21 (Extended functional replacement)
Definition el (x:set) := {z|in_set z x}.
Definition repl1 (x:set) (F:el x->set) :=

sup _ (fun i => F (elts’ x i)).
Lemma repl1_ax : forall x F z,

(forall z z’, proj1_sig z == proj1_sig z’ -> F z == F z’) ->
(in_set z (repl1 x F) <-> #(exists y, z == F y)).

The key point is that the argument of F contains a membership proof. Although the
result of F cannot depend on it (as required by the premise of repl1_ax), it can be
used to write recursive functions by well-founded induction, even after the type of sets
is made abstract by functor signature. Moczydłowski [45] proposes a type system that
is equivalent to a set theory where proof object belong to the language. A comparison
of the two approach would deserve attention.

Along these lines, the recursor on natural numbers (and in fact transfinite recursion
over a well-founded set) can be defined:

Fixpoint WFR (x:set) (p:Acc in_set x) : set :=
f (repl1 x (fun (y:el x) =>

WFR (proj1_sig y) (Acc_inv p (proj2_sig y)))).

In this definition, the sub-term proj2_sig y is a proof of proj1_sig(y) ∈ x. The
Acc_inv expression is a proof that the set represented by y is well-founded, and it is
a sub-term of the proof object p.

If the sublogic L is the intuitionistic logic, the set of natural numbers can be proven
well-founded (i.e. Acc in_set N).4 As a consequence, the construction of Vω.2 can
be carried out with the extended functional replacement.

4.2.2 Towards relational replacement
It has already been noticed by Werner [57] that the Type-Theoretical Description Ax-
iom (TTDA):

∀ABR. (∀x.∃y.R(x, y))⇒ ∃f.∀x.R(x, f(x))
3Note that this argument requires to accept that Coq is strongly normalizing.
4This is in contrast with the well-foundation property expressed in the pure language of set theory, which

is provable in all sublogics. Concluding to Acc in_set N requires at least a consistent sublogic.

EnsEm.html#Ensembles.repl1

54 CHAPTER 4. MODELS OF SET THEORY IN COQ

is strong enough to derive the replacement and collection axiom. In an intuitionis-
tic setting this axiom is not very strong (see Martin-Löf [37]): it only expresses the
meta-theoretical property that proofs of existential properties contain an algorithm that
compute a witness. But in a classical setting, this axiom becomes much stronger since
no information can be extracted from the existential proof (we have proof-irrelevance).
This axiom somehow “enumerates” objects of B and is able to pick one.

4.3 Extending Zermelo with Replacement or Collection
LIBRARY: ENSEM

It is sometimes conjectured that ZF is stronger than the Calculus of Inductive Con-
structions with its predicative universe hierarchy. This would mean that a model of ZF
can be constructed in Coq only resorting to axioms.

Depending on the theory we want to model (IZFR or IZFC /ZF which are of dif-
ferent strength), we may want to extend Coq with an axiom as weak as possible. In
the following we introduce two axioms expressed in type theory. They are both conse-
quences of TTDA, and possibly weaker. Their statement is a translation of respectively
the replacement and collection axioms in type-theoretic terms. However, this does not
mean that they automatically are necessary conditions to model IZFR and IZFC , as we
shall see.

4.3.1 A type-theoretical replacement axiom

The first idea to model replacement is to admit the axiom of unique choice, a restriction
of TTDA to functional relations:

∀AB (R ∶A→ B → Prop).
(∀xy y′.R(x, y) ∧R(x, y′)⇒ y = y′)⇒
(∀x.∃y.R(x, y))
∃f ∶A→ B.∀x.R(x, f(x))

However, this axiom seems not strong enough: for the replacement axiom, we only
have uniqueness up to set equality (not Leibniz equality). We therefore devise an type-
theoretical axiom that expresses the possibility to collect images of a relation which is
functional up to a relation E. This definition also restricts the domain and co-domain.
The domain A is at the level of set indices, and B is the type of sets. Relation R is
required to be compatible with E.

Definition 4.22 (TTRepl) The Type-Theoretical Replacement Axiom is the following
property, parameterized by a relation E on sets:

∀A ∶Tlo.∀R ∶A→ set→ Prop.
(∀xy y′.E(y, y′) ∧R(x, y)⇒ R(x, y′))∧
(∀xy y′.R(x, y) ∧R(x, y′)⇒ E(y, y′))∧
(∀x ∶A.∃y ∶set.R(x, y))⇒
∃f ∶A→ set.∀x ∶A.R(x, f(x))

This axiom is expressed directly in the meta-logic, independently of the sublogic L.
The relation E is intended to be set equality, which depends on the sublogic.

EnsEm.html
EnsEm.html#Ensembles.ttrepl

4.3. EXTENDING ZERMELO WITH REPLACEMENT OR COLLECTION 55

Lemma 4.17 (TTDA⇒ TTRepl) All instances of TTRepl are weaker than (or as
strong as) the Type-Theoretical Description axiom (TTDA)

Proof Let us assume TTDA and the assumptions of TTRepl. We take f to be the func-
tion produced by TTDA. The proof is straightforward, without using the uniqueness
modulo E.

Lemma 4.18 (TTRepl⇒ Replacement) In the intuitionistic sublogic, TTRepl(==)
implies the existential Replacement, as shown in figure 4.3.

Being in intuitionistic logic makes all L-connectives equivalent to those of Coq. In this
situation, the premise of replacement is strong enough to prove the premise of TTRepl
regarding the existence of an image.

This is related to the remark that replacement is not equivalent to its negated ver-
sion. If the above lemma did hold in any sublogic, we would have a model of classical
ZF in Coq extended with TTRepl: in the classical sublogic, we would have Replace-
ment and excluded-middle, hence ZF.

4.3.2 A type-theoretical collection axiom

TTRepl seems not strong enough to derive the collection axiom, so we devise another
axiom, the type-theoretical collection axiom (TTColl) which statement follows that of
the set-theoretical version but with a type-theoretic flavor.

Definition 4.23 (TTColl) The Type-theoretical Collection Axiom is the following prop-
erty, parameterized by a relation E on sets:

∀A ∶Tlo.∀R ∶A→ set→ Prop.
(∀xy y′.E(y, y′) ∧R(x, y)⇒ R(x, y′))∧
∃X ∶Tlo.∃f ∶X → set.∀x ∶A. (∃w ∶set.R(x,w))⇒ ∃i ∶X.R(x, f(i))

As for TTRepl, this axiom is expressed directly in the meta-logic, and we will investi-
gate whether this axiom holds in our models of type-theory.

Lemma 4.19 (TTDA⇒ TTColl) All instances of TTColl are weaker than (or as strong
as) the Type-Theoretical Description axiom (TTDA).

Proof Let us assume TTDA and the assumptions of TTColl. Take X to be A and f to
be the function produced by TTDA. The proof is straightforward.

Lemma 4.20 (TTColl⇒ Collection) TTColl(==) implies the existential Collection,
as shown in figure 4.3.

Proof The main step is to prove a version of TTColl using the existential of the
sublogic. Then, Collection follows straightforwardly.

Unlike TTRepl, TTColl implies its counterpart expressed in any sublogic. This is a
generalization of Friedman’s observation that collection is preserved by negated trans-
lation. This fact is the key point in the interpretation of ZF in IZFC .

EnsEm.html#Ensembles.ttrepl_from_choice
EnsEm.html#Ensembles.intuit_repl_ax
EnsEm.html#Ensembles.ttcoll
EnsEm.html#Ensembles.ttcoll_from_choice
EnsEm.html#Ensembles.collection_ax

56 CHAPTER 4. MODELS OF SET THEORY IN COQ

Zermelo with functional replacement:

∃L z.∀x.x ∈ z ⇒ �L
∀a b.∃L z.∀x.x ∈ z ⇐⇒ x == a ∨L x == b
∀a.∃L z.∀x.x ∈ z ⇐⇒ ∃L y ∈ a. x ∈ y

∀aP.∃L z.∀x.x ∈ z ⇐⇒ x ∈ a ∧ P (x)
∀a.∃L z.∀x.x ∈ z ⇐⇒ ∀y ∈ x. y ∈ a

∀aF.∃L z.∀x.x ∈ z ⇐⇒ ∃L y ∈ a. x == F (y)
∃L z.∀x.x ∈ z ⇐Ô (∀y, y ∉ x)∨L

(∃L x′.∀y.y ∈ x′⇔ y ∈ x′ ∨L y == x′)

Replacement:

∃L z.∀x.x ∈ z ⇐⇒ ∃L y ∈ a.R(y, x))

if ∀xy y′. x ∈ a ∧R(x, y) ∧R(x, y′)⇒ y == y′

Collection:
∃L z.∀x ∈ a. (∃Ly.R(x, y))⇒ ∃Ly ∈ z.R(x, y)

Figure 4.3: Axioms of Zermelo-Fraenkel (existential version)

4.3.3 Relative strengths of TTColl and TTRepl
In this section, we show that the relative strength of TTRepl and TTColl (mostly) fol-
lows that of their set-theoretical counterparts.

Lemma 4.21 (TTColl⇒ TTRepl) TTColl(==) implies TTRepl(==).

Proof Straightforward.

Lemma 4.22 (TTRepl+EM⇒ TTColl) TTRepl(==) and excluded-middle imply TT-
Coll(==).

Proof The proof uses the same argument in set theory that consists in computing the
least Veblen universe that contains images for the whole domain of the relation.

4.4 Models of IZFR, IZFC and ZF in type theory
In the previous section, we have seen axioms that allow to derive the axioms of set
theory (Zermelo, Replacement and Collection) in their existential form (figure 4.3).
But using axioms that express the existence of a set admitting a given specification is
not very practical. It is much more convenient to work with a skolemized version, as
we have decided in chapter 2.

The next subsection is devoted to proving under which conditions these axioms can
be skolemized.

4.4.1 Skolemization
LIBRARY: ZFSKOLEM

EnsEm.html#Ensembles.ttrepl_from_ttcoll
EnsEm.html#ttcoll_from_ttrepl_em
ZFskolEm.html

4.4. MODELS OF IZF_R, IZF_C AND ZF IN TYPE THEORY 57

Let us assume we have a model Z of the existential version of IZF (fig. 4.3), and
we write ==Z and ∈Z for equality and membership in Z. Let us recall once more that
in this section, the logic is an abstract sublogic, which means that the results also hold
for classical logic.

The idea is to change the representation of sets. Instead of having an inductive
type, for which the constructive aspect will prevent us from introducing sets that are
defined by a specification, we define existential sets as predicates (specifications) over
the previous sets, that hold for exactly one set.

Definition 4.24 (Existential sets) The type of existential sets is:

set ≜ {P ∶ Z.set→ Prop ∣ ∃La.P (a) ∧ ∀a′. P (a′)⇒ a ==Z a′}

The uniqueness requirement is needed to define properly the membership relation:
if a predicate P is satisfied by multiple sets, we would need to “choose” in order to
determine if a set belongs to the one specified by P .

Definition 4.25 (Equality)

x==y ≜ ∃x′.∃y′. x(x′) ∧ y(y′) ∧ x′ ==Z y′

Definition 4.26 (Membership)

x∈y ≜ ∃x′.∃y′. x(x′) ∧ y(y′) ∧ x′ ∈Z y′

Sets of Z can be injected in set:

Definition 4.27 (Lifting sets)

a ≜ a′ ↦ a ==Z a′

Lemma 4.23 The above function is a bijection between sets of Z and set that pre-
serves membership:

∀a ∶set.∃a′, a == a′ a ==Z b ⇐⇒ a==b a ∈Z b ⇐⇒ a∈b

It is easy to see that any formula characterizing a unique set can be turned into a
constructor (a Skolem symbol) of existential sets.

This applies straightforwardly to the empty set, pairs, union, separation, powerset
and relational replacement. There is little more work for the infinity axiom, which
does not characterize a unique set. Fortunately, this axiom is equivalent (using sep-
aration) to another formulation of the infinity axiom where we require the existence
of a minimal infinite set. This latter statement enjoys the uniqueness property. This
gives an implementation of the axioms in the first two blocks of figure 4.3 (Collection
excluded).

Collection does not meet this uniqueness criterion in intuitionistic logic. But in
classical logic, we have the trick that collection can be derived from replacement and
well-foundation, by returning the smallest Veblen universe Vα that contains images
for all elements of the domain, as was done in the proof of lemma 4.22. This gives a
unique characterization of the resulting collection, which enables the skolemization of
collection.

Functional replacement on Z does not imply straightforwardly functional replace-
ment on existential sets. In fact, the latter implies relational replacement on Z. Thus,
we cannot expect to have such a property, unless IZFR can be encoded in Coq.

ZFskolEm.html#Skolem.set
ZFskolEm.html#Skolem.eq_set
ZFskolEm.html#Skolem.in_set
ZFskolEm.html#Skolem.Z2set

58 CHAPTER 4. MODELS OF SET THEORY IN COQ

4.4.2 Application: skolemized models of IZFR, IZFC and ZF
The following theorems are obtained by instantiating the content of the previous sec-
tions with different sublogics and using either TTRepl or TTColl.

Theorem 3 (Model of IZFR) Coq extended with TTRepl(==) can interpret IZFR, that
is the first two blocks of figure 4.2.

Proof Instantiate L with intuitionistic logic. Skolemization of Replacement is possi-
ble.

Theorem 4 (Model of IZFC) Coq extended with TTColl(==) can interpret IZFC , that
is the first two blocks of figure 4.2 and Collection from figure 4.3.

Proof Instantiate L with intuitionistic logic. Skolemization of Replacement is possi-
ble, and TTColl interprets existential Collection.

Theorem 5 (Model of ZF) Coq extended with TTColl(==) can interpret ZF, that is
all the axioms of figure 4.2, and excluded-middle.

Proof Instantiate L with classical logic. Skolemization of Collection is possible using
excluded-middle. Replacement is a consequence of Collection.

These theorems give relative consistency results of set theory w.r.t. the formalism
of Coq extended with axioms. In the rest of this thesis, models of type theory will
be produced. We will investigate whether the axioms TTRepl and TTColl are valid in
those models, thereby proving converse relative consistency results. It appeared that
TTColl holds, but we failed to find a validation of TTRepl. This suggest that there must
be weaker form of TTRepl that still imply Replacement.

4.4.3 Comparison with other works
In his habilitation thesis, Miquel [43] gives a translation from type theory to set theory
and vice versa. More precisely, he already has given an equivalence between ZF and a
type system, which is a PTS extended with the type of natural numbers and an axiom,
the domination axiom, which has similarities with our TTColl...

However, the approach is different. Miquel has designed an ad-hoc type system,
while we chose to start from an existing formalism, the Calculus of Inductive Con-
structions, and looked for a set of axioms that gives the exact expressivity (the usage
of the right number of universes is not formally enforced).

4.5 Encoding Grothendieck universes
LIBRARY: ENSUNIV

The theory in which the models of type theories will be expressed is IZFR with a
number of Grothendieck universes. The latter are the only ingredient that we have not
yet encoded in the type of sets.

Here again, we follow the ideas of Aczel. We consider two levels of sets as defined
in this chapter. Level-1 sets are the small sets. They can be embedded in level-2 sets
(big sets). This embedding can be used as the accessor function of a big set of all small
sets. It is natural to expect that this set will be a Grothendieck universe.

Technically, due to the lack of universe polymorphism in Coq, we have to duplicate
the library of sets.

ZFskolEm.html#IZF_R
ZFskolEm.html#IZF_C
ZFskolEm.html#ZF
EnsUniv.html

4.5. ENCODING GROTHENDIECK UNIVERSES 59

Definition 4.28 (Lifting sets) Lifting sets from level 1 to level 2:

∣ ↑a ∣2 = ∣a ∣1 (↑a).α =↑(a.α)

This definition requires that the universe of level-2 sets is at least as high as that of
level-1 sets, but they could be at the same level.

Lemma 4.24 The lifting function is an embedding of level 1 sets to level 2 sets.

a ==1 b ⇐⇒ ↑a ==2↑b a ∈1 b ⇐⇒ ↑a ∈2↑b

Definition 4.29 (Universe) The big set U of all small sets:

∣U ∣2 = set1 U.α =↑α

The two levels of sets cannot be the same anymore, once this definition has been ac-
cepted. Level-2 sets have to be at least in a universe strictly higher than level-1 sets.

Lemma 4.25 () Universe U is the level 2 set of all level 1 sets:

a ∈2 U ⇐⇒ ∃a′. a ==2↑a′

Lemma 4.26 () U is a Grothendieck universe: it closed under all set-theoretical ax-
ioms of IZFR.

This results extends to IZFC : if small sets are closed under collection, then so is U .
However, we failed to show that closure under functional replacement is preserved

by U . This is for similar reasons to the skolemization: we have a function from big sets
to big sets with the logical assumptions that the co-domain of the function is included
in the universe of small sets. But this does not yield directly a function from small sets
to small sets, for typing reasons. We would need to keep more information, enough to
expose a small sets from an hypothesis x ∈2 U .

EnsUniv.html#injU
EnsUniv.html#U
EnsUniv.html#U_intro
EnsUniv.html#U_univ

60 CHAPTER 4. MODELS OF SET THEORY IN COQ

Part II

Models of Type Theories with
Inductive Types

61

Chapter 5

Calculus of Constructions with
Universes and Natural Numbers

5.1 Introduction to Models of Type Theory
A model is a translation of one formalism into another. Here (and often), this is a
translation to set-theory. By set-theoretical model, we mean that we translate notions
of type-theory into their commonly accepted counterparts is set-theory. Mainly, depen-
dent products translates to set-theoretical dependent function types.

5.1.1 A guided tour
The basis of most modern type-theories rely on Martin-Löf’s intensional type theory
(MLTT) [36]. This theory is a generalization of Church’s simply-typed λ-calculus.
Instead of the type of functions τ1 → τ2, the primitive type constructor is the dependent
product (also called Π-types). The language of types is much richer than in Church’s
theory since types may depend on inhabitants of a given type. The well-formation of
types is ensured by a type discipline that follows the same rules as those for regular
objects. A special constant, that we will call Kind in this manuscript, plays the role of
type of types.

From MLTT, there are several principle that one may want to consider as extensions
of the formalism.

Impredicativity It introduces a new class of types (a sort), included in Kind, sup-
posed to represent propositions. It is called Prop. In order to encode first order
logic, this sort should be impredicative: a proposition may be formed by quantifi-
cation over arbitrary types. Since propositions are one class of types, this means
that one particular proposition may be defined by reference to the whole class of
propositions. Reynolds [50] has shown that this self-reference can be accepted
in a set theoretical interpretation of types, only by accepting proof-irrelevance:
propositions are types with at most one element.

Inductive types Inductive types provide a convenient way to express data-types (records,
variants, etc.).

Extensionality Extensional type theories are more flexible in the sense that propo-
sitional equality (equalities that can be proved within the theory) is identified

63

64 CHAPTER 5. CC WITH UNIVERSES AND NATURAL NUMBERS

with definitional equality (equalities that the formalism accepts without further
proof). Unfortunately, type-checking these systems is an undecidable problem.
We may want to consider systems where intensional equality is extended with
decidable fragments, like Presburger arithmetic.

Universes The idea of universes is to introduce more classes of types (universes), that
are closed by dependent products. This might strengthen the theory and allow
reasoning with types as we do with regular objects.

These groups of features are mostly independent and various combinations of the
the above principles have been studied in the litterature. Figure 5.1 gives an illustration
of this “lattice” of systems.

Impredicativity: Calculus of Constructions Extending MLTT with an impredica-
tive sort of propositions, we (roughly) get the Calculus of Constructions [16]. This is
the historical core language of Coq.

Inductive types: CC+NAT and CC+W As a preliminary to modelling inductive
types in their full generality, it is a good idea to start with a well-known instance:
natural numbers. This is CC+NAT. Modelling the natural numbers is an important
milestone, as its provides at least the power of higher-order arithmetic. This theory is
strong enough to model all datatypes manipulated by actual programs.

In the general case, inductive types allow higher-order inductive types, which gives
additionnal strength to the formalism. We can try to extend CC+NAT by accepting
a wider class of inductive definitions. Along this path we find the type of Brouwer
ordinals

Inductive ord : Type :=
| Oo : ord
| So : ord -> ord
| Limo : (nat -> ord) -> ord.

It is folklore that each strictly positive inductive type (the class of inductive def-
initions that Coq accepts) can be viewed as an instance of a (parameterized) specific
inductive type, the so-called W-types [36]:

Inductive W (A:Type) (B:A->Type) : Type :=
| Node (x:A) (f:B x->W A B).

This is CC+W.

Universes: CCω and ECC Coquand has proposed to extend the Calculus of Con-
structions with an infinite hierarchy of predicative universes (the Type hierarchy),
forming system CCω , also called CCinfty .

Another extension of CC with a hierarchy of universe is the Extended Calculus of
Constructions (ECC), introduced by Luo [35]. Its distinctive features are the cumula-
tivity relation (a form of subtyping) and the Σ-types, the dual of Π-types.

The join between universe and inductive types yield formalisms called the Calculus
of Inductive Constructions (CIC), which is the generic name for the formalism that Coq
implements. It is very to close other formalisms with comparable features, but with
minor differences, such as UTT, that have been investigated by Luo and Goguen [29].

5.1. INTRODUCTION TO MODELS OF TYPE THEORY 65

MLTT CC ECC

CICCC+NAT CC+W

CCUT ECIC

(Imp) (Univ)

(Ind)

(Ext)

Figure 5.1: Related type-theoretical formalisms

Extensionality: CCUT and ECIC Systems like NuPRL [15] implement an exten-
sional type theory with inductive types. The formalism is similar to adding extention-
ality to the Calculus of Inductive Constructions, that we call ECIC.

But type-checking in ECIC is undecidable, which may be considered as a major
obstacle to the actual implementation.1 We would rather keep decidability of type-
checking, but extend the definitional equality (also called conversion) with decision
procedures.

In [11], we have proposed a system which introduces a part of extensionality in the
formalism of Coq, and proved informally its main meta-theoretical properties. We have
started, in collaboration with Jean-Pierre Jouannaud and Qian Wang, a formalization of
the strong normalization theorem for this formalism, based on the material described
in this manuscript.

5.1.2 Overview of the work plan

In this chapter we will deal with specific instance of the features mentioned. With
our method, these features do not interact and can be studied separately, and then be
merged to form a model of the system with the full set of features. We insist that this is
not just a wishful claim. The formal development has been organized in order to allow
the free combination of various features modelled independently.

We first start by building a model of the Calculus of Constructions. Then we add
predicative universes, resulting in a model of ECC. Finally, we extend our models with
the type of natural numbers in a traditional style (as in Gödel’s system T).

In chapter 6, we show how these models can be extended to establish the strong
normalization property.

Chapter 7 introduces another way to check that recursive definitions terminate,
called type-based termination, or size-based termination, depending on the authors.

The last chapter will be about a general approach to inductive types, by first consid-
ering them as an instance of a fixpoint construction, and further refine this to the case
of strictly positive inductive definitions.

1NuPRL and its descendants have proven that this is rather a design choice than a commonly accepted
claim.

66 CHAPTER 5. CC WITH UNIVERSES AND NATURAL NUMBERS

5.1.3 Outline of the method

Given the large amount of systems and variations we may consider, it is crucial that we
follow a method that is extendable, without duplicating too many definitions.

Extendability The first point we make is that there exists a wide variety of for-
malisms, sometimes with only minor differences. On the other hand, almost all these
formalism enjoy the same metatheoretical properties: subject-reduction, confluence,
strong normalization, type-checking decidability, etc. Moreover, the same method can
be used to prove a given property for each system.

This suggests that we would better start from the properties that are essential, and
then develop abstract and schematic proofs (i.e. relying on assumptions that are later
on discharged according to the specific target formalism) of these properties.

The syntax, that defines a closed perimeter of the semantic domain, tend to be
a source of incompatibility between formalisms that otherwise manipulate the same
objects.

This is the reason why we will push as far as possible the idea that the syntax should
be introduced as late as possible, as a last resort.

Abstract models The first idea is to separate closed world from world with free vari-
ables This gives rise to the notion of abstract model. The key property of the abstract
model is the soundness result: the abstract judgment does validate the inference rules
of the targetted formalism. This property can be established a weak formal system.
The logical strength has to be used in instantiating this abstract model. At this level,
we are not bothered with the syntactical details. This is inspired from [41].

The second idea is that strong normalization models are a refinement of consis-
tency models in which types are not just sets of values, but also contain a realizability
interpretation. This information, in the case of strong normalization, consists of a re-
ducibility candidate (or a saturated set).

5.2 Calculus of Constructions

5.2.1 Abstract model

LIBRARY: MODELS

An abstract model is a signature of constants and properties about them. It is sup-
posed to capture the complexity of the target formalism.

Definition 5.1 (Abstract model of CC) An abstract model of the Calculus of Con-
structions is an implementation of the following CC_Model signature:

X ∶ Type
∈ ∶ X → X → Prop

== ∶ Equiv(X)

props ∶ X
@ ∶ X → X → X
λ ∶ X → (X → X)→ X
Π ∶ X → (X → X)→ X

Models.html
Models.html#CC_Model

5.2. CALCULUS OF CONSTRUCTIONS 67

satisfying the following properties, displayed as inference rules:

∀x ∈ A.f(x) ∈ F (x)
λx∈A.f ∈ Πx∈A.F

(Π-I)
M ∈ Πx∈A.F N ∈ A

M@N ∈ F (N)
(Π-E)

∀x ∈ A.F (x) ∈ props
Πx∈A.F ∈ props (Imp)

N ∈ A
(λx∈A.F)@N == F (N)

(β)

A == A′ ∀x ∈ A.f(x) == f ′(x)
λx∈A.f == λx∈A′. f ′

(λ-ext)

A == A′ ∀x ∈ A.F (x) == F ′(x)
Πx∈A.F == Πx∈A′. F ′ (Π-ext)

(where λx∈A.f and Πx∈A.B stand for λ(A, x↦ f(x)) and Π(A, x↦ B(x))).

In this definition, Equiv(X) is the type of equivalence relations over X . The type X
is the type of denotations for both objects and types. Symbol == obviously corresponds
to equality of denotations and implicitely, all operations on X are supposed to be com-
patible with it, as discussed in section 2.2. We just make it explicit for the symbols of
the above signature:

M ==M ′ N == N ′

M@N ==M ′@N ′

x ∈ y x == x′ y == y′

x′ ∈ y′

Membership symbol x ∈ y is the property that x (seen as object) is an inhabitant of
y (seen as a type). props is the type of propositions. Obviously λx ∈A.f stands for
functional objects of domain the type A. M@N is the application, and Πx ∈A.B is
the type of dependent functions of domain A and co-domain B. Sub-expressions with
bound variables are represented by meta-level functions.

If the signature appears as a reduced size set theory, we do not require extensionality

(∀z. z ∈ x ⇐⇒ z ∈ y)⇒ x == y

which would identify all types with the same inhabitants. The idea is that types can be
seen as sets of values (as the notation ∈ suggests), but we may want them to carry more
information. This will be the case for the strong normalization models.

Nonetheless, we might want to require a weak form of extensionality from product
types in order to support η-equality:

f ∈ Πx∈A.B
f == λx.Af@x

η

This η-rule is a restricted form and does not allow f =η λx ∈B.f@x in general.
When f is a function with domain A and B ⊊ A, both hand sides are not equal.

Although the model is abstract and does not assume anything about how X can be
instantiated, we will use a language inspired from set theory. Objects of type X will
occasionally be called sets, and the notation ∈ speaks by itself.

68 CHAPTER 5. CC WITH UNIVERSES AND NATURAL NUMBERS

5.2.2 Model construction
LIBRARY: GENMODEL

The abstract model gives a description of the properties of closed objects. For
instance, type A → B is the set of functions that map values of A to values of B. It
provides no direct denotation for open expressions like λx ∶A.f(x) where f is a “free
variable”, a symbol without assigned denotation.

A common way of dealing with free variables is to consider that the meaning of an
expression with free variable is a “family” of denotations, each member of this family
being instances of the open term. A specific instance is characterized by a valuation,
which assigns a value to each variable. The semantics of open expressions is defined
as a shallow embedding.

Definition 5.2 (Pseudo-terms) Pseudo-terms are either the particular object Kind,
of a function from valuations to values:

term ≜ {Kind} + ((N→ X)→ X)

The topsort Kind is delt with in a particular way. Since it can never appear nested
within (well-typed) terms and can appear only in type position inside judgments, it
needs not have an interpretation within X .

The name “pseudo-term” is used because calling them terms might look improper
in the current situation: the above definition allows for objects that do not have a syntax
(the model might be uncountable). Nonetheless, we wish to stress on the fact that this
denotational domain will enjoy most of the properties of the syntax (given our goal of
building a model and derive semantical meta-theoretical properties).

Definition 5.3 (Denotation) The value of a pseudo-term M at valuation ρ, written
Val(M)ρ is the application M(ρ) when M is a regular term. It is a dummy value
when M is Kind.

We could have encoded expressions using the functions of the model, but this would
prevent from having variables ranging over a “class” (a collection of values that may
not be represented in X). Only quantified variables are required to range over a type of
X . However, we do not use this feature.

Definition 5.4 (Term constructors) There exists an encoding of the syntax of the Cal-
culus of Constructions (expressed using de Bruijn indices):

Val(Prop)ρ ≜ props (Propositions)
Val(n)ρ ≜ ρ(n) (Variables)

Val(M N)ρ ≜ Val(M)ρ@Val(N)ρ (Application)
Val(λx ∶A.M)ρ ≜ λx∈Val(A)ρ.Val(M)x∶∶ρ (λ-abstraction)
Val(Πx ∶A.B)ρ ≜ Πx∈Val(A)ρ.Val(B)x∶∶ρ (Product)

In this manuscript, we will use name-carrying notations for terms informally, but it
should be clear what the underlying de Bruijn term is.

We need an essential operation on expressions with free variables: substitution. In
de Bruijn indices notation, we also need a relocation operator. Although the terms are
informally written with name-carrying notation, we will also write the relocations in
the underlying de Bruijn terms.

GenModel.html
GenModel.html#MakeModel.T.term
GenModel.html#MakeModel.T.int
GenModel.html#MakeModel.T.prop
GenModel.html#MakeModel.T.Ref
GenModel.html#MakeModel.T.App
GenModel.html#MakeModel.T.Abs
GenModel.html#MakeModel.T.Prod

5.2. CALCULUS OF CONSTRUCTIONS 69

In the deep embedding approach, substitution (and relocation) is defined as a recur-
sive function over the syntax of term. In the present setting, substitution is performed
by a modification of the valuation:

Definition 5.5 (Relocation and Substitution) Relocation and substitution have no
effect on Kind. The definition for regular terms is

Val(↑n M)ρ ≜ Val(M)i↦ρ(i+n) (Relocation)
Val(M[0/N])ρ ≜ Val(M)Nρ∶∶ρ. (Substitution)

Formally, relocation and substitution under k binders are defined first (notations: ↑nk
and _[k/_]). In situations where the substituted variable has a name, say x, we also
use notation _[x/_]. This definition may be better understood by observing the effect
of relocation and substitution on variables:

Val(↑1 n)ρ == Val(n + 1)ρ
Val(0[0/M])ρ == Val(M)ρ Val(n + 1[0/M])ρ == Val(n)ρ

Before defining the judgments, we introduce the semantics of a typing judgment
on two terms interpreted in a given valuation. Basically, it corresponds to the main
property of the model: the fact that the denotation of the judgment subject belongs
to the denotation of the type. The following definitions takes care of the Kind case,
which is a type that contains all the elements of the model X .

Definition 5.6 (Type contents) The set of values of a type T at valuation ρ is defined
by

v ∈ El(T)ρ ≜ (T = Kind ∨ v ∈ Val(T)ρ)

This definition encodes the fact that the denotation of Kind is X . Let us comment
more on the difference between Val(M)ρ (the value of M at ρ) and El(M)ρ (the
class of values of type M at ρ). The former is always an object of X with a dummy
value for Kind, while the latter is used only for types (including Kind which is the
full model X). Hence it might not be an element of X . The notation v ∈ El(T)ρ is
an abuse of notation because the collection of objects v such that v ∈ El(T)ρ is not
always representable in X . This is safe as long as we never use El(T)ρ as an object
of X .

