Symbolic Verification of Cryptographic Protocols

Protocol Equivalences

David Baelde

LSV, ENS Paris-Saclay

2018–2019
Static equivalence

The first equivalence does not involve process executions, but only sequences of messages.

When are two sequences of messages distinguishable?

Examples

- \(\langle u, v, v \rangle \sim \langle v, u, v \rangle\)?

- \(\langle n \rangle \sim \langle n' \rangle\)?

- \(\langle \langle n, m \rangle \rangle \sim \langle \langle n', n' \rangle \rangle\)?

- \(\langle \langle u, v \rangle \rangle \sim \langle n' \rangle\)?

- \(\langle \text{senc}(u, k) \rangle \sim \langle n' \rangle\)?

- \(\langle \text{senc}(u, k) \rangle \sim \langle \text{senc}(v, k) \rangle\)?

- \(\langle \text{aenc}(u, pk), u, pk \rangle \sim \langle \text{aenc}(v, pk), u, pk \rangle\)?
Static equivalence

The first equivalence does not involve process executions, but only sequences of messages.

When are two sequences of messages distinguishable?

Examples

- $\langle u, v, v \rangle \sim \langle v, u, v \rangle$?
- $\langle n \rangle \sim \langle n' \rangle$? $\langle \langle n, m \rangle \rangle \sim \langle \langle n', n' \rangle \rangle$?
Static equivalence

The first equivalence does not involve process executions, but only sequences of messages.

When are two sequences of messages distinguishable?

Examples

- \(\langle u, v, v \rangle \sim \langle v, u, v \rangle \) ?
- \(\langle n \rangle \sim \langle n' \rangle \) ? \(\langle \langle n, m \rangle \rangle \sim \langle \langle n', n' \rangle \rangle \) ?
- \(\langle \langle u, v \rangle \rangle \sim \langle n' \rangle \) ? \(\langle \text{senc}(u, k) \rangle \sim \langle n' \rangle \) ?
Static equivalence

The first equivalence does not involve process executions, but only sequences of messages.

When are two sequences of messages distinguishable?

Examples

- $\langle u, v, v \rangle \sim \langle v, u, v \rangle$?
- $\langle n \rangle \sim \langle n' \rangle$? $\langle\langle n, m \rangle\rangle \sim \langle\langle n', n' \rangle\rangle$?
- $\langle\langle u, v \rangle\rangle \sim \langle n' \rangle$? $\langle\text{senc}(u, k)\rangle \sim \langle n' \rangle$?
- $\langle\text{senc}(u, k)\rangle \sim \langle\text{senc}(v, k)\rangle$? $\langle\text{senc}(u, k)\rangle \sim \langle\text{senc}(u, k')\rangle$?
Static equivalence

The first equivalence does not involve process executions, but only sequences of messages.

When are two sequences of messages distinguishable?

Examples

- $\langle u, v, v \rangle \sim \langle v, u, v \rangle$?
- $\langle n \rangle \sim \langle n' \rangle$? $\langle\langle n, m \rangle \rangle \sim \langle\langle n', n' \rangle \rangle$?
- $\langle\langle u, v \rangle \rangle \sim \langle n' \rangle$? $\langle \text{senc}(u, k) \rangle \sim \langle n' \rangle$?
- $\langle \text{senc}(u, k) \rangle \sim \langle \text{senc}(v, k) \rangle$? $\langle \text{senc}(u, k) \rangle \sim \langle \text{senc}(u, k') \rangle$?
- $\langle \text{aenc}(u, pk), u, pk \rangle \sim \langle \text{aenc}(v, pk), u, pk \rangle$?
Static equivalence

As before, consider frames in $\mathcal{N}^* \times (\mathcal{W} \rightarrow \mathcal{T}_c(\mathcal{N}))$:

1st component = bound/private names, noted $\text{bn}(\Phi)$;
2nd component = intruder’s knowledge, addressed via handles of $\text{dom}(\Phi)$.

Definition

Two frames Φ_1 and Φ_2 are \textit{statically equivalent} when

- they have the same domain: $\text{dom}(\Phi_1) = \text{dom}(\Phi_2)$;
- for all $M \in \mathcal{T}(\mathcal{W} \cup \mathcal{N} \setminus \text{bn}(\Phi_1, \Phi_2))$, $M\Phi_1 \Downarrow$ iff $M\Phi_2 \Downarrow$;
- for all $M, N \in \mathcal{T}(\mathcal{W} \cup \mathcal{N} \setminus \text{bn}(\Phi_1, \Phi_2))$,

 $M\Phi_1 \Downarrow =_E N\Phi_1 \Downarrow$ iff $M\Phi_2 \Downarrow =_E N\Phi_2 \Downarrow$.

