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Résumé

Les méthodes formelles mettent les outils de l’informatique théorique au service de la
conception et de la vérification de systèmes fiables. Depuis les années 80, la vérification
des protocoles cryptographiques a été un sujet de recherche actif dans ce domaine, ce qui
a rendu possible la découverte automatique d’attaques et la preuve formelle de propriétés
de sécurité pour des classes de protocoles, d’attaquants et de propriétés s’élargissant avec
le temps: On peut notamment se restreindre à certaines classes d’attaquants spécifiées
symboliquement, ou considérer des machines de Turing arbitraires. Par ailleurs, les pro-
priétés de sécurité peuvent être vues comme des problèmes d’accessibilité, ce qui con-
vient par exemple pour la confidentialité, ou plus généralement comme des problèmes
d’équivalence comportementale, ce qui permet aussi de rendre compte de diverses pro-
priétés liées au respect de la vie privée.

Nous présentons dans ce mémoire d’habilitation plusieurs contributions à ce domaine.
Nous nous intéressons d’abord à la modélisation de la propriété de non-traçabilité et
à sa preuve en nombre non-borné de sessions, via la vérification de conditions suff-
isantes au moyen d’outils existants. Nous développons ensuite plusieurs techniques de
réduction d’ordres partiels qui ont permis l’amélioration des outils actuels de vérification
d’équivalences en nombre de session borné. Nous présentons enfin des travaux en cours
sur une nouvelle approche pour la preuve de protocoles dans le modèle calculatoire,
fondée sur le développement d’une meta-logique au dessus de la logique CCSA.

Summary

Formal methods use techniques from theoretical computer science for the design
and verification of trustworthy systems. Since the 80’, the verification of cryptographic
protocols has been the topic of active research in this domain, which has made it possible
to automatically discover attacks and to formally prove security properties for ever-
increasing classes of protocols, attackers and properties: Particular classes of attackers
may be described symbolically, or arbitray Turing machines may be considered. Security
properties may be viewed as reachability problems, which is appropriate e.g. for secrecy,
or more generally as behavioural equivalences, which allows to capture various privacy-
type properties.

This habilitation manuscript presents several contributions to this domain. We first
consider the formal modelling of unlinkability and a technique for proving unlinkabil-
ity with unbounded sessions, via the verification of sufficient conditions using existing
tools. We then develop several partial order reduction techniques that have brought
performance improvements in state-of-the-art equivalence verification tools for bounded
sessions. We finally present ongoing work on a new approach for proving protocols in the
computational model, based on the development of a meta-logic over the CCSA logic.
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1
Preamble

The purpose of an habilitation manuscript is to demonstrate that one is suitable to teach
as a university professor, and independently supervise the research work of others. This
is usually done through the presentation of the research work that one has carried out
after his or her PhD. In my case, I have worked on topics that are so distinct that it
would not be possible to present them all in this document at an interesting level of
detail. Therefore, I shall start with a short description of the main areas of my work,
and will focus on just one for the rest of the document.

1.1 Biography

In December 2009, I have obtained a PhD in Computer Science from École Polytech-
nique, titled A Linear Approach to the Proof Theory of Least and Greatest Fixed Points
and supervised by Dale Miller.

After that, I have worked as a post-doc for slightly more than two years. First at
the University of Minnesota with Gopalan Nadathur, then at Université Paris-Sud with
Christine Paulin, and finally at the IT University of Copenhagen in Carsten Schürmann’s
DemTech project on electronic democracy.

In September 2012, I started working as an assistant professor in the Computer
Science department of École Normale Supérieure (ENS) de Cachan, and I joined the
security axis of the Laboratoire Spécification and Vérification (LSV). I still hold this
position, though the school is now called ENS Paris-Saclay and LSV has merged with
the Vals team of LRI to form a new research laboratory called Laboratoire Méthodes
Formelles.

My research interests have slowly shifted during this time. Starting from linear logic
and logical frameworks, I have worked at Université Paris-Sud on formal security proofs
for watermarking schemes (in Coq) and I have developed an interest for electronic voting

1



2 CHAPTER 1. PREAMBLE

in Copenhagen. I have finally joined LSV with a research project that notably proposed
to apply techniques from linear logic to the verification of security protocols. This
manuscript will focus on my work in security, although my activities at LSV have only
partially been dedicated to it.