Definition 5.7 (Semantics of contexts) A valuation ρ is adapted to a context Γ, which
is noted ρ ∈ [Γ], if it assigns to each variable a value of the declared type in Γ:

ρ ∈ [Γ] ≜ (∀n. ρ(n) ∈ El(↑n+1 Γ(n))ρ)

It is straightforward to show how to extend valuations consistently with a context:

ρ ∈ [Γ] ∧ v ∈ El(T)ρ ⇒ (v ∶∶ ρ) ∈ [Γ; (x ∶T)]

All the material needed to interpret judgments has been introduced. There are two
judgments:

• a typing judgment, stating that an expression (the subject) denotes values be-
longing to the type of the judgment;

• and an equality judgment, stating that two expressions have the same denotation.

GenModel.html#MakeModel.T.lift_rec
GenModel.html#MakeModel.T.subst_rec
GenModel.html#MakeModel.T.lift
GenModel.html#MakeModel.T.subst
GenModel.html#MakeModel.T.el
GenModel.html#MakeModel.val_ok

70 CHAPTER 5. CC WITH UNIVERSES AND NATURAL NUMBERS

Both are relative to a context which characterizes the admissible denotations for each
variable.

Definition 5.8 (Typing judgment)

(Γ ⊢M ∶ T) ≜ (∀ρ ∈ [Γ].Val(M)ρ ∈ El(T)ρ)

We can see that the free variables of M and T are interpreted universally.

Definition 5.9 (Equality judgment)

(Γ ⊢M = M ′) ≜ (∀ρ ∈ [Γ].Val(M)ρ == Val(M ′)ρ)

The form of this judgment is slightly unusual and deserves comments. This judg-
ment, also called definitional equality, is relative to a context because in a set-theoretical
model, only well-typed expressions have a meaningful denotation. To make this con-
crete, consider f = λx ∶ props. x, the identity over propositions. Properties of set-
theoretical functions allows to show equalities of the form f v = v for any proposition
v, but this latter fact is not granted when v is not a proposition. We need to ensure that
valuations assign variables values ranging in their declared type.

In this thesis, we will not address the problem of showing the equivalence between
the judgmental equality presentation and the one where conversion is an untyped re-
lation of terms. It has already been showed that this equivalence can be proved either
syntactically (Adams [6], Siles [52]), or using the strong normalization property (that
we are going to prove in this thesis).

However, this equality is not “typed” in the sense that the relation between values
may change from one type to the other. Here, equality is the same (it is ==) for all
types.

The main property is to show the soundness of the interpretation. This consists
in proving that each inference rule of the targetted formalism (here, the Calculus of
Constructions) is admissible.

Theorem 6 (Soundness) The judgments defined above admit the inference rules of
the Calculus of Constructions, figure 5.2.

It is clear that they are more liberal than the typing rules of the Calculus of Con-
structions. For instance, we are allowed to derive judgments in an ill-typed context.

Let us now consider the meta-theoretical properties that can be deduced from this
model construction. We need however to make assumptions on the model, because the
abstract signature can be instantiated by a trivial model, where X is a one-value, all
operations are constant, and the predicates always true. We should not expect to prove
any significant property so easily.

The main corollary is the consistency of the calculus. The assumption on the model
is that there exists an empty type. The latter statement is the first negative proposition
of the abstract model.

Theorem 7 (Abstract consistency) If the abstract model has an empty proposition,
then there is no proof M of falsity

⊢M ∶ ΠP ∶Prop. P.

In other words, the Calculus of Constructions is logically consistent.

GenModel.html#MakeModel.J.typ
GenModel.html#MakeModel.J.eq_typ
GenModel.html#MakeModel.R
GenModel.html#MakeModel.abstract_consistency

5.2. CALCULUS OF CONSTRUCTIONS 71

Γ(n) = T
Γ ⊢ n ∶ ↑n+1 T

(V ar)
Γ ⊢ Prop ∶ Kind (Prop)

Γ ⊢M ∶ Πx ∶A.B Γ ⊢ N ∶ A A /= Kind
Γ ⊢M N ∶ B[x/N]

(App)

Γ; (x ∶T) ⊢M ∶ U U /= Kind
Γ ⊢ λx ∶T.M ∶ Πx ∶T.U

(Lam)

Γ; (x ∶T) ⊢ U ∶ s2 s2 ∈ {Prop,Kind} T,U /= Kind
Γ ⊢ Πx ∶T.U ∶ s2

(Prod)

Γ ⊢M ∶ T Γ ⊢ T = T ′ T /= Kind
Γ ⊢M ∶ T ′

(Conv)

Γ ⊢M = M
(Refl) Γ ⊢M = M ′

Γ ⊢M ′ = M
(Sym)

Γ ⊢M = M ′ Γ ⊢M ′ = M ′′

Γ ⊢M = M ′′ (Trans)

Γ ⊢ N ∶ A T /= Kind
Γ ⊢ (λx ∶A.M) N = M[x/N]

(Beta)

Γ ⊢M = M ′ Γ ⊢ N = N ′

Γ ⊢M N = M ′ N ′ (EqApp)

Γ ⊢ A = A′ Γ; (x ∶A) ⊢M = M ′

Γ ⊢ λx ∶A.M = λx ∶A′.M ′ (EqLam)

Γ ⊢ A = A′ Γ; (x ∶A) ⊢M = M ′

Γ ⊢ Πx ∶A.M = Πx ∶A′.M ′ (EqProd)

Figure 5.2: Inference rules of the Calculus of Constructions

72 CHAPTER 5. CC WITH UNIVERSES AND NATURAL NUMBERS

Proof Suppose there is an M such that ⊢M ∶ ΠP ∶Prop. P and an F ∈ props that
contains no value. Any valuation ρ is adapted to the empty context, so by soundness,
Val(M)ρ ∈ ΠP ∈ props. P . By product elimination, Val(M)ρ@F ∈ F , which
contradicts F empty.

Supported principles This model construction validates functional extensionality,
provided the abstract model supports η-equality property.

A posteriori, it seems like the η-equality should naturally make it to the definition
of the abstract model.

Design choices There are many variations possible, either on the abstract model, or
on the model construction:

• distinguish a subset of X that correspond to types. In the current situation, this
is not necessary because types are mere sets of values without structure. This
might be more useful for strong normalization models. We may even go further
and require Kind to be an element of the model.

• We could deal with Kind in a different way. For instance we do not explicitely
rule out judgments Γ ⊢ Kind ∶ T , which here depends on the dummy value
assigned to Kind. Also, we could have that equality is also meaningful for
Kind: here Γ ⊢ Kind = t could be set to not hold, instead of relying again on
the dummy value.

These choices do not have a big impact anyway.

5.2.3 Predicative fragment
We now give hints about how such signature can be implemented in actual set theory.

Lemma 5.1 The usual encoding of set-theoretical functions (see section 2.4)

⟨X ∶= set; ∈ ∶= in_set; == ∶= eq_set;
@ ∶= app; λ ∶= abs; Π ∶= dep_func⟩

is an instance of the CC_Model signature (def. 5.1), except the (Imp) rule.

Proof Standard properties of functions.

5.2.4 An impredicative sort of propositions
LIBRARY: ZFCOC

Since Reynolds [50], it is known that the only way to model impredicativity in a set
theoretical model is to have proof-irrelevance. But given two typesA andB, both types
Πx∈A.x = x and Πx∈B.x = x (assuming we have defined equality) are propositions,
but the inhabitants of these types can be equal only if A and B are equal.

This can be fixed only by changing the encoding of functions, in such a way that
functions returning the unique proof object on all their domain shall be encoded as the
proof object. Aczel has introduced another encoding (see 2.4.1) where the proof object
is the empty set. This encoding has most of the properties of the usual encoding, except
that functions do not carry their exact domain (this is required by impredicativity).

ZFcoc.html

5.2. CALCULUS OF CONSTRUCTIONS 73

Definition 5.10 (Propositions)

props ≜ ℘({∅})

As we have seen in section 3.1.1, this set is isomorphic to the set of truth values of the
logic, which in our case is the logic of Coq.

Lemma 2.5 is the key property that will enable impredicativity.

Lemma 5.2 (Impredicativity of Prop)

(∀x ∈ A.B(x) ∈ props)⇒ cc_prod(A,B) ∈ props

Proof We need to show that cc_prod(A,B) ⊆ {∅}. Using the definition of cc_prod,
any element of cc_prod(A,B) is of the form cc_lam(A,f). By β and prod-
uct elimination, we have that f(x) ∈ B(x) for all x ∈ A. The assumption of the
lemma and the definition of props proves that f(x) == ∅. Lemma 2.5 shows that
cc_lam(A,f) == ∅. So, cc_prod(A,B) ⊆ {∅}.

Lemma 5.3 (Model of CC) The following signature is an instance of the abstract
model of CC:

⟨X ∶= set; ∈ ∶= in_set; == ∶= eq_set; props ∶= props;
@ ∶= cc_app; λ ∶= cc_abs; Π ∶= cc_prod⟩

Theorem 8 (Consistency of CC) The calculus of constructions is consistent: there is
no pseudo-term M such that ⊢M ∶ ΠP ∶Prop. P .

Proof By lemma 7 and the fact that the empty set is a proposition.

.
Let us make several additional remarks on this model. We have said that propsis

isomorphic to the set of truth values of Coq. First of all, this means that the above
model is not classical. Of course, if we assume excluded-middle in the meta-logic, the
model becomes classical. Secondly, at the light of this correspondance, we can show
that the dependent product of CC corresponds to the meta-level universal quantification
over the elements of a set:

Lemma 5.4
∅ ∈ Πx∈A.P (x) ⇐⇒ ∀x ∈ A.∅ ∈ P (x).

5.2.5 An impredicative sort of classical propositions
There exists another way to model classical logic while keeping the meta-logic intu-
itionistic. It suffices to adapt the idea of sublogics (section 4.1.4). We can craft a set of
classical propositions as the subset of props of all P such that ¬¬P ⇒ P .

Definition 5.11 (Classical propositions)

clprops == {P ∈ props ∣ ¬¬∅ ∈ P ⇒ ∅ ∈ P}

Obviously, the excluded-middle expressed with double negation holds for this new
universe:

ZFcoc.html#props
ZFcoc.html#cc_impredicative_prod
ModelZF.html#CCM
ModelZF.html#cc_consistency
ZFcoc.html#cl_props

74 CHAPTER 5. CC WITH UNIVERSES AND NATURAL NUMBERS

Lemma 5.5 (Excluded-middle) The excluded-middle proposition is inhabited:

∅ ∈ ΠP ∈clprops. ((P → ∅)→ ∅)→ P

Proof We assume P ∈ clprops and there exists f ∈ ((P → ∅) → ∅). We need to
prove ∅ ∈ P (by product introduction and properties of Aczel’s encoding). From P ∈
clprops, we just need to prove ¬¬∅ ∈ P . Let us assume ∅ ∉ P . From P ∈ props
we have P = ∅, and thus f@(λx.x) ∈ ∅. This is absurd.

Lemma 5.6 (Classical impredicativity) The set of classical propositions is closed by
dependent product.

(∀x ∈ A.B(x) ∈ clprops)⇒ Πx ∶A.B(x) ∈ clprops

Proof cf. proof of lemma 4.6.

Thus we can build another instance of the abstract model of the Calculus of Con-
structions. This one will validate the excluded-middle.

⟨X ∶= set; ∈ ∶= in_set; == ∶= eq_set; props ∶= clprops;
@ ∶= cc_app; λ ∶= cc_abs; Π ∶= cc_prod⟩

Theorem 9 The Calculus of Constructions extended with the excluded-middle is con-
sistent.

Proof The empty set is a classical proposition, so the abstract consistency lemma
applies.

5.2.6 Comments

Role of the abstract model The abstract model discipline combined with the choice
of using a shallow embedding has prompted us to organize the development by splitting
it in two main parts.

The first part (by order of presentation in this manuscript) is the model construction,
bulding upon the abstract model, up to the soundness lemma and its corollaries. It
appeared that most of this part is quite bureaucratic. It performs the following tasks:

• it lifts constructions (λ-abstractions, products, etc.) and judgment on closed ob-
jects (membership and set equality) to a level with free variables: pseudo-terms,
inference rules; the correspondance between the two level is rather straightfor-
ward;

• it translates the de Bruijn encoding of the syntactic presentation to the higher-
order style of the semantical level.

The second part is the instantiation of the abstract model, the “basements” of the
whole edifice. This is the part that requires an expressivity in line with the one of the
target formalism: each construction of the formalism has to be modelled from scratch
in set theory.

Hopefully, this “hard” part is best done using the higher-order language, in which
binder operations come for free, and writing expressions is much more intuitive than
whatever first-order encoding of the syntax (the named-carrying representation being
less awkward than the de Bruijn style, but yet not ideal).

ZFcoc.html#cl_props_classical
ZFcoc.html#cc_cl_impredicative_prod

5.3. CALCULUS OF CONSTRUCTIONS WITH NATURAL NUMBERS 75

About the usage of axioms To carry out the construction of the instance of the ab-
stract model, we relied on the partially axiomatized set theory. An axiom (TTRepl,
section 4.3.1) was used to build the replacement axiom. Formally, the consistency the-
orem depends on it. But it is known that it is not needed, as the strong normalization of
the Calculus of Constructions has been proved in Coq without resorting to any axiom
in [12].

We remark that our instance only requires the functional replacement axiom, in
order to build the denotation of λ-abstraction and dependent products.

In fact, the theorem can be derived in a much weaker theory, since we do not even
need the existence of an infinite set. We have also developed an instance of the abstract
model built upon the theory of hereditarily finite sets which does not requires to extend
Coq’s theory with axioms. See also [9] for a description of this formalization.

Supported principles This model can be extended with any set of the meta-logic at
the level of Kind. An interesting example is the set of natural numbers. Obviously
it not possible to put nat at the Prop level, because propositions are proof-irrelevant.
This would contradict Peano’s axioms (discrimination of 0 and successors).

Lemma 5.7 For any x in X , we define cst(x) as the term with constant denotation x
(i.e. Val(cst(x))ρ = x). The following inference rules hold:

Γ ⊢ cst(x) ∶ Kind
x ∈ y

Γ ⊢ cst(x) ∶ cst(y)

x == y
Γ ⊢ cst(x) = cst(y)

This result also says that the lifting of judgments from the closed level to the level
of open terms works in the general case: all that can be modelled at the semantical
level can automatically be lifted at the syntactic level.

In the following section, we show that this is indeed possible with the natural num-
bers.

5.3 Calculus of Constructions with natural numbers
LIBRARY: MODELNAT

In this section, we will model the natural numbers, reusing the model construction
carried out so far. It will only consist in introducing new “term” constructors:

• the type of natural numbers,

• the constructors: zero and successor,

• the standard primitive recursor, like in Gödel’s system T

and showing that the expected typing rules are valid, given the definitions of the previ-
ous sections.

In chapter 7, we will consider another presentation of the theory of natural numbers
as a special case of the general notion of inductive type.

Here, we assume that our model X is IZF with Aczel’s encoding of functions (sec-
tion 5.2.4). We could have introduced a new abstract model, gathering the usual prop-
erties that express the existence of natural numbers (for instance, Peano axioms and the

ModelHF.html
ModelHF.html
ModelNat.html

76 CHAPTER 5. CC WITH UNIVERSES AND NATURAL NUMBERS

corresponding symbols). However, we will do this only for type systems of historical
interest. In other cases, we will only provide the properties at the closed expressions
level, and let the reader imagine how the syntactic layer (that we qualified as “bureau-
cratic”) can be modelled.

The model extension is based on the construction of the natural numbers in IZF of
section 2.3.3.2.

Definition 5.12 The theory of natural numbers can be embedded within our model:

Val(nat)ρ ≜ N
Val(0)ρ ≜ zero

Val(S)ρ ≜ λn∈N.succ(n)
Val(Rec(F,G,M))ρ ≜ natrec(Val(F)ρ,

(n, y)↦ Val(G)ρ@n@y,
Val(M)ρ)

Lemma 5.8 The model validates the following inference rules:

Γ ⊢ nat ∶ Kind Γ ⊢ 0 ∶ nat Γ ⊢ S ∶ nat→ nat

Γ ⊢M ∶ nat Γ ⊢ F ∶ P 0 Γ ⊢ G ∶ Πn ∶nat. P n→ P (S n)
Γ ⊢ Rec(F,G,M) ∶ P M

Γ ⊢ Rec(F,G,0) = F

Γ ⊢M ∶ nat
Γ ⊢ Rec(F,G,S(M)) = GM (Rec(F,G,M))

Γ ⊢ F = F ′ Γ ⊢ G = G′ Γ ⊢M = M ′

Γ ⊢ Rec(F,G,M) = Rec(F ′,G′,M ′)

The lack of constraint over P means that this rule supports strong elimination. The
latter principle allows to define addition, multiplication, and the discrimination predi-
cate between zero and successors. This is exactly how Peano arithmetic is expressed in
Coq.

Usage of axioms Besides what has already been mentioned earlier, this model obvi-
ously requires the existence of an infinite set. Unfortunately it also uses the relational
replacement in order to express the recursor. We conjecture that functional replacement
is not strong enough. See section 4.2.1 for a more detailed discussion about this topic.

5.4 Extended Calculus of Constructions

LIBRARY: MODELECC

2Formally, the model is based on an alternative representation of the natural numbers, closer to the sys-
tematic encoding of inductive objects, see sectionsec:typebasednat. This representation enjoys the same
properties. For the sake of presentation, we do as if we used the natural numbers of section 2.3.3

ModelNat.html#Nat
ModelNat.html#Zero
ModelNat.html#Succ
ModelNat.html#NatRec
ModelECC.html

5.4. EXTENDED CALCULUS OF CONSTRUCTIONS 77

The most striking feature is its infinite hierarchy of predicative universes. In a
nutshell, it introduces, following the original notations, symbols Typen for all natural
number n, such that

⊢ Prop ∶ Type0 ⊢ Typen ∶ Typen+1

It also features a form of subtyping called cumulativity asserting that types of a member
of the hierarchy are also types of the elements higher in the hierarchy

Prop ⪯ Type0 Typen ⪯ Typen+1
B ⪯ B′

Πx∈A.B ⪯ Πx∈A.B′

which also expresses the covariance of products.
Note however that ECC also features strong sums (a.k.a. Σ-types), that do not

make it in the current presentation. We just convey that Σ-types are superseded by the
inductive definitions we will introduce later.

5.4.1 Abstract model of ECC
LIBRARY: MODELS

Definition 5.13 (ECC_Model) An abstract model of ECC is an abstract model of the
Calculus of Constructions (CC_Model, def 5.1) with one extra symbol U of type N→ X
with the following properties:

Hier-0
props ∈ U(0)

Hier-S
U(n) ∈ U(n + 1)

Cumul-0
T ∈ props
T ∈ U(0)

Cumul-S
T ∈ U(n)

T ∈ U(n + 1)

A ∈ U(n) ∀x ∈ A.B(x) ∈ U(n)
Πx∈A.B ∈ U(n)

All of the previous model construction can be reused without modification. This
means that we still have sort Kind, which contains all the predicative hierarchy. We
will thus have for free an interpretation of EEC extended with one super universe.

The only new symbols are Type(n), indexed by meta-level natural numbers, that
are obtained by lifting the Grothendieck universes:

Val(Type(n))ρ ≜ cst(U(n)).

We then introduce a subtyping judgment to represent the cumulativity relation.

Definition 5.14 (Subtyping judgment) The subtyping judgment corresponds to the
inclusion of the semantics:

Γ ⊢ T ≤ T ′ ≜ (∀ρ ∈ Γ.Val(T)ρ ⊆ Val(T ′)ρ)

Lemma 5.9 The subtyping judgment of any CC_Model (with the eta rule) validates
the rules of figure 5.3. The subsumption rule generalizes the conversion rule. The
ECC-specific subtyping rules, reflecting cumulativity, also hold:

Γ ⊢ Prop ≤ Type(0)
C-Prop

Γ ⊢ Type(n) ≤ Type(n + 1)
C-Type

Models.html
Models.html#ECC_Model
GenModel.html#MakeModel.J.sub_typ
ModelCIC.html#cumul_Prop
ModelCIC.html#cumul_Type

78 CHAPTER 5. CC WITH UNIVERSES AND NATURAL NUMBERS

Γ ⊢ T = T ′

Γ ⊢ T ≤ T ′
Refl

Γ ⊢ T ≤ T ′ Γ ⊢ T ′ ≤ T ′′

Γ ⊢ T ≤ T ′′
Trans

Γ ⊢ A = A′ Γ; (x ∶A) ⊢ B ≤ B′

Γ ⊢ Πx ∶A.B ≤ Πx ∶A′.B′ CoVar

Γ ⊢M ∶ T Γ ⊢ T ≤ T ′ T /= Kind
Γ ⊢M ∶ T ′

SubSum

Figure 5.3: General subtyping rules

Proof The covariance rule (CoVar) uses the η rule of the abstract model.

Lemma 5.10 Any abstract EEC model produces a model of ECC. All the inference
rules of CC are admissible. The ECC specific rule are also admissible:

Γ ⊢ Prop ∶ Type(0)
Prop’

Γ ⊢ Type(n) ∶ Type(n + 1)
Type

Γ ⊢ T ∶ Type(n) Γ;x ∶T ⊢ U ∶ Type(n)
Γ ⊢ Πx ∶T.U ∶ Type(n)

Π − Pr

As already mentioned, we have not modelled explicitely strong sums, but it is obvi-
ous that they can be modelled within a Grothendieck universe, see section 2.3.2. Note
that ECC’s Σ-type do not enjoy the surjective pairing property ∀(p ∶ Σx ∶ A.B). p =
pair(π1(p), π2(p)) does not hold, because of the lack of dependent elimination.

5.4.2 Instance of the abstract model of ECC
LIBRARY: ZFECC

We have chosen to model the universes of ECC as Grothendieck universes, which
are the intuitionistic counterparts of inaccessible cardinals. It is known that it is not
necessary to resort to such powerful axioms, since Luo’s proof of strong normalization
proof of ECC [35], based on quasi-normalization, is expressed within ZF.

However, we do not look for a minimal model. Rather, we would rather have a
model that supports more principles. In particular, if we want the extendability property
that any set of IZF can be injected in ECC, ECC universes need to be Grothendieck
universes.

The use of Grothendieck universe is also enforces a non-interference property be-
tween universes and the type constructors of each universe. Universe enjoy the nice
containment property: a universe will contain any construction made within IZF (e.g.
the construction of inductive types without taking care of universes), as soon as its
parameters are elements of this same universe. This will naturally interpret the pred-
icativity requirements.

The Type hierarchy is an infinite sequence (Ui)i∈N of embedded Grothendieck
universes (Ui ∈ Ui+1). This can be proved in Traski-Grothendieck (TG) set-theory, the
logic of Mizar. TG is regular set theory extended with the property that for any set,
there exists a Grothendieck universe that contains it.

Theorem 10 There exists an instance of the abstract model of ECC in Tarski-Grothendieck
set theory.

GenModel.html#MakeModel.R.sub_refl
GenModel.html#MakeModel.R.sub_trans
ModelCIC.html#sub_typ_covariant
GenModel.html#MakeModel.R.typ_subsumption
ModelCIC.html#typ_Prop
ModelCIC.html#typ_Type
ModelCIC.html#typ_prod2
ZFecc.html

Chapter 6

Strong Normalization Models

The goal is to prove that any typed term is strongly normalizing (SN for short). This
cannot be done in the previous setting: denotations are “values”. Two well-formed
β-convertible expressions have the same denotation, but it might be the case that one
is in normal form and the form is not a strongly normalizing term.

This can be fixed by attaching information about “how” the value has been con-
structed and maintain an invariant that the syntactic construction is strongly normal-
izing. This syntactic construction will be a pure λ-term. Since the application of a
strongly normalizing term to another strongly normalizing term may produce infinite
reductions, we need a stronger invariant, that will depend on the type of the expres-
sion. In other words, this consists in building a realizability model, and the set of terms
associated to a type are called realizers.

This is at the basis of strong normalization proofs. There exists various methods
to prove strong normalization. See Gallier [24] for an historical account of strong
normalization proofs for Girard’s system F. Some involve sets of typed terms (as in
Girard’s original work [27]). Later on, Tait [54] and Mitchell have simplified the proof
with untyped terms (the realizers of a type need not be well-typed terms of that type).
The proofs presented in this chapter follow this idea.

The main structure involved is about finding the right closure conditions on these
set of terms (realizers) such that all inhabitants of a given type are included in such a
set, but still contain only strongly normalizing terms. Roughly there exists two main
traditions: the original notion of reducibility candidates due to Girard [27]), and its
generalization: saturated sets, defined by Tait.

This chapter is organized as follows. First section will define and prove the main
properties of Girard’s reducibility candidates. Then, an abstract strong normalization
theorem will be proven in section 6.2. This theorem assumes the existence of an ab-
stract strong normalization model for the Calculus of Constructions. This is inspired
from [41]. Section 6.3 shows that such abstract model admits an instance. The rest of
the chapter will generalize this theorem to extensions of the Calculus of Constructions.
The case of the natural numbers will be considered 6.5

6.1 Girard’s reducibility candidates and saturated sets
LIBRARIES: LAMBDA, CAN

This section recalls usual definitions and facts about reducibility candidates. There

79

Lambda.html
Can.html

80 CHAPTER 6. STRONG NORMALIZATION MODELS

is a number of good references that can provide more detailed presentation of the no-
tions introduced here. Among the most authoritative, let us mention [28].

Definition 6.1 (λ-terms) The set of pure λ-terms (using de Bruijn indices) is defined
as

Λ ≜ n ∣M N ∣ λx.M

where M and N belong to Λ and n ∈ N.

The usual notions of relocation, substitution and β-reduction are defined.
Using the encoding of section 3.6.1, λ-terms and sets of λ-terms can be encoded in

sets. A general function decoding sets to λ-terms cannot be written (short of providing
additional information that the set does encode a λ-set). Fortunately, we will not need
it.

We note SN the set of strongly normalizing terms, those terms that cannot be re-
duced ad infinitum.

Definition 6.2 (Reducibility candidates) Girard’s reducibility candidates are sets of
λ-terms X such that:

(CR1) : X ⊆ SN

(CR2) : M ∈X ∧M →β M ′ ⇒M ′ ∈X

(CR3) : for all neutral termM (variable or application), we have (∀M ′.M →M ′ ⇒
M ′ ∈X)⇒M ∈X

Lemma 6.1 (SN is CR) The set of strongly normalizing terms SN is the largest re-
ducibility candidate.

Lemma 6.2 Girard’s reducibility candidates satisfy the following saturated set prop-
erties:

• (1) The set of “neutral terms” (strongly normalizing terms reducing to a variable
possibly applied) is a reducibility candidate

• (2) Any reducibility candidates X is closed by head expansion:

M[x/N] ∈X ⇒ (λx.M) N ∈X

whenever N is SN or x occurs free in M .

Non-dependent function types

Definition 6.3 (Product of CR) The product of two reducibility candidates X and Y
is defined as

X → Y ≜ {t ∣ ∀u ∈X. t u ∈ Y }

Lemma 6.3 If X and Y are reducibility candidates, then so is X → Y .

In fact the requirements on X are much weaker. We only need the following:

• X /= ∅

• X ⊆ SN

Lambda.html#term
Can.html#is_cand
Can.html#cand_sn
Can.html#neutral_is_cand
Can.html#cand_sat
Can.html#Arr

6.1. GIRARD’S REDUCIBILITY CANDIDATES AND SATURATED SETS 81

• t ∈X ∧ t→ t′ ⇒ t′ ∈X

which we call a “weak reducibility candidate”.
In particular for any strongly normalizing term u, we write {u} for the set of reducts

of u. This is a weak reducibility candidate.

Lemma 6.4 The introduction rule for the non-dependent product is

(∀u ∈X. t[x/u] ∈ Y)⇒ λx. t ∈X → Y

Proof From the definition of X → Y , we need to check that for any u ∈ X , we have
(λx.t) u ∈ Y . We conclude thanks to the head expansion property (lemma 6.2(2)).

Using weak reducibility candidates, we can prove the following property of re-
ducibility candidates:

Lemma 6.5 (Head of application) The closure properties of reducibility candidates
scale to head of applications:

(∀X ∈ SAT. t ∈X ⇒ t′ ∈X)⇒ (∀X ∈ SAT. t u ∈X ⇒ t′ u ∈X)

Proof Assume t u ∈X . Using the introduction rule above, t u′ ∈X for all u′ reduct of
u. So, t ∈ {u} → X . By the first assumption, t′ ∈ {u} → X . By u ∈ {u}, we conclude
t′ u ∈X .

The main application of this lemma is to prove closure of head expansion for arbi-
trary function arities:

Lemma 6.6 Given u a strongly normalizing term,

t[x/u] u′ ∈X ⇒ (λx. t) u u′
t[x/u] u′ u′′ ∈X ⇒ (λx. t) u u′ u′′

Proof The first statement is proved by combining the previous lemma with the head
expansion lemma 6.2(2). The second one is proved by applying the previous lemma
once more.

Intersection

Definition 6.4 (Intersection of CR) The intersection of a family (F (i))i∈I of reducibil-
ity candidates is defined as

⋂
i∈I
F (i) ≜ {t ∣ t ∈ SN ∧ ∀i ∈ I, t ∈ F (i)}

The condition t ∈ SN is to ensure that we produce a reducibility candidate even when
I is empty (⋂

∅
F == SN).

Lemma 6.7 The intersection of an family of reducibility candidates is a reducibility
candidate.

Lemma 6.8 The introduction rule for the intersection of a family of reducibility can-
didates is the following:

t ∈ SN ∧ (∀i ∈ I. t ∈ F (i))⇒ t ∈⋂
i∈I
F (i)

Can.html#cand_context
Can.html#Inter

82 CHAPTER 6. STRONG NORMALIZATION MODELS

As a corollary, the hypothesis t ∈ SN of the above lemma can be replaced by the non-
emptiness of I (∃i ∈ I): if i ∈ I , we have t ∈ F (i), which is a saturated set, thus t is
strongly normalizing.

Lemma 6.9 The elimination rule for the intersection of reducibility candidates is the
following:

t ∈⋂
i∈I
F (i)⇒ ∀i ∈ I. t ∈ F (i)

Saturated sets

LIBRARY: SAT

All these properties have been expressed on reducibility candidates. To avoid rely-
ing on specific properties of CR, we have encapsulated all these definitions and prop-
erties within a module which interface only exposes properties of saturated sets.

6.2 Abstract Strong Normalization of CC

LIBRARY: GENMODELSN

A strong normalization model is simply a model construction where, beside the
value interpretation, types should provide a “reducibility” (or term-) denotation.

We give a schematic proof of strong normalization. Let us consider the simply-
typed λ-calculus. The gist of the proof is to associate a saturated set to each type. A
functionR is defined by

R(α) ≜ SN (for α atomic type)
R(τ1 → τ2) ≜ R(τ1)→R(τ2)

The main property is to prove that t ∈ R(τ) whenever t has type τ , which will
imply strong normalization since R(τ) ⊆ SN. The case of λ-abstraction is special
because its sub-term has more free variables. Lemma 6.4 shows that we need to take
care of all possible substitutions of bound variables by realizers of the domain type.
Thus the invariant is

∀σ ∈ [Γ].Γ ⊢ t ∶ τ ⇒ t[σ] ∈R(τ),

where σ ∈ [Γ] means that σ(x) ∈ R(τ ′) for all (x ∶ τ ′) ∈ Γ. This is proven by
induction on the derivation. Strong normalization of t will follow, with the condition
that [Γ] should not be empty. We can remark that the statement is quite similar to the
soundness property of the previous chapter. This supports the suggestion that the strong
normalization proof is just a model construction with specific additional requirements,
like associating a saturated set to each type (R).