Proposition

\textit{Static equivalence is an equivalence. It is stable by bijective renaming. It does not compose}: $\Phi_1 \sim \Phi'_1$ and $\Phi_2 \sim \Phi'_2 \nRightarrow \Phi_1 \oplus \Phi_2 \sim \Phi'_1 \oplus \Phi'_2$.
Static equivalence: examples

Suppose we have only constructors and the standard equations for pairs and (a)symmetric encryption.

Examples (bis)

- $\{w_1 \mapsto u, w_2 \mapsto v, w_3 \mapsto v\} \sim \{w_1 \mapsto v, w_2 \mapsto u, w_3 \mapsto v\}$?
- $\{w \mapsto n\} \sim \{w \mapsto n'\}$? $\{w \mapsto \langle n, m \rangle\} \sim \{w \mapsto \langle n', n' \rangle\}$?
- $\{w \mapsto \langle u, v \rangle\} \sim \{w \mapsto n'\}$? $\{w \mapsto \text{senc}(u, k)\} \sim \{w \mapsto n'\}$?
- $\{w \mapsto \text{senc}(u, k)\} \sim \{w \mapsto \text{senc}(v, k)\}$?
 $\{w \mapsto \text{senc}(u, k)\} \sim \{w \mapsto \text{senc}(u, k')\}$?
- $\{w \mapsto \text{aenc}(u, pk), w' \mapsto u, w'' \mapsto pk\} \sim$
 $\{w \mapsto \text{aenc}(v, pk), w' \mapsto u, w'' \mapsto pk\}$?
We usually assume that secrets cannot be guessed: no brute force attacks.

That is not reasonable for low/fixed entropy secrets, such as PIN, passwords, one-time verification code, etc.

Offline guessing attacks

A protocol is **resistant against offline guessing attacks** on some name d when any reachable frame Φ is such that

$$\Phi \cup \{ w \mapsto d \} \sim \Phi \cup \{ w \mapsto d' \} \text{ for } w, d' \text{ fresh.}$$

This notion is meaningful even with a passive adversary.
Assume public-key encryption but no PKI (public keys ≠ identities). A and B only share a weak password \(p \), want to authenticate.

1. \(A \to B \colon \text{senc}(\text{pub}(k), p) \)
2. \(B \to A \colon \text{senc}(\text{aenc}(r, \text{pub}(k)), p) \)
3. \(A \to B \colon \text{senc}(n_a, r) \)
4. \(B \to A \colon \text{senc}(\langle n_a, n_b \rangle, r) \)
5. \(A \to B \colon \text{senc}(n_b, r) \)
Assume public-key encryption but no PKI (public keys ≠ identities). A and B only share a weak password p, want to authenticate.

1. $A \rightarrow B : \text{senc}(\text{pub}(k), p)$
2. $B \rightarrow A : \text{senc}(\text{aenc}(r, \text{pub}(k)), p)$
3. $A \rightarrow B : \text{senc}(n_a, r)$
4. $B \rightarrow A : \text{senc}(\langle n_a, n_b \rangle, r)$
5. $A \rightarrow B : \text{senc}(n_b, r)$

Let $\Phi = \{w_1 \mapsto \text{senc}(\text{pub}(k), p), \ldots, w_5 \mapsto \text{senc}(n_b, r)\}$. Can p be guessed offline, that is

$$\Phi \cup \{w \mapsto p\} \sim \Phi \cup \{w \mapsto p'\} \ ?$$
Assume public-key encryption but no PKI (public keys \(\neq\) identities). A and B only share a weak password \(p\), want to authenticate.