1.2 Infinitary proof theory

During my PhD I have studied the proof theory of least and greatest fixed points in linear
logic, and investigated the use of fixed point logics in several contexts. In particular, I
have been interested in reasoning about finite automata [Bae09] using linear logic with
least fixed points. This had lead me to develop an interest for circular proofs, and in
particular for the works of Santocanale [San02] and of Brotherston and Simpson [BS11].

I presented my work on finite automata at the 2012 North American meeting of
the ASL in Madison, Wisconsin, where I got challenged by Moshe Vardi to make it
“scale” to infinite words automata. In collaboration with Amina Doumane, Lucca Hirschi,
and Alexis Saurin, we finally managed to do so in the context of the linear-time µ-
calculus [Dou+16]. In this work, we design an infinitary proof system for that µ-calculus,
where derivations are finitely branching but non-well-founded trees, and infinite branches
need to be justified by a validity condition based on threads, i.e. the sequences of
formula occurrences that are explored in the branch. We have shown that a particular
class of circular proofs in that system can be translated to standard finitary proofs
using (co)induction rules. These results are finally applied to obtain a completeness
result for inclusions of Büchi automata suitably encoded as µ-calculus formulas: we first
obtain circular proofs of inclusions by exploiting Safra’s determinization technique, then
translate these circular proofs to finitary ones.

I have worked more generally on studying and developing the foundations of infinitary
proof theory. I have notably obtained, with Amina Doumane and Alexis Saurin, an
infinitary cut elimination result [BDS16] for multiplicative additive linear logic with least
and greatest fixed points (µMALL). In non-well-founded sequent calculus derivations for
that logic, the usual cut reductions generally yield infinite reduction sequences. However,
if one restricts to reduction sequences that only reduce bottom-most cuts, one would
hope that reductions produce, at the limit, cut-free derivations. Santocanale and Fortier
have shown that this is the case in the purely additive fragment [FS13]. With Doumane
and Saurin, we have shown that it also holds for µMALL [BDS16]. Our argument
significantly differs from the one used by Fortier and Santocanale in the additive case,
and makes a surprising use of a Boolean semantics for our linear logic.

Amina Doumane has completed a PhD in 2017 on infinitary proof theory, supervised
by Alexis Saurin and myself. She has notably built on our joint work [Dou+16] to develop
a new, constructive proof of completeness for the full µ-calculus [Dou17].
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1.3 Sequent calculi for tense logics

While at LSV, I have embarked on a project led by Sylvain Schmitz to study data logics.
As modal logics, data logics express properties of relational structures whose nodes are
labelled by propositions from a finite alphabet, but also carry a datum from an infinite
domain which can be compared for (dis)equality. For example, w |= F6=φ holds when
there exists some node w′ such that w →∗ w′ and the two worlds carry distinct data.
These logics are relevant to database theory and, more specifically, XML query langages
such as XPath. They have been widely studied and several fragments have been identified
for which satisfiability is decidable [GK02; Hid04; GF05; CL09; Boj+09; JL11; FS09;
FS17; Cze+18].

With Anthony Lick and Sylvain Schmitz, we have developed a benchmark to study
the practical relevance of the various decidable fragments [BLS19]. We first identified
precisely which fragment of XPath actually corresponds to each theoretical fragment,
considering the addition of practical features of XPath that had been ignored in theoret-
ical investigations, as long as these additions did not change the complexity of satisfia-
bility. We then gathered XPath code from real-world open-source projects and measured
the coverage of each fragment on this benchmark. This allowed us to evaluate which
theoretical decision procedures could have the highest impact in practice, and identify
research directions for future improvements.

More theoretically, our main line of research has been an attempt to unify the study
of data logics through the use of proof theory. Indeed, model theory and automata theory
are commonly used in this field, but they tend to yield impractical decision procedures
and do not seem to give a modular view of the landscape of logics that would help to
understand it. In contrast, we have strived to develop proof systems for data logics that
can yield practical decision procedures and, by virtue of the sequent calculus, a more
modular understanding of the logics. With Simon Lunel and Sylvain Schmitz, we have
first developed a sound and complete sequent calculus proof system for a data logic on
trees with only (transitive) downward navigation [BLS16]. This system enjoys optimal
complexity backward proof-search. Then, with Anthonly Lick and Sylvain Schmitz, we
have studied logics with converse navigation and obtained proof systems for tense logic
over words [BLS18a] and ordinals [BLS18b]. Again, the obtained systems are complete
and enjoy optimal-complexity proof-search. In order to succesfully capture bidirectional
navigation, we have had to move from sequents to (enriched) hypersequents. Further, in
order to obtain a terminating proof-search, we have made use of annotations expressing
maximality conditions, so that proof search becomes a search for some minimal counter-
models.