Dealing with more complex type-theories requires to generalize the above scheme.
Firstly, in higher-order theories with dependent types, objects and types are mutually
dependent notions, so R is hard to express directly on the syntax of types: a type
expression may contain redexes, but the denotation of types is easy to express only
on types in normal form. It is convenient to have at hand a model (in the style of the
previous chapter), such that convertible types have the same denotation. R will be

Sat.html
GenModelSN.html

6.2. ABSTRACT STRONG NORMALIZATION OF CC 83

easier to define on the denotation of the type. This will also help prove the soundness
of the so-called conversion rule, which schematically looks like

Γ ⊢ t ∶ T Γ ⊢ T = T ′

Γ ⊢ t ∶ T ′
.

We need to know that Γ ⊢ T = T ′ impliesR(T) =R(T ′).
A second generalization is that we do not need to use the same syntax for terms in

source formalism and realizers. Instead of performing a substitution, which assumes
that the input and output share the same syntax, we view t[σ] as a kind of compilation
of t given the semantics of its free variables. The compilation (or “term interpretation”)
will rather be written Tm(t)σ . The requirement is that any reduction step in the source
term, must be simulated by at least one step of the compiled term. This generalization
is essential for our method which should allow to reuse the language of realizers for a
various range of theories with different source syntax.

Both model constructions can be carried out at the same time, by proving a sound-
ness property for a judgment ⊢M ∶ T

Val(M) ∈ El(T) ∧ Tm(M) ∈R(T).

To deal with free variables, we now need to provide two valuations: one (ρ) to associate
a (set-)denotations to each variable, and another one (σ), to associate a realizer to each
variable. The invariant can be made more precise:

Val(M)ρ ∈ El(T)ρ ∧ Tm(M)σ ∈R(T)ρ.

The first member of the conjunction is as before, and results of the previous chapter
can be reused, but is is also required that the term interpretation belongs to the set of
realizers of its type.

Definitional equality of types is the equality of their set-denotations (which charac-
terizes both their set of values and their realizers), regardless of their term-denotation:

⊢M =M ′ ≜ Val(M) == Val(M ′)

This choice allows extensional principles. Consider that addition on natural num-
bers may accept various non-convertible realizers plus and plus’ (for instance by
recursion on either the first or the second argument), but they will realize the same
extensional function. Propositions

P (plus) and P (plus’)

will thus be identified: both additions are Leibniz-equal.
An alternative definition (where ≡β is β-convertibility)

⊢M =M ′ ≜ Val(M) == Val(M ′) ∧ Tm(M) ≡β Tm(M ′)

would have given a strongly intensional flavor.

6.2.1 An abstract strong normalization model
The definitions of this section will make formal the claim that a strong normalization
model is just a refinement of the consistency model. As we have seen in the introduc-
tion of this section, there are two additional requirements:

84 CHAPTER 6. STRONG NORMALIZATION MODELS

• Objects of the model representing types are not only sets of values (x ∈ A, written
from now on x ∈ El(A)), but also a saturated set. Sorts can be interpreted by
any saturated sets (since types do not interact with their surrounding context),
and the reducibility-interpretation of products is a generalization of the product
of saturated sets that accommodates dependent types (see below).

• All types shall be inhabited, to ensure that the denotation of contexts (the [Γ]
above) is not empty. It is enough to assume that falsity of each non-topsort is
inhabited. Since the syntax of well-formed types in topsorts is very limited, we
will be able to produce an interpretation that makes all kinds inhabited.

Definition 6.5 (Abstract SN model) The abstract strong normalization model is an
implementation of the signature of definition 5.1, extended with the following additional
properties:

R ∶ X → SAT

R(props) = SN

R(Πx∈A.B) = R(A) → ⋂
x∈El(A)

R(B(x))

daimon ∶ X
daimon ∈ El(ΠP ∈props. P)

It introduces the realizability information associated to each type. The only type
constructors of our language are the sorts and the dependent products. R is required to
assign the set of strongly normalizing to sorts, since types are not a piece of data that
can be inspected in any way by the primitives of the language. Dependent products
shall be interpreted thanks to the intersection and non-dependent product of saturated
sets. Realizers of Πx ∶A.B should be functions t such that the λ-term (t v) belong
to all saturated sets associated to B(x) when x is in A, instead of requiring to belong
only to the instance of B corresponding to v. This suggests that this definition will
work only in cases where dependencies are “fake”: in Πx ∶ A.B, the co-domain B
cannot produce instances B(x) and B(x′) that can be discriminated. We will see later
on that this will not be the case for the Calculus of Inductive Constructions, which
includes strong eliminations.

The last property is to ensure that any type is inhabited. Otherwise, strong normal-
ization is not guaranteed in arbitrary contexts (and thus not under binders).

The symbol R simply suggests that the reducibility information depends on the
type considered. It might either be “external” to the model: the type is simply a code,
andR is a decoding function.1 Or it can be “internal”: the information is stored within
the type andR is simply an accessor function.

Membership (the set of values) and R (the set of realizers) are for the most part
independent parameters. We can imagine situations where two types may have (set-
)values in common, but that we do not make the same assumptions about how we can
compute with them. Consider for instance the natural numbers, often seen as a subset
of real numbers. We probably want to represent and compute with 0 in different ways
whether it is viewed as an natural number or as a real number. This the realizations of
0 as a natural number do not to be the same as its realization as a real number.

1This option is generally the one that is chosen to have “smaller” models, which avoid the use of inac-
cessible cardinals or equivalent.

GenModelSN.html#SN_addon

6.2. ABSTRACT STRONG NORMALIZATION OF CC 85

6.2.2 Model construction
LIBRARY: OBJECTSN

The first steps of the model construction do not depend on the specific requirements
of a strong normalization model, but can be carried out upon any abstract model of CC
(def. 5.1). This is to improve the reusability of these definitions when we will change
the requirements (section 6.4).

Pseudo-terms As discussed above, terms have two denotations: the usual set-denotation
and the term-denotation. In usual proof schemes, this term-denotation would be defined
by recursion over the syntax. But this is not possible in the shallow embedding frame-
work. Instead, the semantic domain of pseudo-terms will define both denotations at the
same time.2

For closed terms, this realizer part is a pure λ-term. To deal with open terms, we
consider functions from parallel substitutions (a function N → Λ) to pure λ-terms.
But any function of that type will not be admitted. The constraint is that the parallel
substitution should be used in a parametric way.

Definition 6.6 (Subsitutivity) A function f from parallel substitutions to terms is sub-
stitutive iff

substitutive(f) ≜ ∀σ xN. f(i↦ σ(i)[x/N]) = (fσ)[x/N]

As we use de Bruijn indices, we also require the same property for relocations:

∀σ nk. f(i↦↑nk σ(i)) =↑nk (fσ)

The new definition of “terms” is now the following:

Definition 6.7 (Pseudo-terms) Expressions are the couple of a set-interpretation and
a term-interpretation satisfying substitutivity requirements:

Term ≜ {Kind} + ((N→ X)→ X) × {g ∶ (N→ Λ)→ Λ ∣ substitutive(g)}

The option type encodes top-sorts as before. Regular terms are of the form (f, g)
where f is the set-denotation and g, the term-denotation, produces realizers given real-
izations of the free variables.

The (pseudo-syntactic) equality on this type is the extensional equality of both in-
terpretation functions:

Definition 6.8 (Syntactic equality)

M ≡M ′ ≜ (∀ρ.Val(M)ρ == Val(M ′)ρ) ∧ (∀σ.Tm(M)σ = Tm(M ′)σ)

It is important to note that we do not constrain ρ and σ to be valid valuations. Both parts
of the conjunction play an important role. The comparison of the term part (Tm(_))
discriminates between extensionally equal but intensionally different expressions. The
set part may discriminate between to expressions with different meanings but that might
have the same encoding as λ-terms. This will be illustrated below.

2The differences between the organization of the code between deep and shallow embeddings is similar
to the ML-style and object-oriented programming languages: in the shallow embedding, the type defines
the specification of all the “methods”, and the code is grouped by instances, whereas the deep embedding
favors the declaration of a closed set of instances, and code is grouped around methods, defined by pattern-
matching.

ObjectSN.html
Lambda.html#substitutive
ObjectSN.html#MakeObject.trm
ObjectSN.html#MakeObject.eq_trm

86 CHAPTER 6. STRONG NORMALIZATION MODELS

Definition 6.9 The set-denotation is defined as in definition 5.4. It remains to describe
the realizer interpretation:

Tm(Kind)σ = K

Tm(Prop)σ = K

Tm(n)σ = σ(n)
Tm(M N)σ = Tm(M)σ Tm(N)σ

Tm(λx ∶A.M)σ = K (λx.Tm(M)⇑σ) Tm(A)σ
Tm(Πx ∶A.M)σ = K (λx.Tm(M)⇑σ) Tm(A)σ

where ⇑ σ stands for σ′ such that σ′(0) = 0 and σ′(n+1) =↑1 σ(n) and K is λx.λy. x.

We remark that λ-abstractions and products are realized by the same λ-terms, al-
though they do not have the same values.

The idea behind this definition is that Tm(_) performs a “compilation” from terms
of the Calculus of Constructions (λ-abstraction a la Church, and type constants: sorts
and products) towards pure λ-terms. This compilation has basically two requirements:

• The compilation of a well-typed CC term should be a strongly normalizing term

• The compilation should simulate the reduction of CC terms. Every reduction
step at the level of CC should correspond to a reduction of one or more steps in
the compilation. It is not allowed that a CC reduction produces no reduction in
the compiled term.

The second requirement explains why λx ∶T.M is compiled using a K-redex. It cannot
be compiled to λx.M because the strong normalization of the compiled term does not
imply the strong normalization of the CC term: T might diverge. On the other hand
it has to simulate correctly β-reduction so it should not get in the way: the CC-level
one-step β-reduction

(λx ∶A.M) N →M[x/N]

is simulated by the three-step reduction

K (λx.M) A N → (λy. (λx.M)) A N → (λx.M) N →M[x/N]

The fact that the K-redex might be reduced not necessarily just before reducing
a β-redex is not a problem, since it does not introduce non-normalizability. In other
words, the compiled term has more ways to be reduced than the original term, but it
does not harm.

The compilation of the product is the same as that of the λ-abstraction. If we
compiled product Πx ∶ A.B to (λx.B) A we might produce a diverging term: the
latter term reduces to B[x/A] and we have little chance to guarantee the termination
of further reductions since x has been substituted by A which is not supposed to be a
correct value for x.

As a last remark, the fact that the compilation of the product is an abstraction does
not create diverging interactions as above because in a well-typed CC term, a product
can never appear in head of application position.

6.2. ABSTRACT STRONG NORMALIZATION OF CC 87

Definition 6.10 (Relocation and substitution) As before, the effect of relocation and
substitution on the value part of the term denotation is the same as for the consistency
model. The

Tm(↑n M)σ = Tm(M)i↦σ(i+n)
Tm(M[0/N])σ = Tm(M)Tm(N)σ ∶∶σ

The substitutivity requirement (definition 6.6) is needed to prove the equivalence
between operations on term valuations and the realizers, such as:

Tm(T)v∶∶σ = Tm(T)⇑σ[x/v]

(x being the last variable), and the following consequence

Lemma 6.10
Tm(M[x/N])ρ = Tm(M)⇑ρ[x/Tm(N)ρ]

This is a crucial point to prove the correspondence between reductions at the level of
terms and those at the level of realizers, and finally transport strong normalization of
realizers towards the terms of our embedding.

The following lemma shows that substitution (and the same holds for relocation) is
implemented correctly:

Lemma 6.11

x[x/N] ≡ N

y[x/N] ≡ y (when x /= y)
(λy ∈A.M)[x/N] ≡ λy ∈A[x/N].M[x/N]
(M@M ′)[x/N] ≡ M[x/N]@M ′[x/N]

(Πy ∈A.B)[x/N] ≡ Πy ∈A[x/N].B[x/N]

(details of relocation and de Bruijn indices hidden).
No confusion should be made between the above results and the one mentioned

just before (lemma 6.10 which relies on the substitutivity requirement). The above
lemma states equalities between terms and show that substitution is properly encoded
in the shallow embedding. Lemma 6.10 is an equation on pure λ-terms and relate
substitutions at both levels (shallow embedding and realizers).

Another important consequence of substitutivity is a property about free variables.

Lemma 6.12 (Realizers of closed terms) Each free variable of the realizer of a pseudo-
term also occurs free in the valuation.

Proof Let us assume f is substitutive. We show that if none of the terms of σ contain
a variable x, then fσ cannot contain a free occurrence of x. So, applying substitution
[x/y] to σ has no effect. By substitutivity, we thus have (fσ)[x/y] = fσ, which means
that x is not free in fσ.

ObjectSN.html#MakeObject.lift_rec
ObjectSN.html#MakeObject.subst_rec
ObjectSN.html#MakeObject.tm_closed

88 CHAPTER 6. STRONG NORMALIZATION MODELS

Kinds In this paragraph, we explain how Kind is interpreted. This is quite technical,
and the details might be skipped in a first reading. In the consistency model, the deno-
tation of Kind was the full model X . This does not work here because X may contain
an empty type. The first idea is to interpret Kind as the class of non-empty types. But
this does not work because this is not preserved by product: assuming K(a) is a kind
(thus ∃w ∈ K(a)) for any a ∈ A, we would like to have ∃w ∈ Πx ∈A.K(x), but this
requires the axiom of choice.

One way to solve this is to modify the structure of types in such a way that they
carry a third piece of information (besides the set of values and the set of realizers)
which gives a default value belonging to that type.

We have implemented another idea. Kinds (and more generally, inhabitants of
topsorts, those sorts that have no type) are either a sort, or a product which co-domain
is a kind. The remark is that dependencies exist between arguments, but the final co-
domain is always a sort (Prop in the case of the calculus of constructions).

This is expressed by the following definition:

Definition 6.11 (Valid kinds) Kind is interpreted by the collection of uniformly non-
empty sets, that is terms of the form Π∆. U such that there exists a set that belong to
all possible denotations of U .

kind_ok(T) ≜ ∃ΓU x. T ≡ Π Γ. U ∧ ∀ρ. x ∈ Val(U)ρ

(where Π Γ. U is the iterated product).

This property holds for props and is preserved by product, so it will hold for any
well-typed kind:

Lemma 6.13 The kind validity predicate satisfies the following properties:

kind_ok(Prop)
kind_ok(U)

kind_ok(Πx ∶T.U)

Also, it is stable by relocation:

kind_ok(T) ⇐⇒ kind_ok(↑nk T)

Of course, the main property of this predicate is to guarantee that a kind never
denotes an empty set of values:

Lemma 6.14 (Kinds non empty) Given a term T and a valuation ρ, we have

kind_ok(T)⇒ ∃x.x ∈ Val(T)ρ

The inhabitation of kinds could be dealt with at the level of the abstract model
rather than during the model construction, as done here.

From now on, the definitions will refer to the specific requirements of the abstract
strong normalization model.

Contexts

Definition 6.12 (Closed judgment) Judgment M ∶ T holds in valuations (ρ, σ) if the
set denotation of M belongs to the set valuation of T and the term interpretation of M
is a realizer of T . For regular term T , the definition is

[M ∶ T]ρ,σ ≜M /= Kind ∧ Val(M)ρ ∈ Val(T)ρ ∧ Tm(M)σ ∈R(T)ρ

ObjectSN.html#MakeObject.kind_ok
ObjectSN.html#MakeObject.kind_ok_witness
GenModelSN.html#MakeModel.in_int

6.2. ABSTRACT STRONG NORMALIZATION OF CC 89

When T = Kind, the definition is

[M ∶ Kind]ρ,σ ≜M /= Kind ∧ kind_ok(M) ∧ Tm(M)σ ∈ SN

The denotation of Kind is the class of types satisfying kind_ok and its realizers are
the strongly normalizing terms.

This definition extends to contexts:

Definition 6.13 (Semantics of contexts) The term interpretation extends to environ-
ments: the denotation of contexts are pairs of a valuation and a parallel substitution
such that variables are correctly interpreted:

(ρ, σ) ∈ [Γ] ≜ ∀n. [n ∶↑n+1 Γ(n)]ρ,σ

Definition 6.14 (Valid context) A context Γ is said valid (notation ⊢ Γ) if it is not
empty:

⊢ Γ ≜ ∃(ρ, σ) ∈ [Γ]

Lemma 6.15 The context validity judgment admits the following inference rules:

⊢ []
Γ ⊢ T ∶ Prop
⊢ Γ; (x ∶T)

Γ ⊢ T ∶ Kind
⊢ Γ; (x ∶T)

Proof Any well-formed context admits an interpretation: the set part uses the fact that
all types are inhabited (types of Prop by a property of the abstract model, and types of
Kind by the above kind_ok predicate); the realizer part from the fact that saturated
sets are never empty.

Definition 6.15 (Typing and equality judgments) The judgments are defined as:

Γ ⊢M ∶ T ≜ ∀(ρ, σ) ∈ [Γ]. [M ∶ T]ρ,σ
Γ ⊢M = N ≜ ∀(ρ, σ) ∈ [Γ].Val(M)ρ == Val(N)ρ

Spurious quantifications over σ do not harm because saturated sets are never empty.
The first part of the typing judgment is the same as for the consistency model (but

for the extra σ). The equality judgments are also very similar to the previous model
construction.

Despite the fact that, formally, the equality judgment is very close to that of the
consistency model, the equality on types is indeed deeply affected. This is because
we have assumed that types contain more information: the realizability relation. Two
types may have the same values but assign different set of realizers to those values.
This suggests the general remark that in a realizability model, types are not just a set
of values, but they also contain a representation of these values. For types with no
computation rules, the stronger form of extensionality can be retained, by realizing any
value by SN, the set of strongly normalizing terms.

Soundness of typing The only non-trivial part is proving the soundness of the second
part of typing judgment.

The most complicated case is that of λ-abstraction. The main issue is that if the set-
denotation of the domain type were empty, our invariant would not propagate through
binders.

GenModelSN.html#MakeModel.val_ok
GenModelSN.html#MakeModel.wf
GenModelSN.html#MakeModel.typ
GenModelSN.html#MakeModel.eq_typ

90 CHAPTER 6. STRONG NORMALIZATION MODELS

Theorem 11 The judgments defined above admit the inference rules of figure 6.1, thus
forming an interpretation of the Calculus of Constructions.

Proof Consider the case of λ-abstraction. Let us assume we have

Γ ⊢ T ∶ s Γ; (x ∶T) ⊢M ∶ U U /= Kind.

Now assume we have (ρ, σ) ∈ [Γ]. The value part of the judgment is dispatched as for
the consistency proof. For the term part, we must show that

K (λx.Tm(M)⇑σ) Tm(T)σ ∈ R(T)ρ → ⋂
x∈El(T)ρ

R(U)x∶∶ρ

For this, we show:

• (a) Tm(T)σ is strongly normalizing (this sub-term disappears by head reduction,
cf saturated set properties), by Γ ⊢ T ∶ s;

• (b) El(T)ρ is not empty (introduction of intersection of reducibility candidates),
again by Γ ⊢ T ∶ s;

• (c) for all v ∈ El(T)ρ and u ∈ R(T)ρ we have Tm(M)u∶∶σ ∈ R(U)v∶∶ρ (again
basic property of saturated sets), by the premise on U and (v ∶∶ ρ, u ∶∶ σ) ∈
[Γ; (x ∶T)].

We recall that Tm(M)⇑σ[x/u] = Tm(M)u∶∶σ , so by (b) and (c) we have

Tm(M)⇑σ[x/u] ∈ ⋂
x inEl(T)ρ

R(U)x∶∶ρ;

using (a) and the closure by head expansion of saturated sets, we conclude.

The inference rules presented in the figure are still not as constrained as the actual
definition of CC, but yet they are not as loose as was the case with the consistency
model. The reason is that in the SN model, being of type Kindis not vacuously true
anymore: kinds, as types, have to specify a saturated set.

Let us focus now on the consequences of the existence of an instance of the abstract
SN model: the strong normalization theorem.

Following our intuition to postpone as much as possible the introduction of the
actual syntax, we propose to give an account of the missing syntactic notions, mainly
(one-step or more) reduction, at the level of the shallow embedding.

Pseudo-reduction So far, we have proven that the realizers of any well-typed term
are strongly normalizing. It remains to prove that the realizers can simulate any reduc-
tion step performed in the original term.

The difficulty here is that pseudo-terms are not a piece of syntax. Reduction of
expressions is expressed in terms of the reduction of all its realizers:

Definition 6.16 The pseudo-reduction (one step or more) is defined as

M →+ M ′ ≜ ∀σ. Tm(M)σ →+ Tm(M ′)σ
This pseudo-reduction satisfies all of the rules of the syntactic reduction. It may

satisfy more (e.g. by the fact that λ-abstractions and products are encoded in the same
way), but it does not harm.

Lemma 6.16 Reduction is simulated correctly, see figure 6.2.

As a consequence, we can prove that if Tm(M)σ is strongly normalizing, then there
is no infinite sequence of →+ reductions from M .

ObjectSN.html#MakeObject.red_term

6.2. ABSTRACT STRONG NORMALIZATION OF CC 91

⊢ []
(Wf-[])

⊢ Γ Γ ⊢ T ∶ s s ∈ {Prop,Kind}
⊢ Γ; x ∶T (Wf-Var)

Γ(n) = T
Γ ⊢ n ∶ ↑n+1 T

(V ar)
Γ ⊢ Prop ∶ Kind (Prop)

Γ ⊢M ∶ Πx ∶A.B Γ ⊢ N ∶ A A,B /= Kind
Γ ⊢M N ∶ B[x/N]

(App)

Γ ⊢ T ∶ s Γ; (x ∶T) ⊢M ∶ U s ∈ {Prop,Kind} U /= Kind
Γ ⊢ λx ∶T.M ∶ Πx ∶T.U

(Lam)

Γ ⊢ T ∶ s1 Γ; (x ∶T) ⊢ U ∶ s2 s1, s2 ∈ {Prop,Kind}
Γ ⊢ Πx ∶T.U ∶ s2

(Prod)

Γ ⊢M ∶ T Γ ⊢ T = T ′ T,T ′ /= Kind
Γ ⊢M ∶ T ′

(Conv)

Γ ⊢M = M
(Refl) Γ ⊢M = M ′

Γ ⊢M ′ = M
(Sym)

Γ ⊢M = M ′ Γ ⊢M ′ = M ′′

Γ ⊢M = M ′′ (Trans)

Γ ⊢ N ∶ A T /= Kind
Γ ⊢ (λx ∶A.M) N = M[x/N]

(Beta)

Γ ⊢M = M ′ Γ ⊢ N = N ′

Γ ⊢M N = M ′ N ′ (EqApp)

Γ ⊢ A = A′ Γ; (x ∶A) ⊢M = M ′ A /= Kind
Γ ⊢ λx ∶A.M = λx ∶A′.M ′ (EqLam)

Γ ⊢ A = A′ Γ; (x ∶A) ⊢M = M ′ A /= Kind
Γ ⊢ Πx ∶A.M = Πx ∶A′.M ′ (EqProd)

Figure 6.1: Calculus of Constructions inference rules (SN model)

GenModelSN.html#MakeModel.TypingRules

92 CHAPTER 6. STRONG NORMALIZATION MODELS

(λx ∶A.M) N →+ M[x/N]
(RBeta)

M →+ M ′ M ′ →+ M ′′

M →+ M ′′ (RTrans)

M →+ M ′

M N →+ M ′ N
(RAppL) N →+ N ′

M N →+ M N ′ (RAppR)

M →+ M ′

λx ∶M.N →+ λx ∶M ′.N
(RLamL) N →+ N ′

λx ∶M.N →+ λx ∶M.N ′ (RLamR)

M →+ M ′

Πx ∶M.N →+ Πx ∶M ′.N
(RPrdL) N →+ N ′

Πx ∶M.N →+ Πx ∶M.N ′ (RPrdR)

Figure 6.2: Untyped reduction

Abstract strong normalization In this paragraph, we show that any well-typed term
in a well-formed context cannot reduce ad infinitum, according to→+.

Lemma 6.17 (Abstract strong normalization) If Γ is well-formed and Γ ⊢ M ∶ T
holds, then M is strongly normalizing (according to→+).

Proof Since Γ is well-formed there exists ρ and σ, such that (ρ, σ) ∈ [Γ]. The typing
judgment yields Tm(M)σ ∈ R(T)ρ, and thus Tm(M)σ is strongly normalizing. We
conclude that there is no infinite→+-reduction.

6.3 Implementing the abstract model
LIBRARY: SN_CC

We have to modify the way we encode types to support the reducibility information.
Types are now a couple formed by a set of values and the encoding of a set of λ-terms
(see 3.6.1).

Thus, the ∈ field of the abstract model is instantiated by _ ∈ fst(_). TheR field is
simply the second projection, combined with the function decoding saturated sets. The
product is implemented as required by the abstract model.

All propositions have to be non-empty. So the set-interpretation of any proposition
is {∅}. But each proposition also carries a saturated set. This is the subtle point. As
sets of values, all propositions are equal, according to the proof-irrelevance principle.
However, they carry different reducibility information, to ensure that the reductions of
proof objects terminate. We illustrate below why this information have to be taken into
account for the equality of propositions.

The type of propositions (props) is interpreted by the set of all propositions ac-
cording to the previous paragraph indexed by the saturated set that characterizes each
proposition. The reducibility part, as required by the abstract model, is the set of
strongly normalizing terms.

Definition 6.17 (Type of propositions)

propsSN ≜ ({({∅}, S) ∣ S ∈ SAT}, SN)

ObjectSN.html#MakeObject.red_term_beta
ObjectSN.html#MakeObject.red_term_trans
ObjectSN.html#MakeObject.red_term_app_l
ObjectSN.html#MakeObject.red_term_app_r
ObjectSN.html#MakeObject.red_term_abs_l
ObjectSN.html#MakeObject.red_term_abs_r
ObjectSN.html#MakeObject.red_term_prod_l
ObjectSN.html#MakeObject.red_term_prod_r
GenModelSN.html#MakeModel.model_strong_normalization
SN_CC.html
SN_CC.html#CCSN.sn_props

6.3. IMPLEMENTING THE ABSTRACT MODEL 93

Lemma 6.18 (Instance of the abstract SN model) The structure

X ∶= set

x ∈ y ∶= x ∈ fst(y)
x == y ∶= x == y
R ∶= snd

props ∶= propsSN
@ ∶= cc_app

λx∈A.f ∶= cc_lam(fst(A), f)
Πx∈A.B ∶= (cc_prod(fst(A), x↦ fst(B(x))),

⋂
x∈fst(A)

snd(A)→ snd(B(x)))

daimon ∶= ∅

fulfills all the requirements of the abstract SN model of the Calculus of Constructions
(def. 5.1 and 6.5).

In comparison with the instance of the consistency model, all the differences result
from the new encoding of types. Thus, this affect membership, which looks up the
set of values of a type. Obviously, type constructors (props and dependent products)
carry more information, as required by the abstract SN model.

The definition of equality is not changed, but since the encoding of types has
changed, then equality on types has been affected (see below).

Strong normalization theorem The last step is to introduce the real syntax. Ac-
tual syntax maps to semantic terms straightforwardly. The same holds for reduction
and judgments. So, the strong normalization of a term results from the fact that it’s
corresponding pseudo-term has no infinite →+-reduction. The strong normalization
theorem, on the syntax this time, is obtained by applying the abstract SN lemma.

Theorem 12 (Strong normalization of CC) CC is strongly normalizing.

This model has interesting properties, compared to the consistency model.

Consistency out of the SN model Although all types are inhabited it is possible to
derive consistency directly out of this model, using the realizability part.

Lemma 6.19 (Consistency) CC is consistent.

Proof Assume there were a closed proof of False ΠP ∈props. P . Any realizer of that
proof has to be closed (by substitutivity). By soundness, it belongs to the intersection
of all saturated sets (or reducibility candidates), which is the set of neutral terms. But
neutral terms cannot be closed.

Extendability The model construction can be extended with any non-empty set, in
the case where no computation rules (affecting definitional equality) is considered.
mkSET injects sets into types, and cst injects sets as values.

SN_CC.html#SN_CC_Model
SN_CC.html#strong_normalization
SN_CC_Real.html#consistency
SN_CC.html#mkSET
SN_CC.html#cst

94 CHAPTER 6. STRONG NORMALIZATION MODELS

Lemma 6.20 For any sets x and y, we have:

Val(cst(x))ρ ≜ x Tm(cst(x))σ ≜ K
Val(mkSET(x))ρ ≜ (x, SN) Tm(mkSET(x))σ ≜ K

∃w ∈ x
Γ ⊢ mkSET(x) ∶ Kind

x ∈ y
Γ ⊢ cst(x) ∶ mkSET(y)

x == y
Γ ⊢ cst(x) = cst(y)

x == y
Γ ⊢ mkSET(x) = mkSET(y)

As a matter of fact, the inference rules above are equivalences and can be read bottom-
up. This show that the embedding of sets is faithful.

Dealing with natural numbers This model can be extended with natural numbers,
with restriction that strong elimination (the possibility to define a type by induction on
a natural number) is not supported. Weak eliminations are allowed thanks to proof-
irrelevance.

The problem lies in the realizability interpretation of products. Assume we have
a predicate T such that T (0) is type A and T (succ(k)) is type B. Realizers of
Πn∈N. T (n) are terms t such that both t 0 and t S(k) should belong to A ∩B which
excludes legal terms.

Propositional (or type) extensionality does not hold Since the interpretation of
types has been modified, we expect that this model does validate the same principles.
Indeed, since types now carry a set of λ-terms, we identify less types. Type exten-
sionality (the fact that two types with exactly the same inhabitants are equal) does not
hold anymore. This is not just accidental. Since propositions are types and our model
is proof-irrelevant, propositional extensionality would imply that equivalent proposi-
tions are equal. In particular, True = True → True. It is well-known that such
a definitional identification allows to type-check (λx.x x)(λx.x x) which does not
normalize.

Functional extensionality holds The interpretation of functions has not changed, so
we still have functional extensionality.

6.4 Strong elimination
LIBRARY: GENREALSN

To deal with natural numbers and strong elimination, we need to change our re-
ducibility invariant. Instead of having Πx∈A.B realized by terms t such that

∀x ∈ El(A).∀u ∈R(A). t u ∈ B(x),

we need to “synchronize” x and u so that t u actually belong to the co-domain that
corresponds to u. In other words, u must realize x, usually written u ⊩A x.

Inspired from Streicher’s D-sets and omega-sets (Hyland, Longo, Moggi), Al-
tenkirch [7] introduced Λ-sets as a tool to interpret theories with dependent types and
strong elimination. Each type is interpreted by a set of values, and a relation between
these values and λ-terms.

GenRealSN.html

6.4. STRONG ELIMINATION 95

R ∶ X → X → SAT

daimon ∶ X
R(Πx∈A.B, f) = ⋂

x∈El(A)
R(A,x) →R(B(x), f@x)

R(props, P) = SN

daimon ∈ ΠP ∈props. P

Figure 6.3: Abstract strong normalization model supporting strong eliminations

We have followed this general discipline but we did not feel the need to introduce a
specific structure (besides saturated sets) for the purpose of proving strong normaliza-
tion.

6.4.1 Realizability

In this section, we describe how to modify the notion of abstract strong normalization
model, in order to support strong elimination. The change is indeed simple. Instead of
assigning a saturatedR(T) set globally to a type T , each value x of this type will have
its own saturated setR(T,x).

For explanatory purposes, we may, for the moment, prefer to write {x}T forR(T,x)
to stress on the fact that we are indeed considering that saturated sets interpret singleton
types. With this notation, {x}A → {y}B is the saturated set of λ-terms from realizers
of x (of type A) to realizers of y (of type B). This is the set of realizers of an atomic
function x↦ y. Realizers of a function f with domain A is obtained by intersection: a
function that realizes f on domain A is such that it realizes at the same time all atomic
functions x ↦ f(x) for all x ∈ A. Thus, we get that the realizers of f ∈ Πx ∈A.B
should be

⋂
x∈A

{x}A → {f(x)}B(x).

We should stress on the fact that any value is realized by neutral terms. Some
values may have other realizers: those that are computable, while others may not. This
simplifies slightly the presentation of Λ-sets that officially still assigns one saturated set
to a type and then “split” this set according to the value each λ-term realizes. Neutral
terms are then added as realizers that are not directly related to any value. This might
look slightly artificial.