1. \(A \rightarrow B:\ senc(\text{pub}(k), p)\)
2. \(B \rightarrow A:\ senc(\text{aenc}(r, \text{pub}(k)), p)\)
3. \(A \rightarrow B:\ senc(n_a, r)\)
4. \(B \rightarrow A:\ senc(\langle n_a, n_b \rangle, r)\)
5. \(A \rightarrow B:\ senc(n_b, r)\)

Let \(\Phi = \{w_1 \mapsto senc(\text{pub}(k), p), \ldots, w_5 \mapsto senc(n_b, r)\}\). Can \(p\) be guessed offline, that is

\[
\Phi \cup \{w \mapsto p\} \sim \Phi \cup \{w \mapsto p'\} \ ?
\]

Only if \(senc(sdec(x, y), y) = x\ldots\) and no getkey primitive for \(\text{aenc}\).
May testing

The reduction semantics (cf. previous lectures) provide a first natural definition of when two processes can be distinguished.

Definition

A **test** is a process with no free name and in which a special channel T may occur. A process P **may pass** a test T, written $P \models T$ if

$$P \mid T \rightsquigarrow^* \text{out}(T, u) \mid Q$$

for some u and Q.

Let $T(P) := \{ T \mid P \models T \}$.

Processes P and Q are in **may-testing equivalence** when $T(P) = T(Q)$.

Quite natural, but may not model all desired aspects, e.g. probabilities, must testing, asynchronicity.

As such, may testing equivalence is hard to verify!
The reduction semantics (cf. previous lectures) provide a first natural definition of when two processes can be distinguished.

Definition

A test is a process with no free name and in which a special channel \mathbb{T} may occur. A process P may pass a test T, written $P \models T$ if

$$P \mid T \rightsquigarrow^* \text{out}(\mathbb{T}, u) \mid Q \text{ for some } u \text{ and } Q.$$

Let $T(P) := \{ T \mid P \models T \}$. Processes P and Q are in **may-testing equivalence** when $T(P) = T(Q)$.

Quite natural, but may not model all desired aspects, e.g. probabilities, must testing, asynchronicity.
May testing

The reduction semantics (cf. previous lectures) provide a first natural definition of when two processes can be distinguished.

Definition

A **test** is a process with no free name and in which a special channel \mathbb{T} may occur. A process P **may pass** a test T, written $P \models T$ if

$$P \mid T \xrightarrow{\ast} \text{out}(\mathbb{T}, u) \mid Q$$

for some u and Q.

Let $T(P) := \{T \mid P \models T\}$.

Processes P and Q are in **may-testing equivalence** when $T(P) = T(Q)$.

Quite natural, but may not model all desired aspects, e.g. probabilities, must testing, asynchronicity.

As such, **may testing equivalence is hard to verify**!
Trace equivalence

Weak labelled transitions

We write $A \xrightarrow{\text{tr}} B$ when:

- tr only contains input and output actions (no τ);
- there exists tr' obtained from tr by adding τs such that $A \xrightarrow{\text{tr}'} B$.

Definition

Given a configuration $A = (P, \Phi)$, define

$$\text{Tr}(A) := \{ (\text{tr}, \Phi') | A \xrightarrow{\text{tr}} (_, \Phi') \}.$$

We say that A and B are trace equivalent, noted $A \approx B$, iff

for all $(\text{tr}, \Phi') \in \text{Tr}(A)$ there exists $(\text{tr}, \Psi') \in \text{Tr}(B)$. $\Phi' \sim \Psi'$

and conversely.
Alternative definition

Proposition

Close $\text{Tr}(\cdot)$ under static equivalence:

$$\text{Tr}'(P, \Phi) := \{ (\text{tr}, \Phi') \mid (P, \Phi) \xRightarrow{\text{tr}} (P', \Phi''), \ \Phi'' \sim \Phi' \}$$

Then we have $A \approx B$ iff $\text{Tr}'(A) = \text{Tr}'(B)$.

Remarks

- $A \approx B$ imposes $\Phi(A) \sim \Phi(B)$, but not $\Phi(A) = \Phi(B)$.
- The definition really makes sense only when $\text{bn}(\Phi(A)) = \text{bn}(\Phi(B))$.
- In general we do not have that $\Phi \sim \Psi$ implies $(P, \Phi) \approx (P, \Psi)$.
Examples

1. \text{in}(c, x).\text{out}(c, \text{ok}) \approx? \text{in}(c, x) | \text{out}(c, \text{ok})

2. \text{in}(c, x).\text{out}(c, \text{ok}) \approx? \text{in}(c, x).\text{out}(c, x)

3. new n, m. out(c, n) | out(c, m) \approx? new n, m. out(c, n).out(c, m)

4. new n, m. out(c, n) | out(c, \text{hash}(m)) \approx?
 new n. out(c, n).out(c, \text{hash}(n))

5. out(c, u_1) \ldots .out(c, u_n).\text{in}(c, x).\text{if}\ x = v\ \text{then}\ \text{out}(c, \text{ok}) \approx?
 out(c, u_1) \ldots .out(c, u_n).\text{in}(c, x).0
Trace equivalence \subseteq may-testing?

Proposition

If $(P, \emptyset) \approx (Q, \emptyset)$ then they are in may-testing equivalence.

Proof idea.

Decompose $P \mid T \rightsquigarrow^* \text{out} (T, _)$ into internal reductions of P and T, and communications between the two. This yields a trace of P, which Q can simulate. Compose this with the reductions of T to obtain $Q \mid T \rightsquigarrow^* \text{out} (T, _)$.

Devil is in the details! there is a counter-example when computation is non-deterministic because traces do not keep track of how recipes are evaluated.
Trace equivalence \subseteq may-testing?

Proposition

If $(P, \emptyset) \approx (Q, \emptyset)$ then they are in may-testing equivalence... provided computation is deterministic, i.e.

for all t, u and v such that $t \Downarrow u$, we have $t \Downarrow v$ iff $u \equiv_E v$.

Proof idea.

Decompose $P \mid T \Rightarrow^* \setminus (T, _)$ into internal reductions of P and T, and communications between the two. This yields a trace of P, which Q can simulate. Compose this with the reductions of T to obtain $Q \mid T \Rightarrow^* \setminus (T, _)$.

Devil is in the details! there is a counter-example when computation is non-deterministic because traces do not keep track of how recipes are evaluated.
Trace equivalence \(\subseteq \) may-testing ?

Proposition

If \((P, \emptyset) \approx (Q, \emptyset)\) then they are in may-testing equivalence. . . provided computation is deterministic, i.e. for all \(t, u\) and \(v\) such that \(t \downarrow u\), we have \(t \downarrow v\) iff \(u =_E v\).

Proof idea.

Decompose \(P \mid T \rightsquigarrow^* \text{out}(T, _)\mid _\) into internal reductions of \(P\) and \(T\), and communications between the two. This yields a trace of \(P\), which \(Q\) can simulate. Compose this with the reductions of \(T\) to obtain \(Q \mid T \rightsquigarrow^* \text{out}(T, _)\mid _\).

Devil is in the details! there is a counter-example when computation is non-deterministic because traces do not keep track of how recipes are evaluated.
May testing \subseteq trace equivalence?

Proposition

If P and Q are may-testing equivalent then $P \approx Q$, ...

provided the processes are image-finite: for any tr,

$\{\Phi | (\text{tr}, \Phi) \in \text{Tr}^\prime(P, \emptyset)\}$ is finite up to \sim and similarly for Q.

Example

$P := \text{new } c . (\text{out}(c, \text{ok}) | ! \text{in}(c, x)) . \text{out}(c, h(x)) | \text{in}(c, x)) . \text{out}(a, x))$

$Q := P | \text{new } n . \text{out}(a, n)$

We have $P \not\approx Q$ but P and Q are in may-testing equivalence. This is "only" pathological!
May testing \subseteq trace equivalence?

Proposition

If P and Q are may-testing equivalent then $P \approx Q$, provided the processes are *image-finite*:

\[
\text{for any } tr, \{ \Phi \mid (tr, \Phi) \in \text{Tr}'(P, \emptyset) \} \text{ is finite up to } \sim
\]

and similarly for Q.

Example:

$P := \text{new } c. (\text{out}(c, \text{ok}) | \!\! \text{in}(c, x) \!\! \text{out}(c, h(x))) | \!\! \text{in}(c, x) \!\! \text{out}(a, x))$

$Q := P | \text{new } n. \text{out}(a, n)$

We have $P \not\approx Q$ but P and Q are in may-testing equivalence. This is “only” pathological!
May testing \subseteq trace equivalence?

Proposition

If P and Q are may-testing equivalent then $P \approx Q$, provided the processes are image-finite:

\[
\text{for any } \text{tr}, \{ \Phi \mid (\text{tr}, \Phi) \in \text{Tr}'(P, \emptyset) \} \text{ is finite up to } \sim
\]

and similarly for Q.