The rest of the abstract strong normalization model is left unchanged.

Definition 6.18 (Abstract SN model) The abstract strong normalization model is de-
fined as an extension of a model of CC (def. 5.1) with the symbols and hypothesis
displayed in figure 6.3.

Note that the realizability field is to be invoked only on (T,x) with x a value of
type T . The realizability relation is thus expressed as

t ⊩T x ≜ x ∈ T ∧ t ∈R(T,x).

GenRealSN.html#RealSN_addon

96 CHAPTER 6. STRONG NORMALIZATION MODELS

6.4.2 Model construction

Terms, relocation, substitution and kinds are defined as before, see the first paragraphs
of section 6.2.2.

The typing invariant, that represents judgments in a given valuation, must be adapted
to the new realizability scheme.

Definition 6.19 (Typing invariant)

[M ∶ T](ρ,σ) ≜ M /= Kind ∧ Tm(M)σ ⊩Val(T)ρ Val(M)ρ
(for kinds: [M ∶ Kind](ρ,σ) ≜ M /= Kind ∧ Tm(M)σ ∈ SN ∧ kind_ok(M)).

This shows clearly that Kind is the collection of types defined by kind_ok and that
the set of realizers if SN.

A new judgment, context validity, is used to control that contexts do not contain
types with an empty set of values.

Definition 6.20 (Valid context) A context Γ is said valid (notation ⊢ Γ) if it is not
empty:

⊢ Γ ≜ ∃(ρ, σ) ∈ [Γ]

Definition 6.21 (Typing and equality judgments) The judgments are defined as:

Γ ⊢M ∶ T ≜ ∀(ρ, σ) ∈ [Γ]. [M ∶ T]ρ,σ
Γ ⊢M = N ≜ ∀(ρ, σ) ∈ [Γ].Val(M)ρ == Val(N)ρ

The typing judgment is just an adaptation to the new invariant. The equality judgment
has not changed.

It remains to prove the soundness of the model.

Theorem 13 (Typing rules) The judgments above admit the inference rules of fig-
ure 6.1.

The abstract strong normalization lemma also holds.

Lemma 6.21 (Abstract strong normalization) If Γ is well-formed and Γ ⊢ M ∶ T
holds, then M is strongly normalizing (according to→+).

6.4.3 Instance of the abstract model

LIBRARY: SN_CC_REAL

The encoding of type is simple, given the signature of the new strong normalization
model: types are a couple formed of a set of values X and a function from X to sets of
λ-terms, representing the realization relation.

GenRealSN.html#MakeModel.in_int
GenRealSN.html#MakeModel.wf
GenRealSN.html#MakeModel.typ
GenRealSN.html#MakeModel.eq_typ
GenRealSN.html#RealSnTyping
GenRealSN.html#MakeModel.model_strong_normalization
SN_CC_Real.html

6.5. NATURAL NUMBERS 97

Lemma 6.22 (Instance of the abstract SN model) The following structure

X ∶= set

x ∈ y ∶= x ∈ fst(y)
x == y ∶= x == y
R(T,x) ∶= snd(T)@x
props ∶= ({({∅}, _↦ S) ∣ S ∈ SAT}, _↦ SN)

@ ∶= cc_app

λx∈A.f ∶= cc_lam(fst(A), f)
Πx∈A.B ∶= (cc_prod(fst(A), x↦ fst(B(x))),

f ↦ ⋂
x∈fst(A)

R(A,x) →R(B(x), f@x))

daimon ∶= ∅

is an instance of the abstract strong normalization model (def. 6.18).

In comparison with the previous instance of the abstract SN model, few fields have
changed, we just have to adapt the realizability part of types, which is specified by the
abstract model.

The same remarks and corollaries apply to this instance: consistency and strong
normalization of the Calculus of Constructions can be derived.

Theorem 14 (Strong normalization of CC) The Calculus of Constructions is strongly
normalizing.

The difference with theorem 12 is that this one can be extended with types enjoying
strong eliminations. Next section illustrates this by producing a strong normalization
model of CC extended with the natural numbers (CC+NAT).

6.5 Natural numbers

As before a lot of the material introduced for the consistency model can be reused, and
we mainly have to provide the term interpretation for all our new constructions and
assign a realizability relation to every type.

When dealing with inductive types, authors often change the pure λ-calculus and
extend it with new constants corresponding closely to the new constructions (construc-
tors, recursors, etc.)

We would rather avoid this situation since it would force us to duplicate a lot of
code. On the other hand, the pure λ-calculus is Turing-complete3 and quite natural to
use for functional programmers, so there is no fundamental reason to do such modifi-
cation of our realizer language.

Instead, we describe a translation of inductive constructions (here in the special
case of the natural numbers) into pure λ-calculus.

3Still, the λ-calculus is sequential, and cannot represent the addition such that both 0+n and n+0 reduce
to n.

SN_CC_Real.html#CCSN
SN_CC_Real.html#strong_normalization

98 CHAPTER 6. STRONG NORMALIZATION MODELS

6.5.1 Choosing the encoding of natural numbers
There is the well-know functional encoding, where natural number n is the higher-
order function (x, f) ↦ fn(x). This encoding is typable in system F (the so-called
impredicative encoding). Natural numbers are the expressions of type

∀X.X → (X →X)→X.

This would mean that would already have all the ingredients to describe the interpre-
tation of natural numbers (arrow types being interpreted by non-dependent product of
reducibility candidates, and polymorphism by the intersection).

Unfortunately, this encoding lack several features needed to interpret natural num-
bers as an inductive type (and thus have the possibility to derive all Peano axioms):

• The predecessor is defined by recursion, which means that the pattern-matching
operator, that should allow us to compute the predecessor of S(n) even when n
is an open term, does not behave correctly.

• This typing gives a recursor, but not the dependent elimination scheme:

∀P.P (0)→ (∀n ∶nat. P (n)→ P (S(n)))→ ∀n ∶nat. P (n)

This one mentions the type we want to define, so it cannot serve as a definition
for nat.

A more faithful representation of natural number n is

λx.λf. f (n − 1) (f (n − 2) . . . (f 0 x) . . .)

The zero and successor constructors are easily encoded:

λx.λf. x λn.λx.λf. f n (n x f)

and as with the impredicative encoding, the recursor on a natural number n is n itself,
this time with a reduction rule that corresponds to the dependent elimination:

Rec(n, g, h) ≜ n g h

gives the following reduction for the successor case:

Rec(S(k), g, h) = S(k) g h → h k (k g h) = h k (Rec(k, g, h))

What is nice with this new representation is the possibility to dissociate pattern-
matching and general recursion as the two (mostly) independent component of the
primitive recursor. A true pattern-matching operator can be derived from the primitive
recursor:

match n with 0⇒ g ∣ S(k)⇒ h end

is encoded as
n(g, λk.λ_.h k)

with the natural reduction rule:

match S(k) with 0⇒ g ∣ S(k)⇒ h end

6.5. NATURAL NUMBERS 99

reduces like this:
S(k, g, λk.λ_.h k)→
(λx.λf. f k (k x f)) g (λk.λ_.h k)→
(λk.λ_.h k) k (k g (λk.λ_.h k))→
h k

even for an open term k.
The general fixpoint is trickier since we need to produce strongly normalizable

terms, which precludes using fixpoint combinators like Y (f) = (λx.f (x x)) (λx.f (x x))
without modification. A solution using only the pure λ-calculus will be exposed in next
chapter.

6.5.2 Defining the realizability relation for the natural numbers
LIBRARY: SATNAT

In this section we develop a theory of natural numbers at the level of saturated
sets that will enjoy all the expected introduction and elimination rules, and simulate
correctly the reductions introduced in the previous section.

The idea is to define an operator that transform a saturated set into a new one where
the constructors of natural numbers have been applied. Because of strong elimination,
we indeed consider families of saturated sets indexed by the set semantics of natural
numbers.

The following definitions are rather independent of the actual representation of
natural numbers in set-theory. For the sake of linearity of the presentation, we refer
to the definitions of section 2.3.3, while formally we have based the following piece
of theory on an encoding described in section 7.1. This is for reusability reasons, see
section 7.3.

Definition 6.22 (Family of saturated sets) A family of saturated set is a function from
natural numbers (at the set level) to saturated sets.

FAM ≜ N→ SAT

This type will serve to express the realizability relation of nat, and all the inter-
mediate constructions.

Definition 6.23 (Saturated set operator) The family associated to natural numbers,
given a family representing smaller natural numbers, is

fNAT(A,k) ≜ ⋂
F ∈FAM

(F (0)→ (⋂
n∈N

A(n)→ F (n)→ F (n + 1))→ F (k)) .

This definition mimics the dependent elimination scheme of natural numbers we have
given above, but we break the circularity of the definition by replacing occurrence in
the right hand side by a family A, which characterizes the subterms of k.

Lemma 6.23 (Definition of fNAT) fNAT enjoys the following property, rephrasing
its definition:

t ∈ fNAT(A,k) ⇐⇒
t ∈ SN ∧ ∀F f g.
f ∈ F (0)∧
(∀n ∈ N.∀M ∈ A(n).∀y ∈ F (n). g m y ∈ F (S(n)))⇒
t f g ∈ F (k)

SATnat.html
SATnat.html#family
SATnat.html#fNAT
SATnat.html#fNAT_def

100 CHAPTER 6. STRONG NORMALIZATION MODELS

Lemma 6.24 (Monotonicity of fNAT) fNAT is a monotonic operator on families

The realizability relation of natural is defined as the fixpoint of fNAT.

Definition 6.24 (Realizability relation) The family associated to natural numbers is
the intersection of all post-fixpoints of fNAT:

cNAT(k) ≜ ⋂
F.fNAT(F)⊆F

F

Following the Knaster-Tarski fixpoint theorem, we can show that it is a post-fix of
fNAT, but also a pre-fix since it is the smallest post-fix.

Lemma 6.25 (Fixpoint equation) cNAT is a fixpoint of fNAT.

Definition 6.25 The realizers of the constructor 0 and successor are defined as:

Tm(Zero) ≜ λf.λg. f

Tm(Succ) ≜ λn.λf. λg. g n (n f g)

Lemma 6.26 (Reducibility of 0 and successor) The above definitions enjoy the fol-
lowing typing rules:

Tm(Zero) ∈ fNAT(A,0)
M ∈ A(n) M ∈ fNAT(A,n)
Tm(Succ) M ∈ fNAT(A,n + 1)

The set-denotation have been defined in the previous chapter. In the second property
we can see that M should belong to both A(n) (it is a realizer of n as a sub-term)
and fNAT(A,n) (it is a realizer of n with subterms in A). This is so because in the
definition of the successor above n is passed as argument to g and it is applied to f and
g.

These properties can be rephrased using the fixpoint of fNAT:

Lemma 6.27 (Reducibility of 0 and successor) The reducibility properties of zero
and constructor can be expressed relatively to the fixpoint cNAT:

Tm(ZERO) ∈ cNAT(0)
M ∈ cNAT(n)

Tm(SUCC) M ∈ cNAT(n + 1)

The elimination rule is trivial because (as for impredicative encoding), natural num-
bers have been directly represented by their eliminator:

Definition 6.26 (Recursor)

Tm(NatRec(f, g, n))σ ≜ Tm(n)σ Tm(f)σ Tm(g)σ

In order to show that our term-interpretation will entail the strong normalization of
the calculus, it remains to be shown that it simulates ι-reduction:

Lemma 6.28 (Simulation of reduction) The additional reduction rules of figure 6.4
hold.

Proof The contextual rules are straightforwardly derived from those for application
and λ-abstraction. The reduction of the recursor are easy.

SATnat.html#fNAT_mono
SATnat.html#cNAT
SATnat.html#cNAT_eq
SATnat.html#ZE
SATnat.html#SU
SATnat.html#fNAT_ZE
SATnat.html#fNAT_SU
SATnat.html#cNAT_ZE
SATnat.html#cNAT_SU
SN_NAT.html#NatRec

6.5. NATURAL NUMBERS 101

(R-Rec0)
NatRec(f, g,ZERO)→+ f

(R-RecS)
NatRec(f, g,SUCCM)→+ g M (NatRec(f, g,M))

f →+ f ′

NatRec(f, g,M)→+ NatRec(f ′, g,M)

g →+ g′

NatRec(f, g,M)→+ NatRec(f, g′,M)

M →+ M ′

NatRec(f, g,M)→+ NatRec(f, g,M ′)

Figure 6.4: Untyped ι-reduction

N
Γ ⊢ Nat ∶ Kind 0

Γ ⊢ Zero ∶ Nat

S
Γ ⊢ Succ ∶ Nat→ Nat

(Rec)
Γ ⊢ n ∶ Nat Γ ⊢ f ∶ P Zero Γ ⊢ g ∶ Πx ∶Nat. P x→ P (Succ x)

Γ ⊢ NatRec(f, g, n) ∶ P n

Γ ⊢ f = f ′ Γ ⊢ g = g′ Γ ⊢M = M ′

Γ ⊢ NatRec(f, g,M) = NatRec(f ′, g′,M ′)

Figure 6.5: Typing rules for natural numbers (SN proof)

SN_NAT.html#red_iota_simulated_0
SN_NAT.html#red_iota_simulated_0
SN_NAT.html#typ_N
SN_NAT.html#typ_0
SN_NAT.html#typ_S
SN_NAT.html#typ_Nrect

102 CHAPTER 6. STRONG NORMALIZATION MODELS

6.5.3 Model construction
LIBRARY: SN_NAT

Lemma 6.29 The judgments (def. 6.21) admit the inference rules of figure 6.5.

6.6 Related works
The history of strong normalization proofs in type theory is quite long. Besides the
seminal papers mentioned in the introduction of this chapter, we give several refer-
ences:

• Altenkirch [7] introduces Λ-sets as a variant of D-sets and ω-sets and proves the
strong normalization of the Calculus of Constructions.

• Werner [56] considers CIC with one universe and a half, that supports strong
elimination (the “half universe” exists just to express the strong elimination typ-
ing rule) of a computational (i.e. not subject to proof-irrelevance) impredicative
sort called Set. This is not obvious how to extend this to universes.

• Goguen [29] builds a set-theoretical model and a strong normalization proof for
UTT.

• Mellies and Werner [38] give an abstract strong normalization proofs for Pure
Type Systems.

SN_NAT.html

Chapter 7

Natural numbers and
type-based termination

The definition of a set by induction has been extensively studied in the literature. See
works of Aczel [5] or Pohlers [49] for an account in set theory. This has been adapted
to Martin-Löf’s type theory by Dybjer [19]. Inductive types have also been extensively
studied by Coquand and Paulin [39, 18, 47] in the case of impredicative type theories.
The next paragraph form a very brief introduction to the notion of inductive set or type.

The idea is to consider a collection of rules R. This collection need not always
be a set. Each rule is a pair formed of a collection of premises and a conclusion. A
collection X is said closed byR if for any rule ofR which premises are all in X , then
the conclusion of this rule is also inX . By the very definition, a collection closed under
R enjoys the introduction principle: whenever the premises of a rule belong to X ,
then so does the conclusion. Since this closure condition is preserved by intersection
and satisfied by at least one collection (the collection of all conclusions of the rules),
we may consider the least collection closed by the rules. This collection I is called
an inductive collection. Besides the introduction principle, I enjoys an elimination
principle: for any element of I , there exists a rule with that conclusion and such that
all the premises also belong to I . The minimality of I also implies, classically, that
any element of I is the root of a complete, well-founded derivation tree. As we have
seen in section 3.6.2, the situation is slightly more complex when the collection axiom
is not assumed.

An important concern is to determine under which conditions such collection I is
indeed a set. This generally requires the existence of a set that is closed under the rules.
Depending on the situation, it may not be easy to exhibit such a bound, in particular
when the rules may have an infinite collection of premises.

In his explanation of its theory of types, Martin-löf considered that it was not neces-
sary to refer to this set-theoretical motivation and that inductive types could be defined
directly by their introduction and elimination rules. Introductions rules are understood
as constructors of a type, and elimination rules correspond to structural recursion oper-
ator. A formation (typing) rule is also needed to express the existence of this inductive
type.

Following Martin-Löf’s (and others) quest for a constructive explanation of all
mathematical concepts, we may want to understand how such an inductive set (or
inductive type) can be constructed. One idea, suggested by the fixpoint theorem (its

103

104 CHAPTER 7. NATURAL NUMBERS AND TYPE-BASED TERMINATION

“from below” side), is that such a set can be obtained by, starting from the empty set,
applying the rules such that all of their premises have already been introduced, and
introduce the conclusion of this rule. This should be iterated until we reach a set closed
by the rules. This may require a transfinite number of steps.

These intermediate sets, that we call stages are often forgotten once the inductive
set has been found. However, the work on type-based termination (that we present in
this chapter) has shown that it might be valuable to consider them.

Inductive sets can also be viewed as the least fixpoint of a monotonic operator (or
a greatest fixpoint in the case of co-inductive sets). The inductive set generated by a
collection of rules (when it is a set) is also a fixpoint of the operator that applies all
possible rules on a set (by extending the set with the conclusion of the rules which
premises are included in the set). The natural numbers can be defined as the least
fixpoint of the operator F (X) = {0}∪{S(x) ∣ x ∈X} or, up to isomorphism, F (X) =
1 +X (where + stands for the disjoint sum).

Based on the analogy between proving and programming, Coquand has suggested
that the primitive recursor (in the style of Gödel’s system T, and which results from the
minimality property of the inductive set) could be split into two independent construc-
tions:

• A pattern-matching operator to access the arguments of the constructors. This
corresponds to the property that all the values of an inductive type are in con-
structor form (or correspond to the application of one rule ofR).

• A recursion operator, that allows recursive calls or provides induction hypothesis
for structurally smaller subterms. This is justified by the property that the values
of an inductive type are well-founded.

While the pattern-matching can be adapted from functional programming straight-
forwardly, recursive functions require more care: only recursive calls on structurally
smaller subterms are allowed, otherwise both strong normalization and consistency are
lost.

Originally, and still in the current implementation of Coq, this check takes the form
of a syntactic criterion that tracks down how the formal argument of the fixpoint is
destructed by pattern-matching, and requires that the fixpoint symbol is only applied to
pattern variables corresponding to strict subterms. In [25], Gimenez showed how the
original definition of this syntactic criterion can be encoded using the standard recursor.

But this condition has changed a lot since then, and it is not clear that this translation
still works. Worse, some extensions, guided by practical motivations, have broken the
strong normalization property, but hopefully did not break weak normalization and
consistency.

Type-based termination In [26], Gimenez has suggested another strategy for check-
ing the well-foundation of recursive definitions. The idea is to use subtyping. In a
nutshell, for each recursive definition on inductive type I , two subtypes I+ and I− are
introduced, with I− ⊆ I+ ⊆ I . Intuitively, I+ represents the subset of I of all the values
of size less than or equal to an unspecified reference size, and I− are those values of
size strictly smaller than the reference. The typing rule

F ∶ I− → A ⊢M ∶ I+ → A

⊢ Fix{F ∶=M} ∶ I → A

7.1. NATURAL NUMBERS WITH STAGES 105

ensures that we only accept well-founded fixpoints. This rule has to be combined with
the inference rule of pattern-matching such that recursive subterms of an expression of
type I+ have type I−.

From this basic idea, many refinements have been proposed. Among the most
detailed and mature proposal, we shall cite Abel’s work [2] and Grégoire and Sac-
chini [31]. It makes more precise this idea of annotating inductive types with a size.
This size denotes an ordinal. A particular size, written ∞, corresponds to an ordinal
beyond the closure ordinal of I (the transfinite number of iterations of the constructors
needed to reach the least fixpoint I).

In this chapter, we deal with a specific instance of inductive types: the natural num-
bers. The set theoretical material used to define the semantic denotations is relatively
straightforward (section 7.1). The rest of the chapter will be devoted to devising a set
of judgments and inference rules (section 7.2), and sketch how this can be extended to
prove strong normalization (section 7.3).

Next chapter will generalize the set theoretical constructions to support inductive
types in their full generality, including various extensions.

7.1 Natural numbers with stages
LIBRARY: ZFIND_NAT

This section describes a model of the natural numbers. It is special in (at least) two
aspects:

• It is encoded in a way that generalizes to inductive types: natural numbers are
viewed as a tree-like structure with 2 kinds of nodes: the first kind (zero) has
no children and no data, and the second one (successors) has arity one, and still
no data. This should pave the way for the generalization to all strictly positive
inductive types, described in next chapter.

• Pattern-matching and fixpoint are independent constructions, and the well-foun-
dation of recursive functions is ensured by the annotation of inductive types with
size. This is in contrast with the current implementation of Coq which uses a
syntactic criterion.

The justification behind type-based termination is that an inductive type is the fix-
point of a type operator, that can be obtained by transfinitely iterating this type operator
on the empty set. The intermediate sets of inductive objects obtained (the stages) are
not just intermediate constructions. With type-based termination, they are sub-types
with an interest on their own.

The theory of natural numbers begins with defining and establishing basic proper-
ties of the type operator (next section). Then, we consider the stages (section 7.1.2),
that correspond to iterating the type operator.

7.1.1 The type operator
Definition 7.1 (Type operator) The type operator generating the type of natural num-
bers is

Fnat(X) ≜ 1 +X

This is a monotonic operator.

ZFind_nat.html
ZFind_nat.html#NATf

106 CHAPTER 7. NATURAL NUMBERS AND TYPE-BASED TERMINATION

Definition 7.2 The constructors are zero and successor.

ZERO ≜ inl(∅) SUCC(n) ≜ inr(n)

Lemma 7.1 The zero and successor constructor are disjoint, and the successor is in-
jective:

ZERO == SUCC(n)⇒ � SUCC(m) == SUCC(n)⇒m == n

Lemma 7.2 (Typing zero and successor) The constructors admit the following typ-
ing rules

ZERO ∈ Fnat(X)
n ∈X

SUCC(n) ∈ Fnat(X)
that do not make any assumptions on the type of subterms.

Inductive principle of Fnat:

Lemma 7.3 (Case-analysis)

n ∈ Fnat(X)⇒ n == ZERO ∨ ∃k ∈X.n == SUCC(k)

7.1.2 Stages
The stages are the iterations of the type operator Fnat.

Definition 7.3 (Stages)
Nα ≜ Fαnat

This is a monotonic operator: α ≤ β ⇒ Nα ⊆ Nβ .
The typing rules of the previous section can be rephrased, now taking into account

the fact that subterms have the same structure as the root node. We recall a property of
the iteration of a monotonic operator: Nα+ == Fnat(Nα). Using this fact, the typing
rules of the constructor can be adapted:

Lemma 7.4 (Typing zero and successor with stages)

ZERO ∈ Nα+
n ∈ Nα

SUCC(n) ∈ Nα+

The case-analysis operator is defined using conditional sets:

Definition 7.4 (Case-analysis)

NATCASE(f, g, n) ≜ cond_set(n == ZERO, f)∪
cond_set(∃k,n == SUCC(k), g(snd(n)))

Note that this definition is mostly independent of the representation of zero and succes-
sor, the only requirement is to provide a function to access the subterms (the snd(n)
expression).

Lemma 7.5 (Case-analysis equations) Case-analysis is characterized by the follow-
ing equations:

NATCASE(f, g,ZERO) == f NATCASE(f, g,SUCC(n)) == g(n)

ZFind_nat.html#ZERO
ZFind_nat.html#SUCC
ZFind_nat.html#ZERO_typ_gen
ZFind_nat.html#SUCC_typ_gen
ZFind_nat.html#NATf_case
ZFind_nat.html#NATi
ZFind_nat.html#ZEROi_typ
ZFind_nat.html#SUCCi_typ
ZFind_nat.html#NATCASE
ZFind_nat.html#NATCASE_ZERO

7.1. NATURAL NUMBERS WITH STAGES 107

From this property, we can derive a pseudo-typing rule for the pattern-matching
operator:

Lemma 7.6 (Case-analysis inference rule)

f ∈ P (ZERO) (∀k ∈ Nα. g(k) ∈ P (SUCC(k))) n ∈ Nα+

NATCSE(f, g, n) ∈ P (n)

It is important to note how n in stage α+, is destructed and yields a sub-term k in stage
α. The size annotation reflects correctly the sub-term relation.

The recursor operator is the REC operator (def. 3.9). It is used to build recursive
function of domain Nα. This recursor if passed a function F ∶ set → set → set,
the “fixpoint” body. F (α, f) is intended to compute the recursive function on domain
Nα+ given α and the function f with domain Nα. Another parameter U , specifies the
co-domain of the fixpoint.

The properties of the recursion operator (see section 3.3.4) are instantiated to the
case where invariant if (α, f)↦ ∀x ∈ Nα.cc_app(f, x) ∈ U(α,x).

Lemma 7.7 (Structural fixpoint) Under the following conditions:

• U is monotonic: γ ⊆ β ⊆ α ∧ x ∈ Nγ ⇒ U(γ, x) ⊆ U(β,x)

• F is well-typed:
β ⊆ α f ∈ Πx∈Nβ . U(β,x)

F (β, f) ∈ Πx∈Nβ+ . U(β+, x)

• F is “stage-irrelevant”:

γ ⊆ β ⊆ α f ∈ Πx∈Nγ . U(γ, x)
f ⪯Nγ g g ∈ Πx∈Nβ . U(β,x)

F (γ, f) ⪯Nγ+ F (β, g)

The recursor REC(F) enjoys the following properties:

REC(F,α) ∈ Πx∈Nα. U(α,x)

x ∈ Nα

REC(F,α)@x == F (α,REC(F,α))@x

γ ⊆ β ⊆ α
REC(F, γ) ⪯Nγ REC(F,β)

The first member of the conclusion is the typing rule. The second one gives the fixpoint
equation of the recursor. The third property expresses the fact that the values returned
by the recursor does not depend on the ordinal α. The ordinal argument can only
influence the domain size of the recursor.

The monotonicity requirement on U rules out examples where the recursor may
expect two arguments of the same size. This could be useful to have the maximum
function of type

Nα → Nα → Nα.

ZFind_nat.html#NATCASE_typ
ZFind_nat.html#Nat_theory.IterationNat.Recursor.Umono
ZFind_nat.html#Nat_theory.IterationNat.Recursor.Ftyp
ZFind_nat.html#Nat_theory.IterationNat.Recursor.Firrel

108 CHAPTER 7. NATURAL NUMBERS AND TYPE-BASED TERMINATION

The monotonicity condition can be weakened into a continuity criterion, as done by
Abel [2]. This criterion allows the type above as arity of the recursor, but it rejects
arities like

Nα → (nat→ Nα)→ Nα.

The second argument contains an infinite number of natural numbers with size infor-
mation. Abel showed that accepting it would allow unsound recursive functions.

We draw the attention of the reader on the fact that so far, none of the typing rules
(including pattern-matching and the recursor) make reference to the existence of a so-
lution to the recursive equation on types.

7.1.3 Convergence
The convergence of inductive definitions in the general case will be addressed in next
chapter. Here, we acknowledge that the type operator is continuous (since the elements
of Fnat(X) depend on at most one element ofX), hence the closure ordinal for natural
numbers is ω.

Definition 7.5 (Natural numbers)

NAT ≜ Nω

Lemma 7.8 (Type fixpoint equation) Type NAT is a fixpoint of Fnat:

NAT == Fnat(NAT)

Lemma 7.9 (Inclusion of stages) Type NAT contain all the stages of Fnat:

Nα ⊆ NAT

The fixpoint equation can be rephrased as an equation on stages

Nω == Nω+ ,

which can be used to derive the usual type-checking rules of the constructors:

• ZERO has type Nα+ , so it has type NAT by inclusion of stages

• SUCC(n) for n ∶ NAT has type Nω+ , which is equal to NAT by the fixpoint
equation.

7.2 Model construction
LIBRARY: MODELCIC

As we have seen in lemma 7.7, the typing of fixpoints does not only involve type-
checking conditions. It also requires variance conditions: monotonicity and stage-
irrelevance (first and third condition of lemma 7.7). The former requires that the value
of the co-domain increases with its ordinal argument. The latter requires that the body
of the fixpoint is a stage-irrelevant function (i.e. the domain can depend on the stage
variable, but the result cannot), under the assumption that the function used to make
recursive calls is also stage-irrelevant.

This means that we need new judgments that observe how the denotation of an
expression depends on the valuation. But we also need to modify the structure of typing
environments in order to distinguish variables representing stages and stage-irrelevant
functions from the regular variables.

ZFind_nat.html#NAT
ZFind_nat.html#NAT_eq
ZFind_nat.html#NATi_NAT
ModelCIC.html

7.2. MODEL CONSTRUCTION 109

7.2.1 Pseudo-syntax: expressions and environments
The model of expressions of section 5.2 can be reused. It has to be extended with the
syntax related to natural numbers and stages. The latter are used to annotate the type
of natural numbers.

The syntax of stages includes:

• Stage variables to represent an unspecified reference size for each fixpoint. They
are represented by the same set of variables as ordinary variables (i.e. de Bruijn
indices). However, declarations of ordinal variables are distinguished from ordi-
nary declarations (see below).

• The stage corresponding to the closure ordinal of the inductive type (it is ω for
the natural numbers). This stage will be noted ∞.

• The successor (_+) corresponding to the next iteration of the constructors;

• Each stage can be turned into a type of earlier stages. Since stages denote ordi-
nals, this is again the successor.1

Definition 7.6 The syntax of stages introduces the following symbols:

Val(∞)ρ ≜ ω

Val(O+)ρ ≜ osucc(Val(O)ρ)

For the natural numbers, we find as usual notations for the type, zero and succes-
sor (the constructors), case-analysis and structural fixpoint. Besides zero and case-
analysis, they are all annotated with a stage expression, for distinct reasons:

• the type constructor (Nat), because the semantics depends fundamentally on the
size annotation;

• the case-analysis (Natcase) does not need the size information, which can be
inferred (without loss of generality) from the scrutinee;

• recursive constructors (SuccI) need to be annotated because the constructor is
not fully applied, which prevents from inferring in full generality its type; (the
successor is a stage-irrelevant function)

• the fixpoint is annotated, also because it can be partially applied.

Definition 7.7 The syntax of natural numbers introduces the following symbols for the
stages, zero, successor, case-analysis and fixpoint:

Val(Nat(O))ρ ≜ NVal(O)ρ

Val(Zero)ρ ≜ ZERO

Val(Succ(O))ρ ≜ λx∈NVal(O)ρ .SUCC(x)
Val(NatCase(F,G,M))ρ ≜ NATCASE(Val(F)ρ, x↦ Val(G)x∶∶ρ,Val(M)ρ)
Val(fix{F ∶= α.M}β)ρ ≜ REC((α,F)↦ Val(M)F ∶∶α∶∶ρ, Val(β)ρ)

Environments can hold several kind of variables. There are three kinds of declara-
tions:

1The successor of an ordinal α is precisely defined as the set of ordinals that are smaller or equal to α.

ModelCIC.html#Infty
ModelCIC.html#OSucc
ModelCIC.html#NatI
ModelCIC.html#Zero
ModelCIC.html#SuccI
ModelCIC.html#Natcase
ModelCIC.html#NatFix

110 CHAPTER 7. NATURAL NUMBERS AND TYPE-BASED TERMINATION

• Ordinal declarations (α < T) where α is a variable and T an expression denoting
an ordinal.

• Stage-irrelevant function declarations (f ∶ (x ∶ T) ↦ U) declares a variable f
representing a function of domain T and dependent co-domain U (may depend
on x). The domain of f may depends on the value of ordinal variables. So f
shall never appear partially applied in ordinary judgments.

• Regular declarations (x ∶T) for variables without particular status w.r.t recursive
definitions.

Definition 7.8 (Environments) Environments are lists of declarations:

Γ ≜ [] ∣ Γ; (x ∶T) ∣ Γ; (x < T) ∣ Γ; (x ∶(y ∶T)↦ U)

Plain environments (as defined in section 5.2) can obviously be injected in environ-
ments. Conversely, environments can be projected to plain environments: ordinal
variables are simply converted into a regular variable and stage-irrelevant function
(x ∶(y ∶T)↦ U) are turned into a variable (x ∶ Πy ∶T.U).