Example

\[
P := \text{new } c. (\text{out}(c, \text{ok}) \mid ! \text{in}(c, x).\text{out}(c, h(x)) \mid \text{in}(c, x).\text{out}(a, x))
\]

\[
Q := P \mid \text{new } n. \text{out}(a, n)
\]

We have $P \not\approx Q$ but P and Q are in may-testing equivalence.
May testing \subseteq trace equivalence?

Proposition

If P and Q are may-testing equivalent then $P \approx Q$, provided the processes are image-finite:

for any tr, $\{ \Phi \mid (\text{tr}, \Phi) \in \text{Tr}'(P, \emptyset) \}$ is finite up to \sim

and similarly for Q.

Example

$P := \text{new } c. (\text{out}(c, \text{ok}) \mid ! \text{in}(c, x).\text{out}(c, h(x)) \mid \text{in}(c, x).\text{out}(a, x))$

$Q := P \mid \text{new } n. \text{out}(a, n)$

We have $P \not\approx Q$ but P and Q are in may-testing equivalence.

This is “only” pathological!
Application: strong secrecy

Definition

A protocol P ensures the **strong secrecy** of some variables \vec{x} if, for all (relevant) values \vec{u}, \vec{v}, $P[\vec{x} := \vec{u}] \approx P[\vec{x} := \vec{v}]$.

Weak secrecy: some value cannot be (fully) derived by the attacker.
Strong secrecy: the attacker has no information at all about the value.

Blanchet's key exchange protocol:

1. $A \rightarrow B$: $a\text{enc}(\text{sign}(\langle \text{pk}_A, \text{pk}_B, k \rangle, \text{sk}_A), \text{pk}_B)$
2. $B \rightarrow A$: $s\text{enc}(x, k)$
3. $A \rightarrow B$: $s\text{enc}(y, k)$

Scenario: A and B honest. Is x strongly secret? Are x, y strongly secret?
Application: strong secrecy

Definition

A protocol P ensures the strong secrecy of some variables \vec{x} if, for all (relevant) values \vec{u}, \vec{v}, $P[\vec{x} := \vec{u}] \approx P[\vec{x} := \vec{v}]$.

Weak secrecy: some value cannot be (fully) derived by the attacker. Strong secrecy: the attacker has no information at all about the value.

Blanchet’s key exchange protocol:

1. $A \to B : \text{aenc} (\text{sign}(\langle pk_A, pk_B, k \rangle, sk_A), pk_B)$
2. $B \to A : \text{senc}(x, k)$
3. $A \to B : \text{senc}(y, k)$

Scenario: A and B honest. Is x strongly secret? Are x, y strongly secret?
Application: private authentication

Agents A and B want to authenticate, without revealing their identities.

\[
I(sk_a, pk_b) \quad \begin{aligned}
&\text{new } n_a. \\
&\text{let } pk_a = \text{pub}(sk_a) \text{ in} \\
&\text{out}(c, \text{aenc}(\langle n_a, pk_a \rangle, pk_b)). \\
&\ldots
\end{aligned} \\
R(sk_b, pk_a) \quad \begin{aligned}
&\text{new } n_b. \\
&\text{let } pk_b = \text{pub}(sk_b) \text{ in} \\
&\text{in}(c, x).\text{let } y = \text{adec}(x, sk_b) \text{ in} \\
&\text{if } \text{proj}_2(y) = pk_a \text{ then} \\
&\text{out}(c, \text{aenc}(\langle \text{proj}_1(y), n_b, pk_b \rangle, pk_a))
\end{aligned}
\]

Anonymity

\[
\begin{aligned}
&\text{new } sk_a, sk_b, sk_c. \text{out}(c, \langle \text{pub}(sk_a), \text{pub}(sk_b), \text{pub}(sk_c) \rangle).R(sk_b, \text{pub}(sk_a)) \\
&\cong? \\
&\text{new } sk_a, sk_b, sk_c. \text{out}(c, \langle \text{pub}(sk_a), \text{pub}(sk_b), \text{pub}(sk_c) \rangle).R(sk_b, \text{pub}(sk_c))
\end{aligned}
\]
Application: private authentication

Agents A and B want to authenticate, without revealing their identities.