7.2.2 Variance judgments
These new judgments reflect the variance of an expression w.r.t. some of its free vari-
ables. Instead of interpreting expressions in one valuation, we will do so in two valua-
tions in a given relation and compare those two denotations.

Definition 7.9 (Adapted pair of valuations) The judgment that a valuation ρ is smaller
than ρ′ in environment Γ is defined as

ρ ≤Γ ρ
′ ≜

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Γ(n) = (x ∶T) ⇒ ρ(n) == ρ′(n)
Γ(n) = (x < T) ⇒ ρ(n) ⊆ ρ′(n)

Γ(n) = (x ∶(y ∶T)↦ U) ⇒ ρ(n) ⪯Val(↑n+1T)ρ ρ
′(n)

Notation (ρ, ρ′) ∈ [[Γ]] stands for a combination of typing and variance:

(ρ, ρ′) ∈ [[Γ]] ≜ ρ ∈ [Γ] ∧ ρ′ ∈ [Γ] ∧ ρ ≤Γ ρ
′

This definition means that stage variables should be smaller in ρ than in ρ′; the value
of stage-irrelevant function variables in ρ′ should be an extension of its value in ρ; and
ordinary variables should have the same value.

Each declaration kind has its corresponding judgment:

Definition 7.10 (Invariance judgment)

Γ ⊢= M ∶ T ≜ Γ ⊢M ∶ T ∧
∀(ρ, ρ′) ∈ [[Γ]].Val(M)ρ == Val(M)ρ′

Invariance judgment is the regular typing judgment. The subject M of this judgment
shall not depend on the special variables.

Definition 7.11 (Monotonicity judgment)

Γ ⊢↑ M ∶ T ≜ Γ ⊢M ∶ T ∧
∀(ρ, ρ′) ∈ [[Γ]].Val(M)ρ ⊆ Val(M)ρ′

ModelCIC.html#fenv
ModelCIC.html#push_var
ModelCIC.html#push_ord
ModelCIC.html#push_fun
ModelCIC.html#val_mono
ModelCIC.html#typ_inv
ModelCIC.html#typ_mono

7.2. MODEL CONSTRUCTION 111

The monotonicity judgment is used for ordinal expressions that are allowed to refer
to stage variables, or type expressions appearing as domain of stage-irrelevant func-
tions (constructors, partially applied fixpoints and fixpoint bodies), or as co-domain of
fixpoints.

Definition 7.12 (Stage-irrelevance judgment)

Γ ⊢irr M ∶ (x ∶T)↦ U ≜ Γ ⊢M ∶ Πx∈T.U ∧
∀(ρ, ρ′) ∈ [[Γ]].Val(M)ρ ⪯Val(T)ρ Val(M)ρ′

A technical remark is that we also need to define judgments asserting that an ex-
pression denotes an ordinal. It admits two derived judgments, combined with either
monotonicity or invariance:

Γ ⊢M ∶ Ord ≜ ∀ρ ∈ [Γ].Val(M)ρ ∈ On
Γ ⊢= M ∶ Ord ≜ Γ ⊢M ∶ Ord ∧ ∀(ρ, ρ′) ∈ [[Γ]].Val(M)ρ == Val(M)ρ′
Γ ⊢↑ M ∶ Ord ≜ Γ ⊢M ∶ Ord ∧ ∀(ρ, ρ′) ∈ [[Γ]].Val(M)ρ ≤ Val(M)ρ′

They are not regular judgments: Ord is not a term because ordinals do not form a type.
Even though in the specific case of natural numbers, we could only consider ordinals
up to ω, this would slightly complicate the definition of the ordinal successor. Another
alternative is to change the type of pseudo-terms, and introduce a termOrd in the same
way as Kind. While Kind is the class of all types,Ord would be the class of ordinals.

Lemma 7.10 (Inference rules) The judgments defined above admit the inference rules
of figure 7.1.

The various inference rules are better read with the following guide in mind: the
principal judgment is the invariance judgment. It should admit the same inference rules
as in the previous chapters. The only restriction is that we can only refer to “normal”
variables (i.e. neither stage variables, nor stage-irrelevant function variables). The
fixpoint needs premises of the two other kinds (the co-domain should be monotonic
and the body should be stage-irrelevant), so we need inference rules specific to these
judgments. In the case these premises do not use special variables, the weakening rules
(Wk-M) and (Wk-C) can be used. Otherwise, we need special monotonicity rules for
product, natural numbers and stage expressions (for the co-domain), and special stage-
irrelevance rules for abstraction, successor and fixpoints (the constructors of functions).

Some the rules of the main judgment that are in fact derivable (using the judgment
weakening rules) are not part of figure 7.1. For instance, the application rule:

(App)
Γ ⊢= M ∶ Πx ∶V.W Γ ⊢= N ∶ V V,W /= Kind

Γ ⊢= M N ∶ W [x/N]

is a composition of (Wk-C) and (C-App).
We have not mentioned that the equality and subtyping judgments is the same as

in the previous chapter, hence with the same inference rules. The equations and inclu-
sions results of section 7.1 could be turned into equality and subtyping inference rules
straightforwardly.

These rules can serve as a basis to the design of the syntactic judgments, for which
we will want to prove properties such as subject-reduction, and decidability. These
properties are unlikely to hold for the system formed of the rule given here.

ModelCIC.html#typ_ext
ModelCIC.html#typ_inv_app

112 CHAPTER 7. NATURAL NUMBERS AND TYPE-BASED TERMINATION

(Wk-M)
Γ ⊢= M ∶ T
Γ ⊢↑ M ∶ T (Wk-C)

Γ ⊢= M ∶ Πx ∶T.U
Γ ⊢irr M ∶ (x ∶T)↦ U

(Var)
Γ(n) = (x ∶T)
Γ ⊢= n ∶ ↑n+1T

(M-Var)
Γ(n) = (x < T)
Γ ⊢↑ n ∶ ↑n+1T

(C-Var)
Γ(n) = (x ∶(y ∶A)↦ B)

Γ ⊢irr n ∶ (y ∶↑n+1A)↦↑n+1
1 B

(Abs)
Γ ⊢= T ∶ Kind Γ; (x ∶T) ⊢= M ∶ U U /= Kind

Γ ⊢= λx ∶T.M ∶ Πx ∶T.U

(C-Abs)
Γ ⊢↑ T ∶ Kind Γ; (x ∶T) ⊢= M ∶ U U /= Kind

Γ ⊢irr λx ∶T.M ∶ (x ∶T)↦ U

C-App
Γ ⊢irr M ∶ (x ∶T)↦ U Γ ⊢= N ∶ T T /= Kind

Γ ⊢= M N ∶ U[x/N]

Prod
Γ ⊢= T ∶ Kind Γ; (x ∶T) ⊢= U ∶ Kind

Γ ⊢= Πx ∶T.U ∶ Kind

M-Prod
Γ ⊢= T ∶ Kind Γ; (x ∶T) ⊢↑ U ∶ Kind

Γ ⊢↑ Πx ∶T.U ∶ Kind

Infty
Γ ⊢= ∞ ∶ Ord

(OS)
Γ ⊢= O ∶ ∞
Γ ⊢= O+ ∶ ∞

(M-OS)
Γ ⊢↑ O ∶ Ord
Γ ⊢↑ O+ ∶ Ord

(N)
Γ ⊢= O ∶ Ord

Γ ⊢= Nat(O) ∶ Kind
(M-N)

Γ ⊢↑ O ∶ Ord
Γ ⊢↑ Nat(O) ∶ Kind

0
Γ ⊢↑ O ∶ Ord

Γ ⊢= Zero ∶ Nat(O+)
S

Γ ⊢= O ∶ Ord
Γ ⊢= Succ(O) ∶ Nat(O)→ Nat(↑1O+)

C-S
Γ ⊢↑ O ∶ Ord

Γ ⊢irr Succ(O) ∶ (_ ∶Nat(O))↦ Nat(↑1O+)

(Case)

Γ ⊢↑ O ∶ Ord Γ ⊢= M ∶ Nat(O+) Γ ⊢= F ∶ P Zero
Γ; (n ∶Nat(O)) ⊢= G ∶ ↑1P (Succ(↑11O) n)

Γ ⊢= NatCase(F,G,M) ∶ P M

(Fix)

Γ ⊢= O ∶ Ord Γ; (α < O+); (x ∶Nat(α+)) ⊢↑ U ∶ Kind
Γ; (α < O+); (f ∶(x ∶Nat(α))↦ U) ⊢irr M ∶ (x ∶Nat(α+))↦ U[α/α+]

Γ ⊢= fix{f ∶= α.M}O ∶ Πx ∶Nat(O). U

(C-Fix)

Γ ⊢↑ O ∶ Ord Γ; (α < O+); (x ∶Nat(α+)) ⊢↑ U ∶ Kind
Γ; (α < O+); (f ∶(x ∶Nat(α))↦ U) ⊢irr M ∶ (x ∶Nat(α+))↦ U[α/α+]

Γ ⊢irr fix{f ∶= α.M}O ∶ (x ∶Nat(O))↦ U

Figure 7.1: Typed-based inference rules

ModelCIC.html#typ_inv_mono
ModelCIC.html#typ_inv_ext
ModelCIC.html#typ_inv_ref
ModelCIC.html#typ_mono_ref
ModelCIC.html#typ_ext_ref
ModelCIC.html#typ_inv_abs
ModelCIC.html#typ_ext_abs
ModelCIC.html#typ_ext_app
ModelCIC.html#var_eq_prod
ModelCIC.html#var_mono_prod
ModelCIC.html#typ_Infty
ModelCIC.html#var_eq_OSucc
ModelCIC.html#var_mono_OSucc
ModelCIC.html#var_eq_NATi
ModelCIC.html#var_mono_NATi
ModelCIC.html#typ_inv_Zero
ModelCIC.html#typ_inv_Succ
ModelCIC.html#typ_ext_Succ
ModelCIC.html#typ_inv_natcase
ModelCIC.html#typ_inv_fix
ModelCIC.html#typ_ext_fix

7.2. MODEL CONSTRUCTION 113

7.2.3 Examples
The well-known recursor on natural numbers can be derived.

Lemma 7.11 (Recursor) The following term

M ≜ λP ∶_. λg ∶_. λh ∶_.
fix{F ∶= α.λn ∶Nat(α+).NatCase(g, k.h k (F k), n)}∞

(where the k. notation in the second branch of NatCase gives a name to the bound
variable) and type

T ≜ ΠP ∶Nat(∞)→ s.
P Zero→
(Πk ∶Nat(∞). P k → P (Succ k))→
Πn ∶Nat(∞). P n

parameterized by any set of types s are such that

⊢= M ∶ T

It is possible to type-check subtraction with the information that the result is smaller
than its first argument.

Lemma 7.12 (Subtraction) The term

fix{F ∶= β.λm ∶_. λn ∶_.NatCase(Zero,
m′.Natcase(m, n′.F m′ n′, n),
m)}α

has type
Nat(α)→ Nat(∞)→ Nat(α).

The first example shows that type-based termination does not limit the expressive
power, since we can interpret the usual structural recursor. The second example could
be used, for instance, to define division based on subtraction.

It is hard to estimate whether there exists regressions: terms that are accepted by the
syntactic guard of Coq and yet be rejected by the type-based approach. Our feeling is
that most of the extension of the syntactic guard that have been suggested over the years
can be adapted to the type-based system, with a greater level of confidence, because
the size information is explicit.

However, there might still be corner cases where the size annotations get in the
way. Just consider that Leibniz equality does not identify the type of natural numbers
at different sizes, while the syntactic guard does.

7.2.4 Possible extensions
Managing the number of judgments There are many judgments. There are many
duplications between invariance and monotonicity judgments. For instance, λ-abstraction,
both successors, product, natural numbers and fixpoints rules exist in two similar ver-
sions. It would be useful to have some kind of variance polymorphism.

A lot of the complication (multiplication of judgments), comes from the fact we
have a set-theoretical model (functions carry their domain, and thus contravariance
fails to hold).

ModelCIC.html#nat_ind_def
ModelCIC.html#minus_def

114 CHAPTER 7. NATURAL NUMBERS AND TYPE-BASED TERMINATION

Stage-irrelevance by implicit quantification Elimination operators (application and
case-analysis) may produce types or functions, so it might be useful to consider rules
for other variances. For this, we would need that arbitrary argument positions be al-
lowed to have the stage-irrelevant status. It would tend to make of stage-irrelevance
functions a new type constructor rather than a particular judgment.

This could take the form of an stage quantification with restrictions on how these
stage variables can be used, in order to ensure stage-irrelevance. It can be viewed as
a restricted form of implicit quantification. Several independent lines of work could
support this idea: Pfenning [48], Abel [4] or Miquel’s Implicit Calculus of Construc-
tions [40, 10]. The latter, in its full generality, is a great challenge to interpret in a
set-theoretical setting.

7.3 Strong normalization

Disclaimer: this section is still under development. Some parts of the second section
have not been proven yet. However, we found that the constructions carried out are
promising. At least, this can be viewed as a detailed work plan...

7.3.1 A guarded fixpoint operator
The main difficulty in proving the strong normalization theorem in the type-based ter-
mination approach is that we need to provide a realizer for the structural fixpoint op-
erator. In order to avoid breaking strong normalization, it shall expand only when its
recursive argument (which type has to be an inductive type) is in constructor form. We
are now going to show how this can be rendered in the pure λ-calculus.

Let us first remark that the fixpoint expansion in the Y combinator

Yf = (λx. f (xx)) (λx. f (xx))

comes from self-application of (λx. f (xx)). The idea is to devise an operator G such
that (Gt) reduces to (t t) only when the expansion is allowed. So the new fixpoint
combinator is

Y ′
f = G (λx. f (Gx))→? (λx. f (Gx)) (λx. f (Gx))→ f (G (λx. f (Gx))) = f Y ′

f .

The →? relation means that the reduction happens only when expansion has been al-
lowed, which condition has yet to be defined.

It remains to see how this G should be defined. In the case of the fixpoint over a
natural number, it simply has to perform a look-ahead of the next argument and test
whether it is in constructor form by case-analysis.

Definition 7.13 (Guarded self-application) The guarded self-application of f guarded
by a natural number is

G(f) ≜ λn.n ↑1f (λ_.λ_. ↑3f) ↑1f n.

Informally, this corresponds to the following program:

fun n => match n with 0 => f | S _ => f end f n

SATnat.html#G

7.3. STRONG NORMALIZATION 115

On the one hand, it is clear that G(f) n reduces to f f n whenever n is zero or a
successor:

Lemma 7.13 (Reduction of G) When applied to n in constructor form,

G(f) n →+
β f f n.

Proof

G(f) 0 →β 0 f (λ_.λ_. ↑2f) f 0 →β f f 0

G(f) S(k) →β S(k) f (λ_.λ_. ↑2f) f S(k) →β f f S(k)

On the other hand, G(f) applied to a neutral term reduces to a neutral term. Self-
application is thus blocked.

The fixpoint operator which retains strong normalization can now be defined:

Definition 7.14 (Recursor over natural numbers)

NFIX(f) ≜ G(λx. ↑1f G(x))

Lemma 7.14 (Reduction of NFIX) When applied to a term n in constructor form,
NFIX reduces like a fixpoint operator:

NFIX(f) n →+
β f NFIX(f) n

Proof

G(λx. ↑1f G(x)) n
→β (λx. ↑1f G(x)) (λx. ↑1f G(x)) n (n in constructor form)

→β f G(λx. ↑1f G(x)) n

We have proved that the guarded fixpoint operator NFIX reduces as expected. It
remains to establish that it is strongly normalizing, as it reduces only when necessary.

7.3.2 Reducibility
All the saturated set construction can be carried out on the inductive type of natural
numbers instead of the usual natural numbers of set theory.

Case-analysis

Definition 7.15 (Case-analysis) The case-analysis on n with branches f (for zero)
and g (for successor) is

NCASE(f, g, n) ≜ n f (λk.λ_. g k).

Lemma 7.15 (Reduction of NCASE)

NCASE(f, g, 0) →+
β f NCASE(f, g, S(k)) →+

β g k

SATnat.html#G_sim
SATnat.html#NATFIX
SATnat.html#NATFIX_sim
SATnat.html#NCASE
SATnat.html#NCASE_sim_0

116 CHAPTER 7. NATURAL NUMBERS AND TYPE-BASED TERMINATION

The soundness of the case-analysis operator requires

Lemma 7.16 (Reducibility of NCASE) Given n ∈ fNAT(A,k) for k ∈ Nα+ ,

f ∈ B(ZERO) g ∈ ⋂
m∈Nα

A(m)→ B(SUCC(m))

NCASE(f, g, n) ∈ B(k)

However, we have not managed to prove this lemma.

Fixpoint

Lemma 7.17 (Closure by head-expansion of G) Given a natural number k, two terms
m and t and a reducibility candidate X , we have

f ∈ fNAT(A,k) ∧ mm t ∈X ⇒ G(m) t ∈X

This lemma corresponds to the closure of saturated sets by head expansion for the
reduction associated to G.

Lemma 7.18 (Reducibility of NFIX) Given a family of reducibility candidates X ,
monotonic w.r.t. its ordinal argument

γ ≤ β ≤ α ∧ x ∈ Nγ ⇒ X(γ, x) ⊆X(β,x),

then

m ∈ ⋂
β≤α

(⋂
n∈Nβ

cNAT(n)→X(β,n))→ (⋂
n∈Nβ+

cNAT(n)→X(β+, n))

NFIX(m) ∈ ⋂
n∈Nα

cNAT(n)→X(α,n)

Proof By induction on α.

This rule clearly mimics the typing rule of fixpoints where

⋂
n∈Nα

cNAT(n)→X(α,n)

represents the type of functions of domain Nα and co-domain X(α). The rule above
conveys that whenever m produces a function of domain Nβ+ given a function with
domain Nβ for all β ≤ α, then NFIX(m) is a function of domain Nα.

7.3.3 Model construction

LIBRARY: SN_CIC

The model construction is similar to that of section 6.5. The main difference is that
there is a new term constructor, the recursor, which normalization property is rather
delicate to establish. Also, the other symbols have to be slightly generalized to support
stages.

SATnat.html#NCASE_fNAT
SATnat.html#G_sat
SATnat.html#NATFIX_sat
SN_CIC.html

7.4. COMPARISON WITH OTHER WORKS 117

7.4 Comparison with other works
Our presentation is close to the one of Abel [2] and subsequent work. However, this
line of work does not yet readily apply to complex type theories with dependent and
inductive types.

Our results are better compared with Grégoire and Sacchini [31] which target is
CIC. In their work, the criteria for accepting a fixpoint definition are ensured by dis-
tinguishing syntactic classes of term according to the usage of stage variables that are
allowed. In comparison, in the present work, this is ensured by alternative judgments
of monotonicity and stage-irrelevance.

The strong normalization proof they give is an impressive piece of work, that reuses
arguments of many previous proofs: Λ-sets (for strong eliminations), tight reduction
(for the inclusion of Prop in Type), Streicher’s notion of partially defined interpretation
(to model the system with untyped equality), etc.

The drawback of this highly technical proof is that understanding it requires a high
expertise in strong normalizations proofs. Adapting it to similar theories is difficult.
We hope that the presentation we have given here is better decomposed, and could be
reused more easily.2

One key difference is that in their work, functions with a size-annotated domain
still have to be total (regardless of size), i.e. produce values of the co-domain type
when given an input of the domain type. There is a second invariant that enforces
the size discipline. However, this difference has to be contrasted by the fact that our
presentation does not allow to refer to absolute sizes, besides ∞. Thus, it is always
possible to instantiate all free stage variables by ∞, and recover the total functions.

2We are assuming that the small details left unsolved can be addressed. Still we maintain our claim about
the strong normalization proof of the previous chapter.

118 CHAPTER 7. NATURAL NUMBERS AND TYPE-BASED TERMINATION

Chapter 8

A General Theory of Recursive
and Inductive Types

In the previous chapter, we have developed the theory of natural numbers. It is an im-
portant step because it models a system that it is at least as strong as Peano arithmetic.
The main difficulty we have addressed was to develop the material related to stages:
constructors that introduce values using those of earlier stages; case-analysis, which is
the converse operation; and a structural fixpoint combinator to define functions recur-
sively.

The question of the existence of a fixpoint for the type operator associated to the
constructors was easily answered. Since all of the constructors considered then have
a finite number of premises, the associated type operator is continuous. Thus, by the
fixpoint theorem, iterating the operator ω times yields the least fixpoint.

In this chapter, we generalize this to arbitrary complex inductive definitions. While
the purely inductive aspect (having discriminable introduction and elimination rules)
are only marginally affected by this generality, the existence of a fixpoint and a char-
acterization of the closure ordinal is deeply affected.

Generalizing the type of natural numbers, we get the type of Brouwer ordinals:

Inductive ord : Type :=
| Oo : ord
| So : ord -> ord
| Lo : (nat -> ord) -> ord.

It is half-way between simple datatypes and W-types. Additionally, they’re interesting
because they give a natural link between the number constructor iterations and the
values of the inductive type (at least for countable ordinals).

The next generalization consists in seeing these previous examples as instances of
a generic datatype of well-founded trees, parameterized by arbitrary types to represent
(1) the data stored in each constructor (that we occasionally call the “payload”), and
(2) the type used to index the sub-trees of a node. This is the so-called W -types:

Inductive W (A:Type) (B:A->Type) : Type :=
sup : forall (x:A), (B x -> W A B) -> W A B.

One could naively expect that any declaration in the above style, declaring an enu-
meration of constructor, with references to the recursive type to be defined only in

119

120 CHAPTER 8. INDUCTIVE TYPES

positive positions, the basic requirement to have a monotonic type operator, should be
accepted.

Unfortunately, this is not possible, as shown by this example (see [18, 47]):

Inductive I : Type :=
C : ((I->Prop)->Prop) -> I.

The type operator associated to this definition, X ↦ ℘(℘(X)) is monotonic (we en-
code X->Prop as ℘(X) to turn around the lack of contravariance of function types in
set theory), and I ∶ Typei implies ((I−>Prop)−>Prop) ∶ Typei (universes are closed
under powerset), but the corresponding operator has obviously no fixpoint.

Hence the restriction to strictly positive inductive definitions, that have been studied
by many authors: Paulin [18, 47], Altenkirch, Mc Bride, and others.

The general form of a strictly positive inductive definition is

Inductive I ∶ Type ∶=
∣ C1 ∶ Πx1

1 ∈C1
1Πx

1
i1
∈C1

i1
. I

∣ ⋮
∣ Cn ∶ Πxn1 ∈Cn1Πxnin ∈C

n
in
. I.

which defines a type I with n constructors. Each of the constructor arguments Cij are
of the form of:

• a constant type (i.e. I does not occur)

• a recursive call: I

• a parameterized recursive call: Πy ∈A.C ′ where I does not occur free in A and
C ′ is also of the form of a constructor argument.

In terms of datatype, values of I are of n form possible (identified by the constructor
name). Each variant k is an ik-tuple of type

Σxk1 ∶ Ck1Σxkik−1 ∶Ckik−1.C
k
ik
.

In other words, the type I is the least fixpoint of the operator

F (I) = Σx1
1 ∶ C1

1Σx
1
i1− ∶C

1
i1−.C

1
i1
+

. . .
Σxn1 ∶ Cn1Σxnik− ∶C

n
in−.C

n
in

The precise alternation of sums, dependent pairs, and products may change how the
values of this type are handled in concrete terms, but it is irrelevant with the justification
it forms a sound type specification. What matters most, is that I never appears in
negative position (to preserve monotonicity). If we reason up to isomorphism, the
constructor types can be put in normal form.

A possible set of normal forms corresponds to W -types. We will see that any
strictly positive inductive definition is isomorphic to aW -types. In fact, what we prove
is slightly more general: any type operator in the language of constants, identity, dis-
joint sum, dependent pairs, cartesian product and dependent products (with constant
domain), is isomorphic to a W -type.

We could look for a more general criterion implying the existence of a least fix-
point. The first idea is to literally translate the intuitionistic fixpoint theorem 2 in type
theoretical terms. However, it appeared that W -types are quite powerful, as they can

8.1. THEORY OF W -TYPES 121

express the type of sets (section 4.2), and they are sufficiently flexible to be used as a
core definition upon which many extensions of inductive types can be encoded.

From a methodological point of view, this strategy avoids the need to introduce
early the syntactic constraint of strictly positiveness. The latter (still in a shallow em-
bedding style) will appear after several refinements.

Overview of the chapter The case of W -types (section 8.1) will be studied first, and
then it will be shown that all the desired properties are preserved by isomorphism, thus
covering all strictly positive inductive definitions.

Then the relation between inductive definitions and predicative universes will be
considered. This will address the question of determining in which universe an induc-
tive definition can live.

In section 8.6, various extensions of the core language above will be considered.
They will be justified by encoding them in the core language of W -types. Among the
extensions, we will consider inductive families, inductive definitions with non-uniform
parameters. The case of inductive definitions in Prop will also be discussed.

Finally, the ingredients still missing for the formalization of the strong normal-
ization theorem the Calculus of Inductive Constructions in the general case will be
sketched.

8.1 Theory of W -types
LIBRARY: ZFIND_W

8.1.1 Introduction
From the definition ofW -types above, and given parametersA andB, the typeW (A,B)
is the least fixpoint of the monotonic type operator

FW (X) = Σx ∶A. (B x→X).

The key fact for the existence of a fixpoint is prove that some setX is a post-fixpoint
of FW (i.e. FW (X) ⊆X).

If enough of cardinal theory is available, we can reason abstractly up to isomor-
phism and look for a cardinal satisfying an inequation related to the one on sets. This
inequation will require cardinal of F (X) to be less or equal than X .

It is possible to get rid of the dependencies by replacing B(x) by B′ ≜ ⋃
x∈A

B(x)

and considering partial functions from B′ to X , written B′ →p X . This makes the
problem potentially harder since post-fixpoints of

GW (X) = A × (B′ →p X)

are also post-fixpoints of FW . The cardinal inequation yielding the cardinal κ of X is
post-fixpoint of GW is ∣ GW (X) ∣≤ κ, with

∣ GW (X) ∣ = ∣A ∣ × κ∣B′∣ = max(∣A ∣, κ∣B′∣)

It is known that ∣ κµ ∣= max(κ,2µ) when 2µ ≤ κ. Thus, the resulting inequation

max(∣A ∣, κ∣B′∣) ≤ κ

ZFind_w.html

122 CHAPTER 8. INDUCTIVE TYPES

is satisfied by any cardinal κ ≥ max(∣A ∣,2∣B′∣). In classical logic, this gives an upper-
bound to the closure ordinal. This is the kind of argument that is used to characterize
the closure ordinal of inductive definitions in UTT ([29], p.1̃33).

But most of cardinal theory fails to be provable in intuitionistic theories. The above
argument has to be made more precise. An idea is to simulate the cardinal reasoning
by an isomorphism (or embedding) analysis.

Let us see informally what could be a fixpoint Y for GW , up to isomorphism (≤
stands for the embedding relation, and ≈ for isomorphism):

Y = A × (B′ →p Y) = A × (B′ →p A × (B′ →p Y))
≤ (1→p A) × (B′ →p A) × (B′ ×p B′ →p Y)
≈ (1 +B′ →p A) × (B′ ×B′ →p Y)
⋮

≤ ((1 +B′ +B′ ×B′ + . . .)→p A) × ((N → B′)→p Y)

Since 1+B′ +B′ ×B′ + . . . is B′∗ (the lists of B′) and assuming that we can forget the
last terms (corresponding to subterms appearing beyond any finite depth), we see that
Y can be encoded by partial functions from lists of B′ to A.

More formally, we can check that our goal has been achieved:

GW (B′∗ →p A) ≤ B′∗ →p A.

This is in fact the common embedding of trees as partial function from paths (lists
of indices) to labels.1 For instance, the tree

a

b

β

c

d

δ

e

ε

γ

is represented by the function

{([], a); ([β], b); ([γ], c); ([γ; δ], d); ([γ; ε], e)}

8.1.2 Definition of W -types
Let us consider a payload type A and an index function B with domain A.

Definition 8.1 (Type operator) The type operator for W -types is:

FW (X) ≜ Σx ∶A. (B(x)→X)

Given a set X , FW (X) is the set of nodes with sub-trees taken from set X .2 The first
component of the inhabitants of FW (X) is the payload. The images of the second
component are the sub-trees.

1It is interesting to note that this encoding of trees is also suitable for co-inductive definitions where there
may be paths that can be extended ad infinitum.

2The term “sub-tree” may look improper given that X does not have to be a set of trees.

ZFind_w.html#W_F

8.1. THEORY OF W -TYPES 123

Lemma 8.1 FW is a monotonic and stable operator.

In order to produce isomorphisms with this type, we define a map function:

Definition 8.2 (Map) The map function WFmap(f) applies f to the subterms:

WFmap(f,w) ≜ (fst(w), λi∈B(fst(w)).snd(w)@i)

The usual properties of the map function w.r.t. identity and composition hold.

Lemma 8.2 (Identity and composition)

WFmap(id, w) == w WFmap(f ○ g, w) == WFmap(f,WFmap(g,w))

The last property of WFmap is that it maps isomorphisms on the sub-trees into an
isomorphism on the nodes.

Lemma 8.3 (Isomorphism) If f is an isomorphism betweenX and Y , then WFmap(f)
is an isomorphism between FW (X) and FW (Y).

The existence of a fixpoint and the construction of the closure ordinal of FW will
result from the fixpoint theorem. This theorem needs to be given a post-fixpoint for
FW . As seen in the introduction of this section, a simple choice is to take the isomor-
phic representation of trees as (a subset of) partial functions from paths (i.e. lists of
indices) to labels (of type A). In the case of well-founded trees, paths are all of finite
length, and there is no infinite increasing sequence of paths that have an image. This
invariant will not need to be made explicit in the forthcoming presentation.3

8.1.3 The set of paths representation
The upper bound for the alternative presentation is the set of relations from paths (lists
of elements of ⋃

x∈A
B(x)) to labels:

Definition 8.3 (Trees) Trees are encoded as a relation between lists of indices and
labels:

DW ≜ ℘((⋃
x∈A

B(x))∗ ×A)

The tree constructor takes as input a label x ∈ A (for the root), and the children in
the form of a function f of domainB(x). In other words, it is an element of FW (DW).

The resulting tree is built up by first considering a pair for the root: the path is the
empty list and the label is x. Now for each index i ∈ B(x), we have to include the tree
f(i), but the paths have to be relocated since the root of f(i) is now at the path [i], and
so on for the deeper nodes of f(i). Finally, the tree constructor using the alternative
representation of W -types is:

Definition 8.4 (Tree constructor)

Wsup(w) ≜ {(Nil,fst(w))}∪
{(Cons(i, p), x) ∣ i ∈ B(fst(w)), (p, x) ∈ (snd(w))@i}

3This representation is also able to represent a co-inductive version of W -types. Co-inductive trees are
not required to be well-founded. Yet, any node of such a tree is reached from the root by a finite path.

ZFind_w.html#W_F_mono
ZFind_w.html#W_F_stable
ZFind_w.html#WFmap
ZFind_w.html#WF_eta
ZFind_w.html#WFmap_comp
ZFind_w.html#WFmap_iso
ZFind_w.html#Wdom
ZFind_w.html#Wsup

124 CHAPTER 8. INDUCTIVE TYPES

In the above definition fst(w) is the x of the informal explanation, and (snd(w))@i
is f(i).

Lemma 8.4 (Typing of the constructor) Wsup is a function of type FW (X) to DW

whenever X ⊆DW .

The constructor assumes that the sub-trees are also represented with the convention of
DW , so we need X ⊆DW .

To this constructor, we associated the type operator that consists in generating all
possible trees with children taken from a set X:

Definition 8.5 (Type operator)

F ′
W (X) ≜ {Wsup(w) ∣ w ∈ FW (X)}

From the typing lemma 8.4, it is clear that F ′
W (DW) ⊆DW , so it is a post-fixpoint

of F ′
W .

Lemma 8.5 The operator F ′
W is monotonic and stable.

Lemma 8.6 (Isomorphism) Constructor Wsup is an isomorphism between FW (X)
and F ′

W (X) for all set X ⊆DW .

Proof The surjectivity of Wsup follows from the definition of F ′
W . All that remains to

see is the injectivity. From Wsup(w) we can recover w: the first component is the only
label associated to the empty path; the sub-tree at position i is obtained by collecting
all the pairs which path begins with i, and removing that leading i.

A corollary of this is that given a isomorphism f between X and Y , we have an
isomorphism between FW (X) and F ′

W (Y) by composing WFmap(f) and Wsup.
At this point, we can apply the fixpoint theorems of chapter 3.6, and conclude to

the existence of a least fixpoint for F ′
W .

Definition 8.6 (Fixpoint of F ′
W)

W ′ ≜ µ(F ′
W)

Lemma 8.7 (Fixpoint equation) The type W ′ is a fixpoint of F ′
W :

W ′ == F ′
W (W ′)

and there exists an ordinal κW which closes F ′
W :

W ′ == F ′κW
W .

While the definition of W ′ and its fixpoint equation does not require the stability
requirement, this is not the case of the existence of a closure ordinal.

In retrospect, we can see that the stability condition is relevant in the case of in-
ductive types. We recall that it means that for any element x of the inductive type,
there exists a smallest set fsub(x) of elements of this type, such that x is a con-
structor which sub-terms are all in this set fsub(x). Thus, this stability criterion will
naturally be met as a consequence of the injectivity (and discrimination) property of
constructors. In others presentation of inductive sets, we find a similar criterion, such
as Pohler’s deterministic sets of rules (see [49], p. 84). We must be prepared to meet
difficulties with inductive definitions in sort Prop, which do not have the injectivity of
constructors property.

ZFind_w.html#Wsup_typ_gen
ZFind_w.html#Wf
ZFind_w.html#Wf_mono
ZFind_w.html#Wf_stable
ZFind_w.html#W_F_Wf_iso
ZFind_w.html#W'
ZFind_w.html#W'_eqn
ZFind_w.html#W_ord

8.2. STRICTLY POSITIVE INDUCTIVE DEFINITIONS 125

8.1.4 Building the W-type, fixpoint of FW
We have already exhibited an isomorphism between FW (X) and F ′

W (Y) for any iso-
morphic sets X and Y . By lemma 3.26, this isomorphism extends to an isomorphism
between FαW and F ′α

W for any ordinal α. This allows to conclude that the closure ordinal
of FW will be the same as that of F ′

W .

Definition 8.7 (W -type) The W -type is the stage κW of FW :

W ≜ FκWW

Lemma 8.8 (Fixpoint equation) W is a fixpoint of FW :

W == FW (W)

By definition of W , we can say that ordinal κW closes FW .
The fixpoint theorem we have used also provides an iterator (REC) that can be used

to define structural recursive functions on W .

8.2 Strictly positive inductive definitions
LIBRARY: ZFSPOS

In this section we show that strictly positive inductive types can be shown isomor-
phic to instances of W -types. All the definitions of the previous section have now two
extra parameters corresponding to A and B.

As usual now, we do not introduce a closed syntactic definition of strictly positive
definitions. Rather, we will define them as operators given properties that will ensure
the existence of a fixpoint.

Definition 8.8 (W -iso operators) AW -isomorphic type operator (aW -iso) is a struc-
ture

⟨F ∶ set→ set,
A ∶ set,
B ∶ set→ set,
φ ∶ set→ set⟩

such that F is monotonic and φ is an isomorphism between F (X) and FW (A,B,X)
for all set X .

Definition 8.9 (Stage of the inductive type) Given a W -iso p = ⟨F,A,B,φ⟩, we de-
fine

INDi(p,α) ≜ Fα

We recall a couple of properties of the transfinite iterator applied to monotonic
functions in our specific case:

α ⊆ β ⇒ INDi(p,α) ⊆ INDi(p, β) INDi(p,α+) == F (INDi(p,α))

The fixpoint of F is easily derived: it is the stage FκW (A,B) . This results from the
isomorphism between F and FW (A,B), which extends to transfinite iteration.

ZFind_w.html#W
ZFind_w.html#W_eqn
ZFspos.html
ZFspos.html#positive
ZFspos.html#INDi

126 CHAPTER 8. INDUCTIVE TYPES

Definition 8.10 (Least fixpoint)

IND(p) ≜ INDi(p, κW (A,B))

Lemma 8.9

IND(p) == F (IND(p)) INDi(p,α) ⊆ IND(p)

The first proposition can be rephrased as INDi(p, κW (A,B)) == INDi(p, κ+W (A,B))
to recall the type-based termination rule that identifies ∞ and ∞+.

Below, we describe a library of W -iso operators. It is straightforward to see that
they cover the usual notion of strictly positive inductive type.

As usual, binders are expressed using higher-order: a W -iso with one free variable
is represented by a family (pi)i∈I of W -isos.

Definition 8.11 Given p = ⟨F,A,B,φ⟩ and p′ = ⟨F ′,A′,B′, φ′⟩ two W -isos and
(p)i∈I = (⟨Fi,Ai,Bi, φi⟩)i∈I a family of W -isos, the following operators are W -iso
(we omit to give the bijections):

• Constant type:
cst(Y) ≜ ⟨_↦ Y, Y, _↦ ∅⟩

• Single recursive sub-term:

rec ≜ ⟨X ↦X, {∅}, _↦ {∅}⟩

• Disjoint sum:

p + p′ ≜ ⟨X ↦ F (X) + F ′(X), A +A′, x↦ sum_case(B,B′, x)⟩

• Cartesian product:

p × p′ ≜ ⟨X ↦ F (X) × F ′(X), A ×A′, (x,x′)↦ B(x) +B′(x′)⟩

• Dependent sum:

Σ(p)i∈I ≜ ⟨X ↦ Σi ∶I.Fi(X), Σi ∶I.Ai, (i, x)↦ Bi(x)⟩

• Function type:

Π(p)i∈I ≜ ⟨X ↦ Πi∈I.Fi(X), Πi∈I.Ai, f ↦ Σi ∶I.Bi(f(i))⟩

The first constructor corresponds to constructor arguments that do not hold recur-
sive sub-trees. rec is used as a place-holder for recursive sub-trees. The multiplicity
of these sub-trees is controlled by the remaining constructors. Disjoint sum correspond
to various alternative constructors.

Cartesian product comes in two flavors: one for non-dependent pairs, in which case
both members are allowed to have recursive sub-trees, and another one for dependent
pairs (Σ-types) which forbids recursive sub-trees within the first component.

This encodes the general discipline that there shall be no dependency over a con-
structor argument of the type we are defining. Type operators are supposed to be para-
metric over the type of sub-structures.

ZFspos.html#IND
ZFspos.html#pos_cst
ZFspos.html#pos_rec
ZFspos.html#pos_sum
ZFspos.html#pos_consrec
ZFspos.html#pos_norec
ZFspos.html#pos_param

8.2. STRICTLY POSITIVE INDUCTIVE DEFINITIONS 127

Last constructor introduces the possibility to have higher-order types (trees with
an infinite number of sub-trees), by having a family of (possibly) recursive sub-trees,
indexed by an arbitrary fixed type I .

It is clear that this definition covers all the strictly positive inductive definitions in
the standard sense: all the operators that form the language of strictly positive defini-
tions are W -iso. This result will be extended to nested inductive types in section 8.6.2.

We may want to add some syntactic sugar that derives the constructor and case-
analysis operator as is traditionally done in the definition of strictly positive inductive
types. But this routine work, best done later in the model construction. We will only
illustrate the usage of the above library on two simple examples.

Example 8.1 The type of binary trees

Inductive bintree A : Type :=
| Leaf (_:A)
| Node (_:bintree A) (_:bintree A).

is represented by the following W -iso

(cst(A) + (rec × rec)

which associated type operator is X ↦ A +X ×X . The inductive type and the con-
structors are defined as

bintree(A) ≜ IND(cst(A) + (rec × rec))
Leaf ≜ λa∈A.inl(a)
Node ≜ λt1 ∈_.λt2 ∈_.inr(t1, t2).

Pattern-matching

match t with Leaf a => f a | Node t1 t2 => g t1 t2 end

is simply
sum_case(a↦ f@a, p↦ g@fst(p)@snd(p), t)

Example 8.2 The type of sets is generated by the following W -iso:

Σ(Π(rec)i∈I)I∈U

given a Grothendieck universe U . Its associated type operator is

X ↦ ΣI ∈ U. (I →X).

8.2.1 Inductive families
This section introduces the first refinement of W -types: inductive families. They give
a general way to define a collection of types (each member is identified by an index)
that can take its recursive sub-terms in any member of this collection. This is called
a family because they all share the same constructors, although constraints can forbid
the usage of a given constructor for a given index.

One typical example of inductive families is the type of vectors

Inductive vect : nat -> Type :=
| Vnil : vect 0
| Vcons : forall n, A -> vect n -> vect (S n).

128 CHAPTER 8. INDUCTIVE TYPES

Each conclusion of constructor is labeled with the index of the member of the family
that it introduces. This is index constraint that forbids Vnil to belong to vect(S(k))
(by discrimination of zero and successor).

Intuitively, it is clear that each instance of the type family is a sub-type of the lists,
modulo the residual natural number of Vcons:

Inductive vect0 : Type :=
| Vnil0 : vect0
| Vcons0 : nat -> A -> vect0 -> vect0.

The type of vectors with a given index can be constructed by “subtyping” thanks to
a predicate over the previous type:

Inductive vect_ok : nat -> vect0 -> Prop :=
| Vnil_ok : vect_ok 0 Vnil
| Vcons_ok :

forall k x l, vect_ok k l -> vect_ok (S k) (Vcons k x l).

Note that this predicate can be defined without resorting to an inductive family of
propositions, thanks to an impredicative encoding.

This construction generalizes to all possible inductive families, by noticing that we
can define dependent W -types that generalize all inductive families, just as W -types
generalize all strictly positive inductive definitions.

This section is organized as the previous ones: we first introduce and develop the
theory of dependent W -types. Secondly, we define W -iso families (the counterpart
of W -isos) that characterize families isomorphic to a dependent W -type. Finally, we
show that the language of inductive families is a subset of W -iso families.

Dependent W -types

LIBRARY: ZFIND_WD

The general case of a variation on the W -types. We consider a type of indices C.

Parameter A : Type.
Parameter B : A -> Type.
Parameter C : Type.
Parameter f : forall x:A, B x -> C.
Parameter g : A -> C.
Inductive Wd : C -> Type :=
supd : forall x:A, (forall i:B x, W (f x i)) -> W (g x).

Parameters A and B are the usual payload an sub-term index parameters of W -types.
In comparison with regular W -types, we have two more parameters:

• function f indicates how sub-trees should be indexed: given a tree which root is
labeled with x, the sub-tree at index i shall have index f(x, i);

• function g specifies the index of the value built by the constructor: a tree which
root is labeled with x has index g(x).

The first remark about g is that it does not depend on recursive sub-terms. This is
consistent with the situation of constructor arguments, which can only depend on non-
recursive arguments.

ZFind_wd.html

8.2. STRICTLY POSITIVE INDUCTIVE DEFINITIONS 129

Rephrasing the informal explanation above, we consider a context of parameters
that describe an inductive family:

A ∶ Type

B ∶ A→ Type

C ∶ Type

f ∶ set→ set→ set

g ∶ set→ set→ Prop

together with the typing constraint

x ∈ A ∧ i ∈ B(x) ⇒ f(x, i) ∈ C

This typing constraints on f ensures that the relevant indices always remain within
C.

The reason why g is defined above as a relation, rather than a function is quite
technical. This is a slight generalization, but we are ultimately only interested in cases
where g is a functional and total relation.

As usual, we first define the type operator that applies the constructor to a family
of types X , corresponding to the previous stage of the family to be defined.

Definition 8.12 (Family type operator)

FWd(X,a) ≜ Σx ∈ {x ∈ A ∣ g(x, a)}.Πi∈B(x).X(f(x, i))

This definition corresponds (informally) to the common transformation of replacing
indices by a constructor argument, generally an equality on indices:

Inductive Wd (a:C) : Type :=
supd : forall x:A, g x a -> (forall i:B x, W (f x i)) -> W a.

This operator is iterated using the family iterator TIF (see section 3.3.3). We thus
need to check that the family operator is monotonic.

Lemma 8.10 (Monotonicity) This is a monotonic operator (in the sense of family
type operators).

The following lemma gives a first hint that inductive families can be derived as
subsets of a W -type:

Lemma 8.11 (Inclusion in FW) The type family operator FWd is a refinement of
FW :

∀a ∈ C.X(a) ⊆ Y
∀a ∈ C.FWd(X,a) ⊆ FW (Y)

In order to give a more precise characterization of which are the correctly indexed
elements of FW (Y), we introduce a predicate, the counterpart of vect_ok, asserting
that an element of a W -type is well-indexed by a as specified by parameters f and g:

Definition 8.13 (Well-indexed trees) A tree w = (x,h) is well-indexed if there exists
a complete derivation using the following rule:

x ∈ A g(x, a) ∀i ∈ B(x). h@i ∈ inst_ok(f(x, i))
(x,h) ∈ inst_ok(a)

such that w is at the root of the derivation.

ZFind_wd.html#W_Fd
ZFind_wd.html#W_Fd_mono
ZFind_wd.html#W_Fd_incl_W_F
ZFind_wd.html#instance

130 CHAPTER 8. INDUCTIVE TYPES

The g(x, a) premise ensures that the index at the root of the tree is a, and the last
one recursively constrains sub-trees. The characterization of well-indexed elements is
precised by this lemma:

Lemma 8.12 (Soundness of indexing) For all ordinal α and index a ∈ C:

TIF(FWd, α, a) == {w ∈ FαW (A,B) ∣ w ∈ inst_ok(a)}

The key point of this characterization is that it dissociates the stage (ordinal α) and the
indexing discipline (_ ∈ inst_ok(_)).

It remains to show that κW (A,B), that closes FW (A,B), closes FWd as well.

Definition 8.14 (Fixpoint of FWd)

Wd(a) ≜ TIF(FWd, κW (A,B), a)

Lemma 8.13 (Fixpoint equation)

Wd(a) == FWd(Wd, a)

Proof w ∈ Wd(a) is equivalent to w ∈ FκW (A,B)
W (A,B) ∧ w ∈ inst_ok(a). By the fix-

point equation about W -type, F
κW (A,B)
W (A,B) == F

κ+W (A,B)
W (A,B) , and thus w ∈ Wd(a) ⇐⇒ w ∈

TIF(FWd, κ
+
W (A,B), a). The conclusion follows from extensionality and the defini-

tion of TIF.

Since Wd is a stage of FWd, it is also the least fixpoint of FWd.

Strictly positive inductive families

LIBRARY: ZFSPOSD

In this section, we generalize the notion ofW -iso to the case of dependent families.
All the definitions of this section are parameterized by C, the type of indices.

The first definition generalizes W -isos, the type operators isomorphic to FW .

Definition 8.15 (W -iso family) A W -iso family is a tuple ⟨p,Fd, f, g⟩ defined by giv-
ing:

• A W -iso p = ⟨F,A,B,φ⟩

• a function f and a relation g characterizing the indexing discipline, with the
following typing constraint on f :

∀x ∈ A.∀i ∈ B(x). f(x, i) ∈ C

• an monotonic type family operator Fd ∶ (set → set) → set → set which is
a refinement of F that respects indexing:

Fd(X,a) == {w ∈ F (⋃
a∈C

X(a)) ∣

g(fst(φ(w)), a)∧
∀i ∈ B(fst(φ(w))).snd(φ(w))@i ∈X(f(fst(φ(w)), i))}

We can transpose the results of the previous section, about the existence of a closure
ordinal and least fixpoint of the family operator associated to a W -iso family.

ZFind_wd.html#inst_inv
ZFind_wd.html#Wd
ZFind_wd.html#Wd_eqn
ZFsposd.html
ZFsposd.html#dpositive

8.2. STRICTLY POSITIVE INDUCTIVE DEFINITIONS 131

Definition 8.16 (Stage of the inductive family) Given aW -iso family q = ⟨p,Fd, f, g⟩,
we define

dINDi(q,α, a) ≜ TIF(Fαd , a)

Lemma 8.14 (Monotonicity of dINDi) α ↦ dINDi(q,α, a) is a monotonic opera-
tor for all a ∈ C (on the class of ordinals):

α ⊆ β ⇒ dINDi(q,α, a) ⊆ dINDi(q, β, a)

Definition 8.17 (Least fixpoint)

dIND(q, a) ≜ dINDi(q, κW (A,B), a)

Lemma 8.15 Given a W -iso family q,

dIND(q, a) == Fd(dIND(q, a)) dINDi(q,α, a) ⊆ dIND(q, a)

We now devise constructors of W -iso families that includes the language of induc-
tive families. The constructors of W -isos (section 8.2) are “lifted” to W -iso families
that are neutral w.r.t. indices: the g parameter is always true. There is just one specific
constructor (inst below) to have an actual constraint on the index. It is supposed to
be used as the last argument of constructors: there should be one such constraint in
each member of a disjoint sum; for cartesian and dependent products, only the second
member (this is a convention) holds an index constraint.

The usage of these constructors will be illustrated on examples right away on two
examples: vectors and the generic instance of dependent W -types (Wd).

Definition 8.18 The following definitions form a library ofW -iso families. We assume
that q = ⟨p,F, f, g⟩ and q′ = ⟨p′, F ′, f ′, g′⟩ are W -iso families, and (qi)i∈I is a family
of W -iso families with qi = ⟨pi, Fi, fi, gi⟩.

• Index constraint

inst(b) ≜ ⟨cst({∅}),
(X,a)↦ cond_set(a == b, {∅}),
(_,_)↦ ∅, (x, a)↦ a == b⟩

• Constant type:

dcst(Y) ≜ ⟨cst(Y), (X,_)↦ Y, (_,_)↦ ∅, (_,_)↦ ⊺⟩

• Single recursive subterm (with index b ∈ C):

drec(b) ≜ ⟨rec, (X,_)↦X(b), (_,_)↦ b, (_,_)↦ ⊺⟩

• Disjoint sum:

q + q′ ≜ ⟨p + p′, (X,a)↦ F (X,a) + F ′(X,a),
(x, i)↦ sum_case(f, f ′, x),
(x, a)↦ x == inl(x1) ∧ g(x1, a) ∨ x == inr(x2) ∧ g′(x2, a)⟩

ZFsposd.html#dINDi
ZFsposd.html#INDi_mono
ZFsposd.html#dIND
ZFsposd.html#dpos_inst
ZFsposd.html#dpos_cst
ZFsposd.html#dpos_rec
ZFsposd.html#dpos_sum

132 CHAPTER 8. INDUCTIVE TYPES

• Cartesian product:

q × q′ ≜ ⟨p × p′, (X,a)↦ F (X,a) × F ′(X,a),
((x,x′), i)↦ sum_case(i1 ↦ f(x, i1), i2 ↦ f ′(x′, i2), i),
((x,x′), a)↦ g(x, a) ∧ g′(x′, a)⟩

• Dependent sum:

Σ(qi)i∈I ≜ ⟨Σ(pi)i∈I , (X,a)↦ Σi ∶I.Fi(X,a),
((i, x), j)↦ fi(x, j), ((i, x), a)↦ gi(x, a)⟩

• Function type:

Π(qi)i∈I ≜ ⟨Π(pi)i∈I , (X,a)↦ Πi∈I.Fi(X,a),
(h, (i, j))↦ fi(h@i, j), (h, a)↦ ∀i ∈ I. gi(h@i, a)⟩

Example 8.3 (Vectors) The type of vectors is generated by the following W -iso fam-
ily:

inst(0) +Σ(dcst(A) × drec(k) × inst(S(k)))k∈N

This definition introduces two constructors. The first one has no argument besides the
constraint that the index shall be 0. The second one has three arguments: a natural
number k, an element of A and a recursive sub-term with index k, and this constructor
requires that the index is S(k).

The constructors are defined as:

Vnil ≜ inl(∅)
Vcons(k, x, l) ≜ inr(k, (x, (l,∅)))

Example 8.4 (Dependent W -type) The dependentW -type with parameters (A,B, f, g):

Σ((Π(drec(f(x, i)))i∈B(x)) × inst(g(x)))x∈A

(here g has to be a function because of the definition of inst)

8.3 Inductive types and universes
So far, we have given requirements that ensure the existence of a fixpoint. But nothing
is said about the “size” of this fixpoint. However, in a type theory with universes,
besides just proving that some inductive definition is sound (i.e. the associated type
operator has a closure ordinal), we also need to be more precise and find a reasonable
approximation of the universes that contain this definition. The predicativity principle
suggests it should not be lower than any of the sets involved in the type operator.

Let U be a proper Grothendieck universe, that interprets a type-theoretic universe.
In the definition of strictly positive definitions, there is a predicativity condition that

puts an inductive definition in any universe that contains all the constructor argument
types (the Cij of the schematic definition). In the case of W -types, this amounts to
requiring that A and B belong to U .

As a side-remark, we recall that having a type operator F in U → U is not enough
to conclude that its fixpoint µ(F) also belongs to U . Here is a counter-example, where
µ(F) == U :

ZFsposd.html#dpos_consrec
ZFsposd.html#dpos_norec
ZFsposd.html#dpos_param
ZFsposd.html#Vectors
ZFsposd.html#Wd

8.4. ENCODING ZF AS AN INDUCTIVE TYPE 133

Example 8.5 The operator X ↦ ℘(X) ∩ U is a monotonic operator. It belongs to
U → U , but its least fixpoint does not belong to U : it is U . This is because U as a
semi-lattice with union as supremum is not complete (whereas ℘(U) is).

Concretely, we want a criterion on W -isos that will allow us to have the least fix-
point in U . Obviously, parameters A and B should belong to U . But we also need F
to belong to U .4

Definition 8.19 (Universe of W -isos) An W -iso ⟨F,A,B,φ⟩ belongs to U iff

∀X ∈ U.F (X) ∈ U A ∈ U ∀x ∈ A.B(x) ∈ U

The main fact that needs to be established is that the closure ordinal belongs to the
universe. This is so because we have carried out an explicit construction of the closure
ordinal.

Lemma 8.16 (Universe of W -types) If ⟨F,A,B,φ⟩ belongs to U , then

κW (A,B) ∈ U W (A,B) ∈ U

This results extends straightforwardly to W -iso type operators:

Lemma 8.17 (Universe of IND) Let p = ⟨F,A,B,φ⟩ be a W -iso type operator that
belongs to U . Then IND(p) ∈ U .

Proof By universe closure property of TI.

It remains to prove that the predicativity requirement is satisfied by all of the type
operators that generate the class of strictly positive inductive definitions.

Lemma 8.18 (Predicativity of strictly positive inductive types) Given a set I ∈ U ,
two W -iso p and p′ and a family of W -isos (p)i∈I , all belonging to U , the following
W -isos all belong to U :

cst(I) rec p + p′ p × p′ Σ(p)i∈I Π(p)i∈I

This condition applies straightforwardly to inductive families, since they are sub-
sets of their non-dependent version. We stress on the fact that the index type C is not
subject to any constraint.

8.4 Encoding ZF as an inductive type
The main result of section 4.4 is that a model of ZF can be encoded as a type of Coq
with two universes (needed to encode the type of sets and the level of indices) and
extended with TTColl. Moreover, each Grothendieck universes can be encoded within
a predicative universe of Coq. This shows that CIC with n + 2 sorts extended with
TTColl is strictly stronger than ZF with one Grothendieck universe (we call this logic
ZF1).

Conversely, section 8.2 shows that the CIC with one universe (kind, not an object
of the theory), that we call CIC0, can be interpreted5 within IZFR. Similarly, each

4F (X) = {U} is isomorphic to F ′(X) = {∅}. The latter belongs to U but not the former.
5By interpretation, we mean that there exists a transformation from CIC to set theory that preserves

derivability, and such that any typable term of CIC (that is, excluding the top-sort kind) is mapped to a set.
kind is mapped to a proper class.

ZFspos.html#pos_universe
ZFind_w.html#G_W
ZFspos.html#G_IND
ZFspos.html#pos_univ_cst

134 CHAPTER 8. INDUCTIVE TYPES

predicative universe of CIC can be interpreted within a Grothendieck universe. This
entails the relative consistency of CIC0 w.r.t. ZF.

Gathering the results, we have:

CIC1 + TTColl > ZF ≥ CIC0

CIC2 + TTColl > ZF1 ≥ CIC1

⋮

An obvious problem is to determine whether ZF1 also implies TTColl encoded in
the model of CIC1, which would provide a more precise comparison of CIC+TTColl
and ZF.

The inductive type set of section 4.2 (definition 4.11) is an interesting instance of
inductive type. In this section, we assume the existence of a Grothendieck universe U .
This universe is intended to be the sort of the indexes of our sets (the type Tlo).

Definition 8.20 (W -type of sets) The type of sets in our model is a W -type:

sets =W (U,X ↦X)

The goal is to show that our model validates the type-theoretical collection axiom
(TTColl, definition 4.23), which is parameterized by a Grothendieck universe U (the
universe of set indices).

The first important fact to remark is that the sets inductive type is included in U :

Lemma 8.19 (Universe)
sets ⊆ U

Proof Let x ∈ sets. We prove x ∈ U by transfinite induction on the stage of x
belongs to. x = (A,f) for some A ∈ U and f ∈ A → sets. The image of f belong
to earlier stages, and thus belong to U by induction hypothesis. The closure of U by
λ-abstraction and couple, we conclude x ∈ U .

In fact, sets encodes all the well-founded sets of U .
Assuming that U is closed under collection (we informally call this a “ZF uni-

verse”, because it forms a model of ZF), we can show that the TTColl axiom holds
in our model, where universal quantification is represented by dependent product, and
existential quantification by indexed union.

Lemma 8.20 (TTColl) Given a Grothendieck universe U closed under collection:

A ∈ U ⇒ ∃B ∈ U.∀x ∈ A.(∃y ∈ U.R(x, y))⇒ ∃y ∈ B.R(x, y)

the encoding of the type-theoretical collection axiom holds:

∅ ∈ ΠA∈U.ΠR∈A→ sets→ props.
⋃
X∈U

⋃
g∈X→sets

Πi∈A. (⋃
y∈sets

R(i, y))→ ⋃
j∈X

R(i, g(j))

Proof Since we have sets ⊆ U , we can apply the closure of U by collection to R.
This gives a set B in U that contains images by R for each element of A. We take
X = B ∩ cc_set and f the identity function.

This shows that ZF with one Grothendieck universe can prove the consistency of CIC
with two universes extended with TTColl.

ZFind_w.html#sets
ZFind_w.html#sets_incl_U
ZFcoc.html#cc_ttcoll

8.5. INDUCTIVE TYPES IN PROP 135

This allows to refine the results above into (note that TTColl cannot be expressed
as is in CIC0) :

CIC2 + TTColl > ZF1 ≥ CIC1 + TTColl
⋮

Let us summarize this in a slightly more formal way.

Definition 8.21 We define two hierarchies of formalisms (ZFn)n∈N and (CICn)n∈n:

ZFn is ZF extended with n proper Grothendieck universes;

CICn is CIC with sorts Prop, Type0,. . . ,Typen−1, Kind; inductive definitions are
allowed in any sort, including Kind. (Thus n corresponds to the number of
predicative universes that are object of the theory.)

Then we can derive the following result:

CICn+1 + TTColl > ZFn
ZFn ≥ CICn + TTColl

This narrows down a similar result of Werner [57] between ZFC and CIC extended
with some choice axioms. We conjecture that we can improve this result by giving
an interpretation of ZF in CIC0, which would imply the equi-consistency of ZFn and
CICn+TTColl.

As a last remark, we should mention that we have not been able to do the same for
TTRepl. So far, the best results we have managed to prove is:

CIC1 + TTRepl > IZFR ≥ CIC0

CIC2 + TTRepl > IZFR1 ≥ CIC1

⋮

The difficulty in proving that our models of CIC validate TTRepl is to exploit the
uniqueness modulo sets-equality (an adaptation of definition 4.12 to sets). The lat-
ter is not enough to discharge the assumptions of the set-theoretical replacement axiom,
which requires uniqueness up to equality of sets (not the inductive type). Equivalence
class of sets-equality are not sets of U .

8.5 Inductive types in Prop
Inductive types in Prop follow the same syntax as those in Type, but since Prop is
proof-irrelevant, the interpretation of constructors is different. The disjoint sum be-
comes simple union, (dependent) pairs become indexed unions (a.k.a. existential), and
dependent function types are replaced by universal quantification.

Similarly to predicative inductive definitions (those in Type), strictly positive in-
ductive types in Prop are isomorphic to “proof-irrelevant W -types”:

WProp(A,B) ⇐⇒ ∃x ∶A.(B(x)⇒WProp(A,B))

(The impredicativity of inductive definitions in Prop let A and B free to live in any
universe.)

136 CHAPTER 8. INDUCTIVE TYPES

The difficulty with this view is that the type operator associated toW -types in Prop:

F (X) = ⋃
x∈A

(B(x)→X)

is not always stable because of the union (see example 3.3).
The stages of the inductive type can be defined, and the fixpoint theorem implies

that the above operator has a fixpoint. However, the construction of the closure ordinal
has not been solved in IZFR without stability. Of course, in a classical setting, this
becomes trivial since props is the set of booleans and the closure ordinal is at most 1.

An alternative is to first consider the predicative inductive type with the same con-
structor definition, and then project this type to props with T ↦ ∃x ∈ T (in this
notation we have left implicit the coercion from meta-level propositions to elements of
props).

It remains to be seen that the closure ordinal of the inductive type in Type closes
the corresponding type in Prop.

8.6 Advanced features of inductive types

8.6.1 Recursively non-uniform parameters

Non-uniform parameters relax the restriction on parameters to appear with the same
value throughout the definition. One example that illustrates this feature is the accessi-
bility predicate. Without it, the definition would be

Inductive Acc (A:Type) (R:A->A->Prop) : A -> Prop :=
| Acc_intro :

forall x, (forall y, R y x -> Acc A R y) -> Acc A R x.

The case-analysis on an inhabitant of Acc(A,R, t), shows that the branch introduces
a variable x, which is apparently independent of t, although they can be proven equal
by dependent elimination.

But since the index in the conclusion of the constructor is a variable, this index, as
parameters, can be unambiguously inferred from the type of the eliminated object.

Christine Paulin has implemented for Coq an extension of the inductive types that
allows to declare the third argument of Acc as a non-uniform parameter, in the sense
that recursive sub-terms may be invoked with a different value of this argument:

Inductive Acc (A:Type) (R:A->A->Prop) (x:A) : Prop :=
| Acc_intro : (forall y, R y x -> Acc A R y) -> Acc A R x.

The obvious difference is that the constructor has now only one argument. Case-
analysis on a proof Acc(A,R, t) now gives directly the accessibility proofs for any
y smaller than t according to R. However, the recursive scheme has to generalize over
x, because the value of this argument may vary along the recursive subterms. Intu-
itively, non-uniform parameters behave like parameters for pattern-matching, but like
indices for recursive eliminators.

Thus, there might be dependencies between the types corresponding to different
values of non-uniform parameters. This suggests that they can be studied like a special
kind of inductive families, but it happens to be more complex than this, as the following
examples show.

8.6. ADVANCED FEATURES OF INDUCTIVE TYPES 137

An example A common example arises when modeling a semantic domain of tuples.
We wish to define a type Tuple parameterized by a list of types, and forming the type
such that

Tuple(nil) ≈ unit

Tuple(T ∶∶ L) ≈ T × Tuple(L)

So, modulo notation of the values, we would have

(0,true,fun x⇒ x,tt) ∶ Tuple(nat ∶∶ bool ∶∶ (nat→ nat) ∶∶ nil).

A natural candidate, using an index instead of a non-uniform parameter, is the
following definition:

Inductive Tuple : list Type(*i*) -> Type(*j*) :=
| Nil : Tuple nil
| Cons : forall (X:Type(*i*))(Ar:list Type(*i*)),

X -> Tuple Ar -> Tuple (X::Ar).

This definition suffers an annoying issue regarding the universe in which this defi-
nition is defined by Coq: let us call Typei the level of the types in the list, and Typej
the level of Tuple. We would expect Typej = Typei just like homogeneous lists of
X ∶ Typei are of type Typei.