\[
\begin{array}{ll}
 I(sk_a, pk_b) & R(sk_b, pk_a) \\
 \text{new } n_a. & \text{new } n_b. \\
 \text{let } pk_a = \text{pub}(sk_a) \text{ in} & \text{let } pk_b = \text{pub}(sk_b) \text{ in} \\
 \text{out}(c, \text{aenc}([n_a, pk_a], pk_b)). & \text{in}(c, x). \text{let } y = \text{adec}(x, sk_b) \text{ in} \\
 \ldots & \text{if } \text{proj}_2(y) = pk_a \text{ then} \\
 & \text{out}(c, \text{aenc}([\text{proj}_1(y), n_b, pk_b], pk_a)) \\
 & \text{else out}(c, \text{aenc}(n_b, pk_b)) & \leftarrow \text{decoy!}
\end{array}
\]

Anonymity

\[
\begin{array}{c}
\text{new } sk_a, sk_b, sk_c. \text{ out}(c, \langle \text{pub}(sk_a), \text{pub}(sk_b), \text{pub}(sk_c) \rangle). R(sk_b, \text{pub}(sk_a)) \\
\cong? \\
\text{new } sk_a, sk_b, sk_c. \text{ out}(c, \langle \text{pub}(sk_a), \text{pub}(sk_b), \text{pub}(sk_c) \rangle). R(sk_b, \text{pub}(sk_c))
\end{array}
\]
Application: unlinkability

The BAC e-passport protocol is used between a tag T and a reader R. After k_E and k_M are derived from optical scan (shared secrets), a key is established as follows:

1. $T \rightarrow R : \ n_T$
2. $R \rightarrow T : \ \text{senc}(\langle n_R, n_T, k_R \rangle, k_E), \ \text{mac}(\text{senc}(\langle n_R, n_T, k_R \rangle, k_E), k_M)$
3. $T \rightarrow R : \ \text{senc}(\langle n_T, n_R, k_T \rangle, k_E), \ \text{mac}(\text{senc}(\langle n_T, n_R, k_T \rangle, k_E), k_M)$

Linkability issue:

$new \ k_E, k_M, k'_E, k'_M, T (k_E, k_M) \neq R (k'_E, k'_M)$
Application: unlinkability

The BAC e-passport protocol is used between a tag T and a reader R. After k_E and k_M are derived from optical scan (shared secrets), a key is established as follows:

1. $T \to R : \ n_T$
2. $R \to T : \ \text{senc}(\langle n_R, n_T, k_R \rangle, k_E), \ \text{mac}(\text{senc}(\langle n_R, n_T, k_R \rangle, k_E), k_M)$
3. $T \to R : \ \text{senc}(\langle n_T, n_R, k_T \rangle, k_E), \ \text{mac}(\text{senc}(\langle n_T, n_R, k_T \rangle, k_E), k_M)$

French implementation:

$$T(k_E, k_M) := \text{new } n_T, k_T. \ \text{out}(c, n_T).\text{in}(c, x).$$

if $\text{mac}(\text{proj}_1(x), k_M) = \text{proj}_2(x)$ then
 if $n_T = \text{proj}_1(\text{sdec}(\text{proj}_1(x), k_E))$ then ... else
 \text{out}(c, \text{ERR
nonce})
 else \text{out}(c, \text{ERR_mac})
The BAC e-passport protocol is used between a tag T and a reader R. After k_E and k_M are derived from optical scan (shared secrets), a key is established as follows:

1. $T \rightarrow R : n_T$
2. $R \rightarrow T : \text{senc}(\langle n_R, n_T, k_R \rangle, k_E), \text{mac}(\text{senc}(\langle n_R, n_T, k_R \rangle, k_E), k_M)$
3. $T \rightarrow R : \text{senc}(\langle n_T, n_R, k_T \rangle, k_E), \text{mac}(\text{senc}(\langle n_T, n_R, k_T \rangle, k_E), k_M)$

French implementation:

$$T(k_E, k_M) := \text{new } n_T, k_T. \text{out}(c, n_T).\text{in}(c, x).$$

if $\text{mac}(\text{proj}_1(x), k_M) = \text{proj}_2(x)$ then

if $n_T = \text{proj}_1(\text{sdec}(\text{proj}_1(x), k_E))$ then \ldots else

out$(c, \text{ERR_nonce})$
else out$(c, \text{ERR_mac})$

Linkability issue:

new k_E, k_M, k'_E, k'_M. $T(k_E, k_M) \parallel R(k_E, k_M) \not\approx T(k'_E, k'_M)$
Some general definitions

Let $I(\vec{k}, \vec{n})$ and $R(\vec{k}, \vec{n})$ be two roles of a protocol, where \vec{k} represents identity parameters and \vec{n} represent session parameters.