But since X appears as an argument of a constructor, the predicativity requirement
we have seen would require Typei < Typej . The fact that X is not a parameter that
is free to range over Typei, but rather is constrained to a unique value (once fixed the
value of the index), cannot be detected automatically by Coq in the general case.

There is a standard trick to get out of this issue in this specific example, by replacing
the inductive definition into a recursive definition:

Fixpoint Tuple (l:list Type) :=
match l with
| nil => unit
| cons X Ar => X * Tuple Ar
end.

But it does not apply in the general case, for at least two reasons: one is that the
index is not necessarily an inductive object, and the second one is that the index may
not structurally decrease along the recursive calls. Consider examples like this:

Inductive T (X:Type) : Type :=
N1 : X -> T X

| N2 : T (X*X) -> T X.

In this section, we prove that non-uniform parameters can be simulated by indices
without the universe penalty we have singled out.

The idea is that the non-uniform parameter can change along the recursive sub-
terms, but given the value of the parameter at the top-level, the accessible values form
a small set: they form a tree which arity is the same as the arity of the constructor in
the original definition, regardless of the size of the parameter type.

The constraint of non-uniform parameters (it should be a variable only in the con-
clusion of the constructors), makes it possible to re-compute the running value of the
parameter from its initial value and the path from the root of the tree.

On our running example, the transformation yields an inductive definition equiva-
lent to this one:

138 CHAPTER 8. INDUCTIVE TYPES

Inductive Tup_aux (Ar:list Type) : nat -> Type :=
| Nil : Tup_aux Ar (List.length Ar)
| Cons n : List.nth Ar n -> Tup_aux Ar (S n) -> Tup_aux Ar n.
Definition Tuple Ar := Tup_aux Ar 0.

Here, Ar is a regular parameter, and we have an index which is a small type. It indicates
the position in the list of the current item. Note that the level of the types do not
interfere with the level of the tuples, because the list of types is a parameter, and thus
does not appear as a constructor argument.

Stating the problem in the general case Let us consider the most general case: a
variant of W-types with an extra parameter (of type P) updated by a function f :

Parameter P : Type(*p*).
Parameter A : P -> Type(*i*). (* Payload *)
Parameter B : forall p:P, A p -> Type(*j*). (* Arity *)
(* Parameter update: *)
Parameter f : forall (p:P) (x:A p), B p x -> P.
Inductive Wnup (p:P) : Type(*i*) :=
| Node (x:A p) (_:forall i:B p x, Wnup (f p x i)).

In comparison with the case of inductive families, we can see that parameters A
and B can depend on the non-uniform parameter, unlike indices.

Inductive definitions with non-uniform parameters generalize inductive families.
An inductive family with parameters A, B, C, f and g can be encoded by:

P ′ ∶= C

A′ ∶= (p ∶ P ′)↦ {x ∶ A ∣ p = g(x)}
B′ ∶= (p ∶ P ′, x ∶ A′(p))↦ B(x)
f ′ ∶= (p ∶ P ′, x ∶ A′(p), i ∶ B′(p, x))↦ f(x, i)

Conversely, encoding non-uniform parameters as an index is possible, but raises the
issue about universe levels we have already mentioned. The type Wnup above encoded
like this:

Inductive W’ : P -> Type(*i*) :=
| Node’ (p:P) (x:A x) (_:forall i:B p x, W’ (f p x i)) : W’ p.

allows to derive the expected introduction and elimination rules, but it requires the
universe constraint Typep ≤ Typei, which is not require in the definition Wnup above.

Reducing this new feature to already existing ones can be done at two levels. Either
we describe the encoding at the theory level, by suggesting a syntactic transformation
of the definition using the new feature in terms of another definition not using it (as
done above with W’). This implies not only to give the transformation of the type,
but we shall also explain how the introduction, elimination and conversion rule can be
encoded. This often fails in an intensional setting: convertibility on W’ is not exactly
the same as that on Wnup. The other way is to perform the transformation at the
semantic level. Since our model is extensional, we will not have this problem.

For the clarity of the presentation we will first describe most of the transformation
within Coq, in a simplified case (no payload type A), and assuming functional exten-
sionality. Then, in section 8.6.1, we will proceed to the general case, at the semantic
level.

8.6. ADVANCED FEATURES OF INDUCTIVE TYPES 139

Within Coq

LIBRARY: NONUNIFORM

Let us consider a generic instance of an inductive definition with a non-uniform
parameter, but without payload,

The following definition is accepted

Parameter P : Type(*p*).
Parameter B : P -> Type(*i*).
Parameter f : forall (p:P), B p -> P.
Inductive Wnup (p:P) : Type(*i*) :=
| Node (_:forall i:B p, Wnup (f p i)).

The difficult case is when the universe of parameters Typep is bigger than the
universe of the inductive definition Typei. Informally we say that types of Typei are
“small”, whereas those of Typep are called “big”.

The gist of the encoding is to notice that the parameter values appearing in the
subterms of Wnup(p) are of the form p, f(p, i), f(f(p, i), i′), etc. All these values
can be computed from the same parameter value p which is big, and a variable part
which is a list of indices [], [i] or [i; i′]. This variable part form a small type: it is
formed of an heterogeneous list of indices belonging to B(p′) for some p′ (each index
has his own p′).

We define the paths of length n starting from p by recursion on n:

Fixpoint path (p:P) (n:nat) : Type(*i*) :=
match n with
| 0 => unit
| S k => {i:B p & path (f p i) k }
end.

The key point is that path(p,n) is small, in contrast with the equivalent inductive
definition:

Inductive path : P -> Type(*p*) :=
| Here
| Next (p:P) (i:B p) (l:path (f p i)) : path p.

which would be big. So we rely crucially on the possibility to define a recursive func-
tion producing small types while an argument ranges over a big type. With simpler
type theories (like Fω) where this feature is not available, Abel [3] has shown that
non-uniform parameters cannot be encoded and actually increase the expressivity.

Another important brick is the decoding function of paths given an origin p. It
computes the value of the parameter at the position pointed by the path:

Fixpoint decn p n : path p n -> P :=
match n return path p n -> P with
| 0 => fun _ => p
| S k => fun q => let (i,l’) := q in decn (f p i) k l’
end.

The path of a sub-tree is obtained by extension with index i:

Fixpoint extpath p n :
forall l:path p n, B(decn p n l) -> path p (S n) :=

match n return forall l:path p n, B(decn p n l)->path p (S n)
with

NonUniform.html

140 CHAPTER 8. INDUCTIVE TYPES

| 0 => fun _ i => existT _ i tt
| S k => fun l =>

match l return B (decn p (S k) l) -> path p (S (S k)) with
| existT i’ l’ => fun i => existT _ i’ (extpath _ k l’ i)
end

end.

The main property of extpath is that it correspond to f at the level of paths:

decn(p,S(n),extpath(p,n, l, i)) = f(decn(p,n, l), i)

The key definition in encoding the type Wnup is the following type of trees, where
the running value of the non-uniform parameter is encoded as the original value of the
parameter and a path:

Inductive W2 (p:P) : forall n, path p n -> Type(*i*) :=
C2 : forall m l,

(forall i:B(decn p m l),W2 p (S m) (extpath _ _ l i))->
W2 p m l.

For readability, it is convenient to group the arguments that encode parameters, and
provide shorter alternative to W2, C2, decn, f:

Record P’ :T2:= mkP’ { _p : P; _m : nat; _l : path _p _m }.
Definition d3 (p:P’) : P := decn (_p p) (_m p) (_l p).
Definition i0 (p:P) : P’ := mkP’ p 0 tt.
Definition f3 (p:P’) (i:B(d3 p)) : P’ :=
mkP’ (_p p) (S (_m p)) (extpath _ _ (_l p) i).

Definition W3 (p:P’) : T1 := W2 (_p p) (_m p) (_l p).
Definition C3 (p:P’) (g:forall i:B(d3 p), W3 (f3 p i)) : W3 p :=
C2 (_p p) (_m p) (_l p) g.

Definition unC3 (p:P’) (w:W3 p) : forall i:B(d3 p), W3 (f3 p i) :=
match w in W2 _ n l
return forall i, W3 (mkP’ _ _ (extpath _ _ l i))

with
| C2 m l’ g => g
end.

The following definition is used to “rebase” the origin a path to another with the
same meaning (details of the equality proof hidden):

Fixpoint tr p (w:W3 p) p’ (e:d3 p=d3 p’): W3 p’ :=
C3 p’ (fun i : B (d3 p’) =>

tr _ (unC3 p w (eq_rect_r B i e)) (f3 p’ i) _).

The equality d3(p) = d3(p′) means that both paths lead to the same parameter value.
It is used to “cast” indices of type B(d3(p′)) to type B(d3(p)).

The type W ′(p) below, that simulates the expected Wnup type, is defined as in-
stance of W3 with an empty path. It enjoys the same introduction and elimination rules
as the expected type Wnup, by rebasing the paths of the sub-trees.

Definition W’ (p:P) : Type(*i*) := W3 (i0 p).
Definition C’ (p:P) (g:forall i, W’ (f p i)) : W’ p :=
C3 (i0 p) (fun i : B p =>

tr (i0(f p i)) (g i) (f3 (i0 p) i) eq_refl).
Definition unC’ p (w : W’ p) (i:B p) : W’ (f p i) :=
tr (f3 (i0 p) i) (unC3 (i0 p) w i) (i0 (f p i)) eq_refl.

8.6. ADVANCED FEATURES OF INDUCTIVE TYPES 141

The non-dependent eliminator of W ′ can then easily be encoded. However, the de-
pendent version implies the principle that any value of the type is equal to a constructor
form. This is where the fact that are doing the encoding in an intensional formalism
makes it more difficult.

Assuming functional extensionality, a sort of “eta”-expansion result can be proven:

Lemma W’_surj p (w:W’ p) : w = C’ p (unC’ p w).

The above lemma does not need Streicher’s axiom K, with non-trivial reasoning on
proof objects.

The dependent eliminator follows from W’_surj. Proving the equations result-
ing from combining introduction and elimination rules (cut-elimination) is even more
difficult. In particular it needs assumptions on the extensionality axiom, namely that if
the proof of f(x) = g(x) (for each x) is reflexivity, then the equality proof of f = g
produced by the axiom is also the reflexivity.

We have not encoded this proof formally. Let us focus on encoding this argument
at the level of the model, which extensional flavor will make it simpler.

At the semantic level

LIBRARY: ZFIND_WNUP

We consider the parameters corresponding to the generic instance of W -types with
non-uniform parameters:

P ∶ set

A ∶ set→ set

B ∶ set→ set→ set

f ∶ set→ set→ set→ set

with the typing constraint for f :

∀p ∈ P.∀x ∈ A(p).∀i ∈ B(p, x). f(p, x, i) ∈ P.

The goal is to build a type family, least solution of the recursive equation

Wp(p) == Σx∈A(p). (Πi∈B(p, x).Wp(f(p, x, i))).

This recursive equation differs from that of inductive families because the pay-
load and subterm-index types may depend on the parameter p. As already noted, non-
uniform parameters can be encoded as an inductive family by adding a constructor
argument of the parameter type. Although this encoding raises issues regarding uni-
verses, it is an important intermediate construction. As a second step, we will use it,
replacing the actual parameter by paths.

Encoding non-uniform parameters as indices The encoding of non-uniform pa-
rameters as indices is the least fixpoint of the following type family operator (using
FWd, def. 8.12) :

FWp(X,p) ≜ FWd(P,
Σp∈P.A(p),
(p, x)↦ B(p, x),
((p, x), i)↦ f(p, x, i),
((p, x), p′)↦ p == p′)

ZFind_wnup.html

142 CHAPTER 8. INDUCTIVE TYPES

Lemma 8.21 (W0) The above operator admits a fixpoint W0:

W0(p) == Σx∈A(p). (Πi∈B(p, x).W0(f(p, x, i)))

with closure ordinal κ0 ≜ κW (Σp∈P.A(p), (p,x)↦B(p,x))

Proof The construction could reuse the definition of W -type families, as suggested by
the type operator above. But formally, we have recoded the argument in the current spe-
cific situation. It suffices to notice that (X ↦ Σx∈A(p). (Πi∈B(p, x).X(f(p, x, i))))
is isomorphic to FWp. The latter operator has closure ordinal κ0, so does the former.

This definition has the problem that we mentioned in introduction regarding uni-
verses: the universe of W0 has to be at least as high as that of the parameter P , since
parameters appear in the payload.

Lemma 8.22 (Universe of W0) If P , A, B all belong to a proper Grothendieck uni-
verse U :

P ∈ U ∀p ∈ P.A(p) ∈ U ∀p ∈ P.∀x ∈ A(p).B(p, x) ∈ U

then κ0 ∈ U and W0(p) ∈ U for all p ∈ U .

We would expect a result conveying that W0(p) is in the smallest universe con-
taining A and B, but the stage κ0, which closes all instances of W0, needs to be in a
universe that contains P .

To illustrate the idea of this claim, let us consider the definition

Inductive I (X:Type(*p*)) (R:X->X->Prop) (x:X): Type(*p*) :=
| C: (forall y, R y x -> I X R y) -> I X R x.

which is the accessibility predicate, but defined as a type rather than a proposition.
(X and R are uniform parameters, but we could have packed the three arguments in a
record, which would only be a non-uniform parameter.) For each triple (X,R,x), the
type I(X,R,x) is defined after a number of iteration that corresponds to the rank of x
in the order R. This is an ordinal of the universe of X (think of X as a Grothendieck
universe). But for every ordinal of X , there exists a well-founded relation which order
is that ordinal (the membership relation of that ordinal). So, the closure ordinal of the
family as a whole is beyond the supremum of all the ordinals of X , and thus cannot
belong to X . This argument is an instance of the Burali-Forti paradox.

The conclusion of this is that we will have to consider the closure ordinal individu-
ally for each value of the non-uniform parameter. Each of these ordinals will be small,
but the supremum when the parameter ranges over P might well be big.

Dealing with big parameters The idea is to replace the information stored within the
constructor by a small information. Recalling the construction of the previous section,
this will be paths.

Definition 8.22 (Paths) The type of paths is the least solution of:

L(X,p) = {∅} ∪Σx ∈ A(p).Σi ∈ B(p, x).X(f(p, x, i))

We define
P ′(p) ≜ TIF(L,ω, p)

ZFind_wnup.html#W
ZFind_wnup.html#G_W
ZFind_wnup.html#Arg'

8.6. ADVANCED FEATURES OF INDUCTIVE TYPES 143

The type P ′ is the least fixpoint of L because L is continuous. This type is an encoding
of all parameters reachable from p with function f .

The path decoding function is defined by higher-order primitive recursion over the
dependent list:

Definition 8.23 (Decoding paths) The decoding function of paths is defined by struc-
tural recursion on the path:

dec(p,∅) ≜ p dec(p, (x, i, q)) ≜ dec(f(p, x, i), q)

The type of this function is:

p ∈ P q ∈ P ′(p)
dec(p, q) ∈ P

Definition 8.24 (Path extension) The extension of a path is defined by structural re-
cursion on the path:

extln(∅, x, i) ≜ (x, i,∅) extln((y, j, q), x, i) ≜ (y, j,extln(q, x, i))

The type of this function is:

p ∈ P q ∈ P ′(p) x ∈ A(dec(p, q)) i ∈ B(dec(p, q), x)
extln(q, x, i) ∈ P ′(p)

Definition 8.25 (Small encoding) For each p ∈ P , we define WW (p) an instance of
W0 (lemma 8.21) indexed by P ′(p)

P0 ≜ P ′(p)
A0(q) ≜ A(dec(p, q))

B0(q, x) ≜ B(dec(p, q), x)
f0(q, x, i) ≜ extln(q, x, i)

and let κWW (p) be κ0(P0,A0,B0, f0).

Ordinal κWW (p) closesWW (p) (lemma 8.21). The next step is to prove that this type
is invariant by rebasing the paths:

WW (f(p, x, i),∅) ==WW (p, (x, i,∅))

The situation is slightly different in the current extensional setting, compared to the
intensional setting of the previous construction. Since the payload and sub-tree index
type of WW are equal in both types, we do not need to explicitly translate from one
type to the other. Instead, we need to prove that these two types are the same, given
a correct translation of the indices. We first prove that the stages of both types are the
same, and then a result about the respective closure ordinals.

We can prove a morphism result (this is the counterpart of the tr function of pre-
vious section):

Lemma 8.23 (WW-morphism) Let (P,A,B, f) and (P ′,A′,B′, f ′) two sets ofW0-
type parameters. A function φ is a morphism between these two instances iff:

• ∀p ∈ P.φ(p) ∈ P ′

ZFind_wnup.html#Dec
ZFind_wnup.html#extln
ZFind_wnup.html#WW
ZFind_wnup.html#W_simul

144 CHAPTER 8. INDUCTIVE TYPES

• ∀p ∈ P.A(p) == A′(f(p))

• ∀p ∈ P.∀x ∈ A(p).B(p, x) == B′(f(p), x)

• ∀p ∈ P.∀x ∈ A(p).∀i ∈ B(p, x). φ(f(p, x, i)) == f ′(φ(p), x, i)

If such a morphism exists, then

Wα
p (P,A,B, f, p) ==Wα

p (P ′,A′,B′, f ′, φ(p))

It remains to see that the closure ordinal of WW (p, (x, i,∅)) (this is κWW (p)
also closes WW (f(p, x, i),∅) (κWW (f(p, x, i))). Hopefully we can prove that the
former ordinal is not less than the latter.

Lemma 8.24 (Strengthening of closure ordinal by rebasing) Given

p ∈ P x ∈ A(p) i ∈ B(p, x),

the closure ordinal of WW (f(p, x, i)) is smaller or equal to the closure ordinal of
WW (p):

κWW (f(p, x, i)) ≤ κWW (p)

Proof The key remark is that the parameters values reachable from f(p, x, i) are all
reachable from p (but possibly not vice versa). So κWW (f(p, x, i)) appears as a supre-
mum of a family of ordinals that is a subset of the one for κWW (p).

Lemma 8.25 (Fixpoint equation) WW (p)

WW (p) == FWp(WW,p)

We can now conclude that the non-uniform parameters do not interfere with the
universe of WW (p):

Lemma 8.26 (Stronger universe condition) If

∀p ∈ P.A(p) ∈ U ∀p ∈ P.∀x ∈ A(p).B(p, x) ∈ U

then WW (p) ∈ U for all p ∈ P .

Proof By lemma 8.22, and the fact that the set of paths (P ′(p)) belongs to U , any
proper Grothendieck universe.

We have not developed the layer corresponding to the strictly positive inductive
definitions. It would consist in a generalization of the inductive family case where all
constant sets (and also first component of Σ-types and domain of products) can depend
on the parameter.

This should be less ad-hoc than the constructors of W -iso families: index con-
straints and constant types would be the same constructor. Indices would not be any-
more implicitly constrained by Leibniz equality, which can be a problem in some in-
terpretations of CIC.6

Once the constraints have been separated like this, Leibniz equality is not an induc-
tive family anymore. It would have to be considered as a primitive type constructor,
independent from the inductive type machinery.

6For instance, in Homotopy Type Theory, equality objects are interpreted as paths. They are not singleton
types, as the entanglement of equality with inductive types assumes silently.

ZFind_wnup.html#smaller_parameter
ZFind_wnup.html#WW_eqn
ZFind_wnup.html#G_WW

8.6. ADVANCED FEATURES OF INDUCTIVE TYPES 145

8.6.2 Nested inductive types

LIBRARIES: ZFNEST, NEST

We have seen a set of sufficient properties (monotonicity, isomorphism with a W -
type) to ensure that a type operator reaches a fixpoint after a number of iterations, and
that this least fixpoint belongs to the expected universe.

Thanks to our open approach, it easy to consider that any type operator enjoying
these properties can be accepted. We remark now that this includes nested inductive
types.

A typical example is the type of trees of arbitrary (finite) arity, that can be viewed
either as a mutually inductive types together with the type of “forests”,

Inductive tree : Type :=
| Node : forest -> tree
with forest : Type :=
| Cons : tree -> forest -> forest
| Nil : forest.

or as a nested typed, where forests are the lists (previously defined) of trees:

Inductive tree : Type :=
| Node : list tree -> tree.

These two styles are considered as mostly equivalent (up to technical details), and
nested inductive types are often justified by appealing a transformation that turns nested
inductive types into mutual inductive types, as in [47].

A good reason for this is that mutually inductive definitions, when all types belong
to the same universe, can be encoded as an inductive family. The index is used to bind
each constructor to its type:

Inductive tree_forest : bool -> Type :=
| Node : tree_forest false -> tree_forest true
| Cons :

tree_forest true -> tree_forest false -> tree_forest false
| Nil : tree_forest false.
Definition tree := tree_forest true.
Definition forest := tree_forest false.

However, this might not work as smoothly in mutual definitions in different sorts.
See next section for a more detailed explanation. This might even suggest that mu-
tual inductive definitions might be better understood as a variant of nested inductive
definitions.

The goal of this section is to prove the soundness of the notion of nested type. The
idea is simple: nesting the type of lists inside trees amounts to considering that the type
operator X ↦X∗ is another constructor of W -isos (see section 8.2).

We recall that X∗ = µ(Y ↦ 1 +X × Y).
So more generally, considering a binary type operator F , we want to prove that

X ↦ µ(Y ↦ F (X,Y)), or more generally, that X ↦ (Y ↦ F (X,Y))α is a W -iso,
under some conditions on F to be determined.

A natural criterion seems that if F is a W -iso on each variable, then it is possible
to iterate over one of its parameter and obtain a W -iso. As a matter of fact, we have
consider a slightly more constrained criterion, that corresponds to the notion of n-
variable SPIT (Abbott, Altenkirch and Ghani [1]).

ZFnest.html
Nest.html

146 CHAPTER 8. INDUCTIVE TYPES

We assume we work in the following context:

F ∶ set→ set→ set

A ∶ set
B ∶ set→ set

C ∶ set→ set

φ ∶ set→ set

such that
F (X,Y) ≈φ Σx ∶A. (B(x)→X) × (C(x)→ Y).

Variable X represents the inductive that will contain the nested type (the container,
trees in the example), and Y represents the nested type (e.g. lists). This condition
obviously implies that F is a W -iso on both X and Y .

Informally, F (X,Y) represents abstract nodes of a tree labeled with payload x ∶ A,
has B(x) children that are of the container type, and C(x) children that are of the
nested type.

Our goal is to prove that the type operator Gα(X) = (Y ↦ F (X,Y))α is a W -iso,
which means that it it should be isomorphic to FW (A′,B′) for some A′ and B′. More
precisely:

G(X) ≈ Σx′ ∶A′. (B′(x′)→X)
(and also with the corresponding isomorphism).

Unknowns A′ and B′ shall satisfy
We have the following equations:

F (X,G(X)) ≈ Σx ∶A. (B(x)→X) × (C(x)→ G(X))
≈ Σx ∶A. (B(x)→X) × (C(x)→ Σx′ ∶A′. (B′(x′)→X))
≈ Σx ∶A. (B(x)→X)

×Σf ∶ C(x)→ A′. (Πi ∶C(x).B′(f(i))→X)
≈ Σ(x, f) ∶(Σx ∶A. (C(x)→ A′)).

(B(x) +Σi ∶C(x).B′(f(i))→X)

So, if we want F (X,G(X)) ≈ G(X), we need to solve

A′ ≈ Σx ∶A. (C(x)→ A′)
B′(a, f) ≈ B(a) +Σi ∶C(a). (B′(f(i))

We notice that the former correspond to the recursive equation of a W -type labeled
with x ∶ A and indexed by C(x). This tree describes all the nodes of the nested kind.
This can be understood graphically:

x ∶ A

X1

β1 ⋯

X2

β2

x′1 ∶ A′

X3

β′1

X4

β′2

γ1 ⋯

x′2 ∶ A′

X5

β′′1

X6

β′′2

γ2

8.6. ADVANCED FEATURES OF INDUCTIVE TYPES 147

An element of F (X,G(X)) is a node (x ∶ A) with children of type X directly
connected with indices in B (on the figure: β1, β2), and nested nodes (represented by
circles), indexed by C (γ1 and γ2). The assumption that G(X) is isomorphic to an W -
type, means that those nested nodes are themselves trees with payloadA′ and sub-trees
of type X indexed by B′ (indices β′1, β′2, β′′1 and β′′2).

The sequence of transformations consists in removing the first generation of nested
nodes. The payload of nested nodes (x′1 and x′2) is merged with the payload x, forming
a new tree node indexed by C. The children of the nested nodes become connected
to the main node, with an index that is the concatenation of paths. So, the index type
becomes B(x) +Σγ ∶C(x).B′(f(γ)), with f the children accessor function.

x ∶A, γ1 ↦ (x′1 ∶A′), γ2 ↦ (x′2 ∶A′)

X1

β1

X2

β2

X3

(γ
1 ,β

′1)

X4

(γ
1 , β ′2)

X5

(γ
2 , β ′′1)

X6

(γ
2 , β ′′

2)

So A′ is a W -type and B′ is a W -type family. B′ has at most one sub-tree, so it
is a type of dependent lists. These lists represent the paths between container nodes,
possibly indirectly reached trough nested nodes.

Definition 8.26 (Tree of nested payloads) The tree of nested payloads at depth α is
the stage α of a tree labeled with A and indexed by C:

A′
α ≜ FαW (A,C)

Definition 8.27 (Paths) The type B′ of dependent lists is defined by first defining lists
of the union of the member types, then a predicate identifying the well-formed depen-
dent lists:

B′
0 ≜ (⋃

x∈A
(B(x) ∪C(x)))∗

i ∈ B(a)
B_ok((a, f), [i])

i ∈ C(a) B_ok(f(i), l)
B_ok((a, f), i ∶∶ l)

B′(x′) ≜ {l ∈ B′
0 ∣ B_ok(x′, l)}

There is no need to consider the stages of the paths (partial paths), since they are
paths of tree of payloads, which depth is limited by the iteration ordinal α.

Lemma 8.27 (Isomorphism step) There exists a function g, such that whenever

Y ≈f FW (FαW (A,C),B
′,X),

then we have
F (X,Y) ≈g ○ f FW (Fα

+
W (A,C),B

′,X)

ZFnest.html#NestedInductive.A'i
ZFnest.html#NestedInductive.B'0
ZFnest.html#NestedInductive.B'
ZFnest.html#giso

148 CHAPTER 8. INDUCTIVE TYPES

Proof

In other words, if Y represents a tree with container nodes of type X and with at
most α levels of nested nodes, then F (X,Y) is a tree with container nodes of type X
and with at most α+ levels of nested nodes.

The previous lemma can be iterated:

Lemma 8.28 (Isomorphism)

(Y ↦ F (X,Y))α ≈gα FW ((FαW (A,C),B′,X)

Going back to the example of trees. Consider a tree T with two sub-trees T1 and
T2:

T

Cons

T1

β1

Cons

T2

β2

Nil

γ3

γ2

γ1

The generations of nested nodes are successively integrated to the carrier node. The
payloads stored on the nested nodes, form a tree (of arity C) of the same shape as the
tree of nested nodes. The container nodes children of a nested node (T1 and T2) are
connected to the main container node, labeled by the paths to each of them ([γ1, β1]
and [γ1, γ2, β2]). These paths are a sequence of C-indices ending with one B-index.
This leads to this tree:

T,

T1

[γ1, β1]

T2

[γ1, γ2, β1]

As a corollary, we have that the nested type consisting in iterating α times F (with
recursive subterms plugged on Y) is a W -iso operator.

Lemma 8.29 (Nested type) The following definition

⟨X ↦ (Y ↦ F (X,Y))α, FαW (A,C), B′⟩

is a W -iso.

We conclude, as in [1], that nesting strictly positive inductive definitions preserves
the property of isomorphism with W -types. The generalization to arities greater than
two is of no theoretical difficulty.

Remarks: we have not shown that checking separately that X ↦ F (X,Y) is a
W -iso for all Y and that Y ↦ F (X,Y) is W -iso implies that F is W -isomorphic.

ZFnest.html#giso_it
ZFnest.html#isPos_nest

8.6. ADVANCED FEATURES OF INDUCTIVE TYPES 149

8.6.3 Mutual inductive definitions in different sorts

We have already addressed the problem of mutual inductive types of the same sort by
encoding as an inductive family. In the case we have only inductive types in Type, the
predicativity constraints is such that any group of actually mutually inductive types7

has to be in the same universe.
Inductive types in Prop are different: they are not subject to the predicativity

conditions, so definitions in Prop can refer to definitions in Type and vice versa.
Standard paradoxes are avoided because the inductive type in Prop will have its elim-
ination restricted, to avoid getting an element of a higher universe out of an element of
a lower one. In other terms, constructors of inductive types in Prop are not injective;
they would rather be called projections. However, this leads to issues when defining
the closure ordinal of such constructions.

Consider the totally artificial example:

Inductive I : Type1 :=
Ii : J -> I

with J : Prop :=
Ji : K -> J

with K : Type2 :=
Ki : Type1 -> I -> K.

If we view these definitions as a three-member family, the closure ordinal will be an
ordinal that may not belong to the lower universes like Type1. This will be an issue to
justify that I actually belongs to this universe.

So the nested-as-mutual-inductive-types approach mixes closure ordinals of the in-
ductive type with the nested types. We suggest it is more appropriate to view mutual
inductive as syntactic sugar for a subclass of nested inductive types. The construction
amounts to the following definitions:

Inductive K’ (I:Type1) : Type2 :=
Ki : Type1 -> I -> K’ I.

Inductive J’ (K:Type2) : Prop :=
Ji’ : K -> J’ K.

Inductive I : Type1 :=
Ii’: J’ (K’ I) -> I.

Definition J := J’ (K’ I).
Definition K := K’ I.

The order in which the inductive types are abstracted and then instantiated by nesting
is not relevant.

In the above definition K’ corresponds to the fixpoint of the constructor of K, with
a possibly large closure ordinal. Then, the same holds for J’, which may also have a
large closure ordinal, because it has a constructor argument in Type2.8 The definition
of I uses nested type K’ inside nested type J’. In this picture, between each iteration
of the constructors of I, we iterate the nested operator with the large closure ordi-
nal, producing a small type J’(K’ I). Hence, this process closes I with an ordinal
corresponding to its universe.

7By “actual”, we mean to rule out trivial cases of definitions that do not refer to the others.
8Although we have not managed to characterize the closure ordinal of inductive definitions in Prop

within IZFR, we assume the situation is somewhat similar to the case of IZFC .

150 CHAPTER 8. INDUCTIVE TYPES

8.7 Towards a strong normalization proof
The construction of reducibility candidates that has been sketched in the previous chap-
ter should generalize without particular problem to W -types.

The main problem that remains unsolved is the inhabitability of all types, necessary
condition to ensure strong normalization in all contexts (i.e. including under binders).

One approach, taken for instance in Altenkirch’s Λ-sets models, is to decorate every
type with a � element, which is realized only by neutral terms.

However, this still suffers a misfeature that might be a problem with the objective of
justifying all extensional principle, at least at the propositional level (we have already
pointed out that propositional extensionality at the definitional level was incompatible
with strong normalization).

Example 8.6 Consider the expression of type T :

match t return T with ... end.

How the case-analysis operator can be interpreted ? If the value of t is �, it has to
be a value of T . No information can be taken out of the branch: there might be no
branches if t belongs to an inductive type without constructors (e.g. False). The
obvious answer is to take the � of type T . But this goes against fully extensional
models (including the intuitive interpretation of inductive types) where case-analysis is
supposed to depend only on the scrutinee and the branches.

A better, though a priori stronger requirement is that � is the same object for all
types. The empty set seems the perfect candidate given the following observations:

• The application of functions is such that the empty set applied to any argument
returns the empty set. This entails equation �@v == �, which is compatible with
the elimination rule of product types.