Definition

The protocol ensures strong unlinkability when:

$$
! \text{new } \vec{k}. \! \text{new } \vec{n}. \ I(\vec{k}, \vec{n}) \parallel R(\vec{k}, \vec{n}) \approx ! \text{new } \vec{k}. \! \text{new } \vec{n}. \ I(\vec{k}, \vec{n}) \parallel R(\vec{k}, \vec{n})
$$

Definition

The protocol ensures anonymity when:

$$
\mathcal{M} \approx \mathcal{M} \mid ! \text{new } \vec{n}. \ I(\vec{k}_0, \vec{n}) \parallel R(\vec{k}_0, \vec{n})
$$

where \mathcal{M} is the left process on the previous equivalence.
Observational equivalence

We write $P \Downarrow c$ when P can output on c after internal reductions, i.e. $P \rightsquigarrow^* \text{out}(c, u).P' | P''$.

Definition

The binary relation \mathcal{R} over closed processes is a **observational bisimulation** if it is symmetric and $P \mathcal{R} Q$ implies:

- for all c, $P \Downarrow c$ implies $Q \Downarrow c$;
- for all P', $P \rightsquigarrow^* P'$ implies $Q \rightsquigarrow^* \mathcal{R} P'$;
- for all R, $(P | R) \mathcal{R} (Q | R)$.

Observational equivalence is the largest observational bisimulation.
Observational equivalence

We write $P \downarrow c$ when P can output on c after internal reductions, i.e.

$P \rightsquigarrow^* \text{out}(c, u).P' | P''$

Definition

The binary relation \mathcal{R} over closed processes is a observational bisimulation if it is symmetric and $P \mathcal{R} Q$ implies:

- for all c, $P \downarrow c$ implies $Q \downarrow c$;
- for all P', $P \rightsquigarrow^* P'$ implies $Q \rightsquigarrow^* \mathcal{R} P'$;
- for all R, $(P | R) \mathcal{R} (Q | R)$.

Observational equivalence is the largest observational bisimulation.

The quantification over all contexts makes it hard to prove obs. equiv, both by hand and mechanically.
Definition

The binary relation \mathcal{R} over configurations is a **bisimulation** if it is symmetric and $A \mathcal{R} B$ implies:

- $\Phi(A) \sim \Phi(B)$;
- $A \xrightarrow{\tau} A'$ implies $B \xrightarrow{\tau}^* \mathcal{R} A'$;
- $A \xrightarrow{\alpha} A'$ implies $B \xrightarrow{\alpha} \mathcal{R} A'$.

Bisimilarity is the largest bisimulation.

Theorem (Abadí, Blanchet & Fournet 2001/2017)

P and Q are observationally equivalent iff they are bisimilar.
Comparison with trace equivalence

Proposition

If A and B are bisimilar, then \(A \approx B \).
Comparison with trace equivalence

Proposition

If A and B are bisimilar, then $A \approx B$.

Trace equivalence is a **linear-time** property, bisimilarity is **branching-time**: trace equivalence does not “see” choice points.

Example

Assume a choice operator $P_1 + P_2 \xrightarrow{\tau} P_i$ for $i \in \{1, 2\}$.

$$\text{out}(a, \text{ok}).(\text{out}(b, \text{ok}) + \text{out}(c, \text{ok})) \approx \text{out}(a, \text{ok}).\text{out}(b, \text{ok}) + \text{out}(a, \text{ok}).\text{out}(c, \text{ok})$$

but they are not bisimilar.
Comparison with trace equivalence

Proposition

If A and B are bisimilar, then $A \approx B$.

Trace equivalence is a *linear-time* property, bisimilarity is *branching-time*: trace equivalence does not “see” choice points.

Example

Assume a choice operator $P_1 + P_2 \xrightarrow{\tau} P_i$ for $i \in \{1, 2\}$.

\[
\text{out}(a, \text{ok}).(\text{out}(b, \text{ok}) + \text{out}(c, \text{ok})) \approx \\
\text{out}(a, \text{ok}).\text{out}(b, \text{ok}) + \text{out}(a, \text{ok}).\text{out}(c, \text{ok}) \text{ but they are not bisimilar.}
\]

Example without choice (Pous & Madiot)

Without choice, take two observably distinct actions α and β.

Consider $P := \alpha.(\alpha.\beta.\alpha|\beta.\beta)|\beta.\alpha$ and $Q := \alpha.\beta.\alpha|\alpha.(\alpha.\beta.(\alpha|\beta)|\beta)$.

We have $P \approx Q$ but $P \xrightarrow{\alpha.\beta.\alpha} \alpha.\beta.\alpha|\beta.\beta|\alpha$ which cannot be matched by Q.
Comparison with trace equivalence

Proposition

If A and B are determinate, and $A \approx B$, then A and B are bisimilar.

Possible definitions of determinacy

A is determinate if, for all $A \xrightarrow{\text{tr}} A'$:
Comparison with trace equivalence

Proposition

If A and B are **determinate**, and $A \approx B$, then A and B are bisimilar.

Possible definitions of determinacy

A is **determinate** if, for all $A \overset{\text{tr}}{\Rightarrow} A'$:

- A' does not have two inputs (resp. outputs) on the same c at toplevel;
Comparison with trace equivalence

Proposition

If A and B are determinate, and $A \approx B$, then A and B are bisimilar.

Possible definitions of determinacy

A is determinate if, for all $A \xrightarrow{\text{tr}} A'$:

- A' does not have two inputs (resp. outputs) on the same c at toplevel;
- for all α, $A' \xrightarrow{\alpha} A'_1$ and $A' \xrightarrow{\alpha} A'_2$ imply $\Phi(A'_1) \sim \Phi(A'_2)$;
Comparison with trace equivalence

Proposition

If A and B are determinate, and $A \approx B$, then A and B are bisimilar.

Possible definitions of determinacy

A is **determinate** if, for all $A \xrightarrow{\text{tr}} A'$:

- A' does not have two inputs (resp. outputs) on the same c at toplevel;
- for all α, $A' \xrightarrow{\alpha} A'_1$ and $A' \xrightarrow{\alpha} A'_2$ imply $\Phi(A'_1) \sim \Phi(A'_2)$;
- for all α, $A' \xrightarrow{\alpha} A'_1$ and $A' \xrightarrow{\alpha} A'_2$ imply $A'_1 \approx A'_2$.

David Baelde (ENS Paris-Saclay)
Bisimilarity in practice

The gap between bisim and trace equivalence (determinacy) may or may not matter depending on applications.

Bisimilarity is generally easier to prove than trace equivalence:
- by hand: bisimulation proof technique;
- mechanically: incrementally find matching processes.

In verification, even more constraining forms of equivalences are considered, e.g. diff-equivalence where the two processes must have the same structure and differ only in the terms that they use.

Tools
- diff-equivalence: proverif, tamarin (unbounded sessions)
- bisimilarity: SPEC (bounded sessions)
- trace equivalence: Apte/DeepSec, Akiss (bounded sessions)
Equivalence examples

Diff-equivalence successes

- Strong secrecy: \(P[x := u] \) vs \(P[x := 0] \)
- Anonymity: \(P[x := A] \) vs \(P[x := B] \)

Unlinkability: gray zone

- Not bisimilar in general, trace equiv. needed:
 \[
 !\text{new } k !\text{new } n, m. \ I(k, n) | R(k, m)
 \]
 \[
 !\text{new } k \text{new } n, m. \ I(k, n) | R(k, m)
 \]
- Often diff-equivalent when no shared identity:
 \[
 !\text{new } k !\text{new } k' \text{new } n, m. \ I(k, n) | R(m)
 \]
 \[
 !\text{new } k !\text{new } k' \text{new } n, m. \ I(k', n) | R(m)
 \]
Summary

Static equivalence
- Indistinguishable sequences of messages
- Depends on equational theory, destructors vs. constructors

May testing & trace equivalence
- May testing: there exists an adversary (in the same model)
- Trace equivalence: the same traces can be observed
- Trace equivalence is a good approximation of may testing, often used in practice for verification.

Obs. equiv., bisimulation and diff-equiv.
- Obs. equiv = bisimulation = strongest “reasonable” equivalence
- Good properties: compositional, congruence, easier to check
- Common approximation for verification: diff-equivalence