• Regarding inductive types, case-analysis (see definition 7.4) has been defined in
such a way that whenever the scrutinee is not in a constructor form, then the
value is the empty set:

NATCASE(f, g,∅) == ∅

Still, given the very strict notion of equality (set equality), preserving functional
extensionality seems in danger. Considering the natural numbers, this extra � value
might be added in different ways. This stems to answering to the question: given a
function f , what is the value of f(�)? If we have non-strict semantics, f(�) might be
different from �. Then, f and a strict analogous of f :

fun x => match x with 0 => f x | S _ => f x end

cannot have the same set-denotation (application of � discriminates between them),
although they agree on all closed natural numbers. Therefore, strict semantics seem
unavoidable, unless we drastically change the way of dealing with equality in the model
construction.

Part III

Conclusions

151

Chapter 9

Conclusions

9.1 Summary of results
We recall the contributions of this thesis. They can be classified in three categories:

• the development of a library of intuitionistic set-theoretical notions;

• interpretations of set theory in type theory with inductive types;

• interpretations of type theories with inductive types in set theory, and the proof
of important metatheoretical properties such as consistency and strong normal-
ization.

The conjunction of the last two points form a mutual relative consistency result (but
not yet an equiconsistency result) between a family of set theoretical formalisms, and
a family of type-theoretical formalisms which are close to Coq’s theory.

9.1.1 Intuitionistic set theory

In order to avoid the trap of encoding an unsound feature by itself, we have built, and
partially axiomatized a layer inside Coq that encodes the intuitionistic set theory IZFR.
Coq has then been used as a theorem prover in a higher-order set theory.

We have then developed libraries supporting common constructions of set theory:
natural numbers, functions, ordinals, fixpoints, and Grothendieck universe. These con-
structions are rather standard, with the notable exception of ordinals and fixpoint theo-
rems.

With the usual definition, many properties of ordinals are lost. Hopefully, Tay-
lor’s plump ordinals fix most of the issues. Intuitionistic fixpoint theorems are still to
be understood better. We have given simple counter-examples to intuitions that hold
classically, but fail in IZFR.

It appeared that the situation was significantly more complex in IZFR than in IZFC .
In particular, the existence of a closure ordinal for the iteration of a bounded monotonic
operator in IZFR was made simpler by the stability requirement.

There is an intuitive connection between stability and replacement: replacement
works with objects that are fully specified (the functionality of the relation), while col-
lection is able to work with under-specified objects (and produce an under-specified

153

154 CHAPTER 9. CONCLUSIONS

set). Stability conveys the idea that the monotonic operator only uses a “fully specifi-
able” part of the input.

Although we believe that the stability requirement can be (at least partially) shown
as unnecessary, we cannot exclude that studying the convergence of non-stable oper-
ators may uncover issues. This could help “measuring the gap” between IZFR and
IZFC .

It is harder to work within intuitionistic set theory. We have to find alternatives to
the use of “sledgehammer” principles such as the axiom of choice or collection. Rea-
soning in IZFR forced us to be more explicit. This is a price to pay, but we are rewarded
by the fact that we have more informative, more convincing constructions. All the ex-
istential properties hide a deterministic specification, and often even a construction, by
the existential witness property.

9.1.2 Interpretation of set theory in type theory

Our motivation for giving interpretations of set theory within type theory was to under-
stand how much of set theory could be understood in constructive terms, and to reduce
as much as possible the power of axioms used.

Reducing the power of the meta-theory has two benefits. Firstly, it increases the
confidence in the evidences given, by relying on less principles. Secondly, it gives
a better idea of the proof-theoretic strength of the target formalism w.r.t. the meta-
formalism.

The main contribution is to have an axiom (TTColl) that can be added to Coq and
have the power of ZF theory, through an interpretation. This interpretation extends
to predicative universes, which correspond to Grothendieck universes. The converse
translation has not been carried out in the same terms: a model of type theory has
been built within CIC, which gives a strict comparison of the proof-theoretic strength.
We have conjectured that this model could be refined into an interpretation of set the-
ory with type theory, thus yielding an equiconsistency result between hierarchies of
CIC+TTColl and ZF.

A by-product of this modular interpretation of set theory within type-theory is the
notion of sublogic. It provides a general construction of first-order (resp. higher-
order) logic from an arbitrary monad. Some examples of monads have been showed to
straightforwardly represent proof-theoretic translations such as Gödel’s negated trans-
lation and Friedman’s A-translation.

This approach is interesting both at a theoretical and practical level. On the theo-
retical side, it gives a common structure behind the above-mentioned translations. By
reasoning in an abstract sublogic, the same formal proof can lead to proofs in intuition-
istic logic, classical logic, or perform the A-translation. This is what allowed to build
a model of (classical ZF) in the intuitionistic logic of Coq.

In practice, it allows to make developments that are compatible by construction
with many proof-theoretic translations, and the notational burden is very light: the
conjunction and universal quantification of Coq can be reused. Even the needed proof
support is light: a couple of tactics makes reasoning within a sublogic similar to reason-
ing directly in the logic of Coq. The main difference is indeed similar to the restriction
of elimination of Prop-connectives.

9.2. CONCLUSIONS ABOUT THE FORMALIZATION 155

9.1.3 Interpretation of type theory in set theory

We have produced a model of the Calculus of Inductive Constructions. This appears as
the result of an incremental construction, starting from the Calculus of Constructions,
and then modeling each feature independently: predicative universes and inductive
types. The shallow embedding approach allowed to seamlessly incorporate all these
features and form the model of CIC.

The use of Grothendieck universes (a notion equivalent to inaccessible cardinals)
to interpret predicative universes may look overkill: there are models that are much
smaller (e.g. countable). However, this choice have proven to be a very convenient
design because it makes each type universe potentially as big as a model of set the-
ory. Any set-theoretical construction carried out without resorting to Grothendieck
universes can be translated into type theory with universes. Such constructions auto-
matically fit in the same universe as their parameters.

The model of the inductive types itself is the result of a modular construction.
Firstly, we have studied W -types, an instance of the more general notion of strictly
positive inductive types. Unlike the standard presentation, we have given a type-based
termination version of the calculus. Then, we have formalized the well-known result
that all strictly positive inductive definitions are isomorphic to an instance of W -types.
Finally, several extensions have been formalized: inductive families as a subset of the
inductive type without indices, nested types and non-uniform parameters.

The combination of inductive types in Prop and type-based termination do not fit
yet fully in our modelization in IZFR, unless we assume the excluded-middle (and
thus work in ZF). We suspect this is rather that we need to push further the general
intuitionistic fixpoint theorem. Inductive definitions in Prop can be seen as the result
of a projection of inductive definitions in Type.

This inconvenience of IZFR is balanced by the better understanding of the closure
ordinal construction. Instead of an abstract cardinal reasoning, an explicit isomorphism
is given.

A contribution of this thesis that should not be under-estimated is that it brings
many works of various authors together. This addresses any concern about possible in-
compatibilities in the approaches. Also it gives a fully detailed solution, while authors
often elude technical details.

In parallel, we also developed formal proof of strong normalization of the corre-
sponding theories. In [12], we have given the first (and only) fully formal proof of
strong normalization of the Calculus of Constructions. In this thesis, we have com-
pleted the strong normalization proof for the extension of CC with natural numbers in
the standard presentation (i.e. with a recursor).

The proof for other extensions are yet fully completed. In the case of type-based
termination, an intermediate lemma still has not been proved, but this is a rather tech-
nical issue. In the proof of strong normalization for the inductive types in general, we
need to check that the observations we made regarding the inhabitability of all types
can actually be formalized.

9.2 Conclusions about the formalization

Formalizing theorems that have already been established informally is not routine
work. There are many pitfalls one may fall into, short of having a good strategy.

156 CHAPTER 9. CONCLUSIONS

Informal proofs have this flexible property that one always feel free to adapt pre-
viously established definitions or theorems to the current situation. And sometimes
authors do not even bother to say so, to avoid distracting the reader with uninteresting
matters.

Obviously, formal proofs do not (yet) provide such flexibility. The layman may,
often without realizing, import this vagueness in the formal world. If the goal is too
hard, he generally ends up with several similar definitions of related notions, and prove
a number of equivalence results to navigate from one to the other, and finally gets
drowned in a sea of vacuous stub code.

We hope we have avoided these trouble. Clearly, we have given many details. But
the appreciation of what deserves to be noted depends on the level of understanding
of the reader. We claim that very few of the details of this manuscript are completely
superfluous. However, we will comment below on the parts of the formal proofs that
we have hidden.

When taken seriously, the burden of doing proofs formally is an incentive to im-
prove definitions and theorem statements. This benefit has already been noticed by
Gonthier in the proof of the 4 color theorem.

Let us now discuss the various ideas behind the method. We recall the main points:

• use an abstract model to separate the world of closed expression and the syntax
that uses possibly unbound variables;

• encode the syntactic entities (terms, reduction, judgments) with a shallow em-
bedding;

• use higher-order notation for closed expressions.

Some of these ideas aim at organizing the development and discriminate between ad-
ministrative tasks (e.g. translations from a formalism to another with the same features
but with different syntax), and modelization tasks. The latter capture the expressive
power of the formalism. It prepares the translation work by modeling the features of
a formalism in another one (e.g. modeling inductive definitions in set theory). Other
ideas aim at making the development of the features modular and more natural.

First-order vs Higher-order logic The set theory has been axiomatized within a
higher order logic. By this we mean that instead of manipulating explicitly free vari-
ables, quantified formulas are represented by meta-level predicates (of type set →
Prop). The benefit of this approach is that instantiation of bound variables is sup-
ported by the meta-logic instead of dealing explicitly with substitutions.

This is however balanced by the fact that all the meta-level functions are required
to respect set-equality and propositional equivalence. We have systematically hidden
such requirements. However, proving these facts could be automated in most cases.

The usage of higher-order syntax raises the question whether we used features of
higher-order logic that cannot be encoded in the intended first-order set theory. In most
cases, it was obvious that the usage of higher-order quantifications could be avoided.
But there remains cases where it is not so clear. We conjecture they can be fixed any-
way, but we do not commit ourselves in what it would cost to actually forbid ourselves
to use higher-order features.

9.2. CONCLUSIONS ABOUT THE FORMALIZATION 157

Shallow embedding Using a shallow embedding is essential for extendability. The
emphasis is put on the key properties, rather than on the precise syntax. The later the
syntax is introduced, the better.

The separation between the semantic level of closed expression (which captures
all the expressive power of the formalism) and the syntactic constructions (which is
bureaucratic) is essential. The organization of the proof is improved, as syntactic ma-
nipulations do not interfere with the semantic argumentation. Reasoning abstractly
on an abstract model represented as a module signature is just a way to enforce this
separation.

We have also found that the shallow embedding leads to proofs easier to understand,
because the key invariants need to be expressed earlier, and proofs can be split into
smaller lemmas, each one corresponding to inference rules. This contrasts dramatically
with the big monolithic strong normalization proofs, where the final induction proof
carries too much information.

We claim, beyond the unavoidable subjectivity, that the strong normalization proofs
presented in this manuscript are simpler that most of what can be found in the literature,
taking into account the challenge that formalizing CIC represents.

The only limitation we see to this principle is when the goal is to prove complete-
ness theorems. The point of these theorems is precisely to express properties resulting
from limiting the syntax to a given first-order signature. But even in this case, we sug-
gest that it can be a good idea to define the actual (first-order) syntax as a subset of the
shallow embedding.

Sharing the syntax One of the main expectation on the method was the possibility
to reuse constructions from one formalism to each of its extensions.

The full development contains three different invariants corresponding to the three
kinds of model:

• consistency models, which interpret types as sets of values;

• Strong normalization with weak elimination, which is a consistency model with
a reducibility candidate attached to each type;

• Strong normalization with strong elimination, which is a consistency model with
a reducibility candidate attached to each value of each type.

To support this, there are two independent libraries for pseudo-terms and pseudo-
reduction: one for the consistency models, and another one for both strong normal-
ization models. The latter could have been built upon the former, with an overall low
rate of code reduction.

Each of the three models has its own set of judgments. Type-based termination
formalisms need more judgments (variance) than the standard ones.

Regarding strong normalization models, the same language of realizers (pure λ-
calculus) is used throughout the development. In particular, inductive constructions
have been translated to the λ-calculus.

158 CHAPTER 9. CONCLUSIONS

9.3 Suggestions for future work

9.3.1 Relations between Intuitionistic Set Theory and Type Theory
We could look for an equiconsistency result between the hierarchies of formalisms ZFn
and CICn+TTColl by giving an interpretation of ZFn in CICn+TTColl. In this thesis,
we have only provided a model in the theory with one more universe. The base case is
to interpret ZF in CC+TTColl+inductive types in Kind. An interpretation of the type
of sets in Kind is not straightforward because it is a recursive type. Miquel’s pointed
graph interpretation seems a better target.

This could be the opportunity to rephrase TTColl in a less ad-hoc way.

9.3.2 Proof-theoretical strength of CIC
An interesting, though challenging, topic of research would be to connect this to Set-
zer’s work [51], which gives results about the ordinal strength of Martin-Löf’s Type
Theory with or without inductive definitions. This would address the question of how
the impredicativity of Prop is affecting the proof-theoretical strength of type theories
with inductive types.

9.3.3 Alternative models of type theory
Typed equality vs untyped equality

We have chosen a judgmental equality presentation. This is more or less forced by the
set-theoretical interpretation of function types. It is important to be able to relate this
presentation to the more common “untyped-conversion” presentations (CC, ECC, PTS,
CIC), because the most common implementations of those formalisms use an untyped
conversion test.

There are several technique to show the equivalence of both presentations:

• Streicher’s method of partial interpretation [53], but this does not apply to im-
predicative systems, as shown by Miquel and Werner [44].

• Werner and Miquel’s tight reduction overcome this, but needs to have a method
to label impredicative products.

• Building an normalization-by-evaluation interpreter together with the strong nor-
malization proof (Abel).

• A purely syntactic proof: Adams [6], generalized by Siles [52] to PTSs

Intensional models: groupoid model and univalent foundations

The models of this thesis are all intended to support extensional principles. We have
explained that it was sometimes in contradiction with strong normalization models (see
section 6.3 and 8.7).

Intensional models are also of interest. They are even more natural if we view
CIC as a programming language, as they can support the contravariance of product
(Πx ∶A.B subtype of Πx∈A′.B when A′ subtype of A).

To support this, one has to change the equality judgment, to accept that two func-
tions of type A → B may be defined on a domain larger than A, and are equal if

9.3. SUGGESTIONS FOR FUTURE WORK 159

they agree on A. This means that equality of two denotations is no longer an absolute
notion, but rather relative to their type.

This suggests to attach to types a new “method”: instead of having a set of values
(and a realizability relation for the strong normalization model), we would have an
equivalence relation on the set of values. This is the idea of PER models.

A further generalization could be to formalize the groupoid model of Hofmann and
Streicher [33]. Instead of a mere equivalence relation, types would carry a groupoid,
that we can view as a function that returns a set of equality witnesses given two values
of that type. In the original language of the category of setoids, these equality objects
are morphisms between the objects/values.

Depending on the interpretation given to such equality objects, this could even
provide a good basis towards giving an interpretation of Homotopy Type Theory and
Voevodsky’s Univalent Foundations.

160 CHAPTER 9. CONCLUSIONS

List of Figures

3.1 Directed ordinals . 28

4.1 Inference rules of higher-order logic L 44
4.2 Skolemized axioms of Zermelo-Fraenkel 52
4.3 Axioms of Zermelo-Fraenkel (existential version) 56

5.1 Related type-theoretical formalisms . 65
5.2 Inference rules of the Calculus of Constructions 71
5.3 General subtyping rules . 78

6.1 Calculus of Constructions inference rules (SN model) 91
6.2 Untyped reduction . 92
6.3 Abstract strong normalization model supporting strong eliminations . . 95
6.4 Untyped ι-reduction . 101
6.5 Typing rules for natural numbers (SN proof) 101

7.1 Typed-based inference rules . 112

161

162 LIST OF FIGURES

Index and Notations

— Notations —
==, 14
Πx∈_._

abstract model, 67
set theory, 20

(ρ, σ) ∈ [Γ], 89
Λ, 35
_ ≈ ___, 40
_ ⪯ ___, 21
_ ⊑ ___, 29
_+, 27
_−1, 40
_∗, 35
κ_0, 142
κ, 38
µ(_), 36
ρ ∈ [Γ], 69
Dom(_) ⊆ _, 20
SN, 80
→+, 90
λx∈_._

abstract model, 67
set theory, 20

@
abstract model, 67
set theory, 20

— A —
A-translation, 48
Abstract models, 66

CC, 66
ECC, 77

app, 19

— C —
cc_app, 20
cc_lam, 20
cc_prod, 20
Compatible Functions, 21
cond_set, 17

Conditional set, 17
Cons, 35
Continuity, 34
couple, 17
Couples, 17
cst, 75

— D —
dep_func, 19
Dependent pairs, 17
dIND, 131
dINDi, 130
Directed ordinals, 27
Disjoint union, 19
Domain-irrelevance, 111

— E —
empty, 14
eq_set, 14
Equality

sets, 14, 50
Equiv, 67

— F —
Fixpoint theorem, 36
Fixpoint theorems, 34

from above, 36
from below, 38

fst, 17
fsub, 38
func, 19
Functional Replacement, 16
Functions, 19

— G —
Grothendieck universes, 21, 42

— I —
in_set, 14
IND, 126
INDi, 125

163

164 INDEX AND NOTATIONS

Inductive set, 103
infinite, 14
inl, 19
inr, 19
isDir, 27
Isomorphisms, 40
isOrd, 27

— K —
kind_ok, 88
Knaster-Tarski theorem, 36

— L —
lam, 19
Lambda terms, 35
Least fixpoint, 36
Limits, 33
Lists, 35

— M —
El(_)__, 69
Membership

sets, 14, 50
Val(_)__, 68

— N —
N, 18
natrec, 18
Natural numbers, 18
NCASE, 115
Negated translation, 48
NFIX, 115
Nil, 35

— O —
Ordinal assignment, 38
Ordinals, 25

supremum, 32

— P —
pair, 14
Pairs, 17
Peirce translation, 49
plump, 27
Plump ordinals, 27
power, 14
Primitive Recursor, 18
prodcart, 17
props, 67

Pseudo-reduction, 90

— R —
REC, 30
Recursor, 30
Reducibility candidates, 79
Relations, 19
repl, 14
replf, 16

— S —
Saturated sets, 82
set, 14
sets, 134
sigma, 17
Σ-types, 17
snd, 17
Stability, 37
Stage Irrelevance, 30
Stages, 104
Strong normalization

abstract, 92
CC, 93
CIC, 150
type-based termination, 114

Sub-elements, 38
Sublogics, 46
subset, 16
succ, 18
Successor

ordinal, 27
sum, 19
sum_case, 19

— T —
Tarski-Grothendieck, 78
Tarski-Grothendieck Set Theory, 22
TI, 29
TI_iso, 41
TIF, 29
TR, 28
Transfinite Iteration, 28
TTColl, 55
TTRepl, 54

— U —
uchoice, 16
union, 14

— W —

INDEX AND NOTATIONS 165

W -iso, 125
W -iso family, 130

— Z —
zero, 18

166 INDEX AND NOTATIONS

Bibliography

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Representing nested in-
ductive types using W-types. In Automata, Languages and Programming, 31st
International Colloqium (ICALP), pages 59 – 71, 2004. 8.6.2, 8.6.2

[2] Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types.
PhD thesis, Ludwig-Maximilians-Universität München, 2006. 7, 7.1.2, 7.4

[3] Andreas Abel. Semi-continuous sized types and termination. Logical Methods in
Computer Science, 4(2), 2008. CSL’06 special issue. Submitted. 8.6.1

[4] Andreas Abel. Irrelevance in type theory with a heterogeneous equality judge-
ment. In Martin Hofmann, editor, FOSSACS, volume 6604 of Lecture Notes in
Computer Science, pages 57–71. Springer, 2011. 7.2.4

[5] Peter Aczel. Notes on constructive set theory, 1997. 7

[6] Robin Adams. Pure type systems with judgemental equality. Journal of Func-
tional Programming, 16 (2):219–246, 2006. 5.2.2, 9.3.3

[7] Thorsten Altenkirch. Proving strong normalization of CC by modifying realiz-
ability semantics. In Henk Barendregt and Tobias Nipkow, editors, Types for
Proofs and Programs, LNCS 806, pages 3 – 18, 1994. 6.4, 6.6

[8] Bruno Barras. Auto-validation d’un système de preuves avec familles inductives.
Thèse de doctorat, Université Paris 7, November 1999. 3

[9] Bruno Barras. Sets in Coq, Coq in sets. Journal of Formalized Reasoning, 3(1),
2010. 5.2.6

[10] Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a
programming language with dependent types. In Roberto M. Amadio, editor,
Proceedings of FOSSACS 2008, volume 4962 of Lecture Notes in Computer Sci-
ence, pages 365–379. Springer, 2008. 7.2.4

[11] Bruno Barras, Jean-Pierre Jouannaud, Pierre-Yves Strub, and Qian Wang. Co-
qmtu: A higher-order type theory with a predicative hierarchy of universes
parametrized by a decidable first-order theory. In Proceedings of LICS 2011,
pages 143–151. IEEE Computer Society, 2011. 5.1.1

[12] Bruno Barras and Benjamin Werner. Coq in coq, 1995. http://www.lix.
polytechnique.fr/~barras/publi/coqincoq.ps.gz. 5.2.6, 9.1.3

167

http://www.lix.polytechnique.fr/~barras/publi/coqincoq.ps.gz
http://www.lix.polytechnique.fr/~barras/publi/coqincoq.ps.gz

168 BIBLIOGRAPHY

[13] Gérard Berry. Stable models of typed λ-calculi. In Giorgio Ausiello and Corrado
Böhm, editors, Automata, Languages and Programming, volume 62 of Lecture
Notes in Computer Science, pages 72–89. Springer Berlin / Heidelberg, 1978.
3.6.3

[14] Laurent Chicli, Loïc Pottier, and Carlos Simpson. Mathematical quotients and
quotient types in coq. In Herman Geuvers and Freek Wiedijk, editors, Types for
Proofs and Programs, volume 2646 of Lecture Notes in Computer Science, pages
618–618. Springer Berlin / Heidelberg, 2003. 1.1

[15] Robert L. Constable et al. Implementing Mathematics with the NuPRL Proof
Development System. Prentice-Hall, 1986. 5.1.1

[16] Thierry Coquand. Une Théorie des Constructions. PhD thesis, Université Paris 7,
January 1985. 5.1.1

[17] Thierry Coquand. A topos theoretic fix point theorem, 1995. http://www.
cse.chalmers.se/~coquand/fix1.ps. 3.6.5

[18] Thierry Coquand and Christine Paulin-Mohring. Inductively defined types. In
P. Martin-Löf and G. Mints, editors, Proceedings of Colog’88, volume 417 of
Lecture Notes in Computer Science. Springer-Verlag, 1990. 7, 8, 8

[19] Peter Dybjer. Inductive sets and families in martin-lof’s type theory and their
set-theoretic semantics. Logical frameworks, pages280(306):280–306, 1991. 7

[20] Martín Hötzel Escardó and Paulo Oliva. The peirce translation. Ann. Pure Appl.
Logic, 163(6):681–692, 2012. 4.1.5

[21] Harvey Friedman. The consistency of classical set theory relative to a set theory
with intuitionistic logic. Journal of Symbolic Logic, 38:315–319, 1973. 2.2

[22] Harvey Friedman. Classically and intuitionistically provably recursive functions.
In Gert Müller and Dana Scott, editors, Higher Set Theory, volume 669 of Lecture
Notes in Mathematics, pages 21–27. Springer Berlin / Heidelberg, 1978. 2.2, 4

[23] Harvey Friedman and Andre Scedrov. The lack of definable witnesses and prov-
ably recursive functions in intuitionistic set theory. Advances in Mathematics,
57:1–13, 1985. 2.2

[24] Jean Gallier. On Girard’s "Candidats De Reductibilité". In Piergiorgio Odifreddi,
editor, Logic and Computer Science, pages 123–230. Academic Press, 1990. 6

[25] Eduardo Gimenez. Codifying guarded definitions with recursive schemes. In
Proceedings of the Workshop on Types for Proofs and Programs, pages 39–59.
Springer-Verlag LNCS 996, 1994. 7

[26] Eduardo Gimenez. Structural recursive definitions in type theory. In Proceed-
ings of the International Colloquium on Automata, Languages and Programming,
pages 397–408, Aalborg, Denmark, 1998. Springer-Verlag LNCS 1443. 7

[27] Jean-Yves Girard. Interprétation Fonctionnelle et Élimination des Coupures de
l’Arithmétique d’Ordre Supérieur. Thèse de doctorat d’état, Université Paris VII,
June 1972. 6

http://www.cse.chalmers.se/~coquand/fix1.ps
http://www.cse.chalmers.se/~coquand/fix1.ps

BIBLIOGRAPHY 169

[28] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, England, 1989. 3.6.3, 6.1

[29] Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis,
University of Edinburgh, 1994. 1.1, 5.1.1, 6.6, 8.1.1

[30] Robin Grayson. Heyting-valued models for intuitionistic set theory. In Michael
Fourman, Christopher Mulvey, and Dana Scott, editors, Applications of Sheaves,
volume 753 of Lecture Notes in Mathematics, pages 402–414. Springer Berlin /
Heidelberg, 1979. 3.1, 3.1.1

[31] Benjamin Grégoire and Jorge Luis Sacchini. On strong normalization of the cal-
culus of constructions with type-based termination. In Christian G. Fermüller and
Andrei Voronkov, editors, LPAR (Yogyakarta), volume 6397 of Lecture Notes in
Computer Science, pages 333–347. Springer, 2010. 7, 7.4

[32] José Grimm. Implementation of Bourbaki’s Elements of Mathematics in Coq:
Part One, Theory of Sets. Research Report RR-6999, INRIA, 2009. 2.6

[33] Martin Hofmann and Thomas Streicher. The groupoid model refutes uniqueness
of identity proofs. In Proceedings of the Ninth Annual Symposium on Logic in
Computer Science (LICS ’94), Paris, France, July 4-7, 1994, pages 208–212.
IEEE Computer Society, 1994. 9.3.3

[34] Gyesik Lee and Benjamin Werner. Proof-irrelevant model of cc with predicative
induction and judgmental equality. Logical Methods in Computer Science, 7(4),
2011. 1.1

[35] Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, University of
Edinburgh, 1990. 5.1.1, 5.4.2

[36] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984. 5.1.1, 5.1.1

[37] Per Martin-Löf. 100 years of zermelo’s axiom of choice: what was the problem
with it? The Computer Journal, 49/3:345–350, 2006. 4.2.2

[38] Paul-André Melliès and Benjamin Werner. A generic normalisation proof for pure
type systems. In Eduardo Giménez and Christine Paulin-Mohring, editors, Types
for Proofs and Programs, International Workshop TYPES’96, Aussois, France,
December 15-19, 1996, Selected Papers, volume 1512 of Lecture Notes in Com-
puter Science, pages 254–276. Springer, 1996. 6.6

[39] Paul Francis Mendler. Inductive Definition in Type Theory. Ph. d., Cornell Uni-
versity, 1988. 7

[40] Alexandre Miquel. The implicit calculus of constructions. In TLCA, pages 344–
359, 2001. 7.2.4

[41] Alexandre Miquel. Le calcul des constructions implicite: syntaxe et sémantique.
Phd thesis, Université Paris 7, 2001. 5.1.3, 6

[42] Alexandre Miquel. lamda-z: Zermelo’s set theory as a pts with 4 sorts. In Jean-
Christophe Filliâtre, Christine Paulin-Mohring, and Benjamin Werner, editors,
TYPES, volume 3839 of Lecture Notes in Computer Science, pages 232–251.
Springer, 2004. 4

170 BIBLIOGRAPHY

[43] Alexandre Miquel. De la formalisation des preuves à l’extraction de programmes.
Habilitation, Université Paris 7, 2009. 4, 4.4.3

[44] Alexandre Miquel and Benjamin Werner. The not so simple proof-irrelevent
model of CC. In TYPES, 2002. 9.3.3

[45] Wojciech Moczydłowski. A dependent set theory. In 22nd IEEE Symposium
on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland,
Proceedings, pages 23–34. IEEE Computer Society, 2007. 4.2.1

[46] John Myhill. Some properties of intuitionistic zermelo-frankel set theory. In
A. Mathias and H. Rogers, editors, Cambridge Summer School in Mathematical
Logic, volume 337 of Lecture Notes in Mathematics, pages 206–231. Springer
Berlin / Heidelberg, 1973. 2.1, 2.2

[47] Christine Paulin-Mohring. Définitions Inductives en Théorie des Types d’Ordre
Supérieur. Habilitation à diriger les recherches, Université Claude Bernard Lyon
I, December 1996. 7, 8, 8, 8.6.2

[48] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal
type theory. In LICS, pages 221–230. IEEE Computer Society, 2001. 7.2.4

[49] Wolfram Pohlers. Proof theory: the first step into impredicativity. Universitext
(1979). Springer, 2009. 7, 8.1.3

[50] John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn, David B.
MacQueen, and Gordon D. Plotkin, editors, Semantics of Data Types, volume
173 of Lecture Notes in Computer Science, pages 145–156. Springer, 1984. 5.1.1,
5.2.4

[51] Anton Setzer. Proof theoretical strength of Martin-Löf Type Theory with W-type
and one universe. PhD thesis, Universität München, 1993. 9.3.2

[52] Vincent Siles and Hugo Herbelin. Equality is typable in semi-full pure type sys-
tems. In LICS, pages 21–30. IEEE Computer Society, 2010. 5.2.2, 9.3.3

[53] Thomas Streicher. Semantics of Type Theory: Correctness, Completeness, and In-
dependence Results. Progress in theoretical computer science. Birkhäuser, 1991.
9.3.3

[54] William Tait. A realizability interpretation of the theory of species. In Rohit
Parikh, editor, Logic Colloquium, volume 453 of Lecture Notes in Mathematics,
pages 240–251. Springer Berlin / Heidelberg, 1975. 6

[55] Paul Taylor. Intuitionistic sets and ordinals. Journal of Symbolic Logic, 61:705–
744, 1996. 3.1.1

[56] Benjamin Werner. Une Théorie de Constructions Inductives. Thèse de doctorat,
Université Paris 7, May 1994. 1.1, 6.6

[57] Benjamin Werner. Sets in types, types in sets. In Proceedings of TACS’97, pages
530–546. Springer-Verlag, 1997. 4.2, 4.2.2, 8.4

	Introduction
	Motivations for formal semantics
	Which model do we want ?
	How can we accept a formal model of Coq in Coq ?
	Formalizing in the large
	Overview of the thesis
	Mathematical conventions

	I Intuitionistic Set Theory
	Basics of Intuitionistic Set Theory
	Introduction
	Basic Setup: Sets and Axiomatized Constructions
	Derived constructions
	Relations and functions
	Grothendieck Universes
	Other axiomatizations of set theory in Coq

	Ordinals and Fixpoint Theorems
	Motivations for an intuitionistic theory of ordinals
	Plump and Directed Ordinals
	Transfinite Iteration
	Supremum of ordinals
	Limits
	Least Fixpoint Theorems
	Cardinal numbers as isomorphism classes
	Ordinals and Grothendieck Universes

	Models of Set Theory in Coq
	Logics
	Zermelo with functional replacement
	Extending Zermelo with Replacement or Collection
	Models of IZF_R, IZF_C and ZF in type theory
	Encoding Grothendieck universes

	II Models of Type Theories with Inductive Types
	CC with Universes and Natural Numbers
	Introduction to Models of Type Theory
	Calculus of Constructions
	Calculus of Constructions with natural numbers
	Extended Calculus of Constructions

	Strong Normalization Models
	Girard's reducibility candidates and saturated sets
	Abstract Strong Normalization of CC
	Implementing the abstract model
	Strong elimination
	Natural numbers
	Related works

	Natural numbers and type-based termination
	Natural numbers with stages
	Model construction
	Strong normalization
	Comparison with other works

	Inductive types
	Theory of W-types
	Strictly positive inductive definitions
	Inductive types and universes
	Encoding ZF as an inductive type
	Inductive types in Prop
	Advanced features of inductive types
	Towards a strong normalization proof

	III Conclusions
	Conclusions
	Summary of results
	Conclusions about the formalization
	Suggestions for future work

	Index and Notations
	Bibliography