Anthony Lick has obtained a PhD in 2019, supervised by Sylvain Schmitz and myself.
As part of his PhD work, he has managed to extend our calculus for ordinals [BLS18b]
to data ordinals [Lic19].
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1.4 Security protocol verification

While at LSV, I have developped my interest for the application of formal methods to
the analysis of security protocols. This area of research is interesting for many reasons.
First, it deals with problems that are crucial for modern individuals. Security protocols
are involved in many aspects of our daily lives: personal communications, financial
operations, access control in private buildings and public transportation, voting, etc. and
news recall us regularly that security issues in any of these domains can have devastating
consequences. Second, applying formal methods to security protocols requires a careful
modelling of systems and security properties. This task can be quite delicate, as security
requirements are sometimes very informal, and the complex models of security protocols
can easily hide subtle modelling defects. This problem has driven the design of modelling
languages that are both rich enough and mathematically simple. Third, working in these
formal frameworks offers opportunities to import techniques from more abstract fields
of computer science, such as rewriting, logic, type systems, concurrency theory, etc. All
these reasons have attracted many fundamental computer scientists to the field, myself
included.

I have worked on automatic techniques for verifying equivalences of security protocols,
which are commonly used to express privacy-type properties such as anonymity or unlink-
ability. I have considered this problem in symbolic models using (variants of) the applied
pi-calculus [AF01]. In 2012, precise (semi-)decision procedures already existed and were
implemented in a few tools [TD10; Che14; Cha+16], working under the assumption
that protocol traces are bounded. These procedures performed a relatively naive ex-
ploration of all protocol executions, testing at each step that the two protocols under
consideration cannot be distinguished based on their output messages. With Stéphanie
Delaune and Lucca Hirschi, we have designed partial-order reduction (POR) techniques
to avoid exploring redundant executions. Our first technique [BDH14; BDH17], inspired
by focused proof systems from linear logic, works under some action-determinism as-
sumption and has brought significant performance improvements in most equivalence
verification tools. In a subsequent work, we have managed to re-use the classic POR
techniques of persistent and sleep sets [God95], lifting in this way the action-determinism
assumption [BDH18a]. These results are to a large extent orthogonal to the heart of
the (semi-)decision procedures for verifying equivalence. I have also worked one such
procedure with Stéphanie Delaune, Steve Kremer and Ivan Gazeau, to bring support for
exclusive or in the Akiss tool [Bae+17].

In another important line of work, I have been concerned with the verification of
unlinkability for unbounded executions. Intuitively, unlinkability holds when an out-
side observer cannot tell if two uses of the same protocol are from the same user or
not. Formally expressing this property is tricky, and has been the subject of a string
of imperfect papers in the literature. More importantly, verifying the property is out
of reach of general-purpose tools for unbounded sessions such as Proverif [Bla+01]
or Tamarin [Bas+12], since they rely on an overly constraining notion of equivalence,
namely diff-equivalence, that does not hold for unlinkability. With Stéphanie Delaune
and Lucca Hirschi, we have proposed two sufficient conditions that imply unlinkability
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and can be verified with Proverif [HBD16; HBD19]. Later on, with Stéphanie Delaune
and Solène Moreau, we have extended this work to protocols with state and a centralized
reader, which has necessitated a modification of the formal definition of unlinkability,
the addition of a third condition [BDM20] and the move from Proverif to Tamarin for
the verification of the conditions on case studies.

I have supervised with Stéphanie Delaune the PhD thesis of Lucca Hirschi (completed
in 2017) and we are currently supervising the PhD thesis of Solène Moreau.

1.5 Acknowledgments

I am honored that Mart́ın Abadi, Gilles Barthe and Frank Pfenning have accepted to
review this manuscript, and I thank them for their work and comments. I also thank
Véronique Cortier, Paul Gastin and Catuscia Palamidessi for being part of my jury.

I am most grateful for my close collaborators Stéphanie Delaune, Alexis Saurin and
Sylvain Schmitz who have deeply influenced my work and accompanied me on exciting
journeys for the past nine years. I also warmly thank Amina Doumane, Lucca Hirschi,
Anthony Lick and Solène Moreau, who have embarked as PhD students under our su-
pervision; I consider myself lucky to have had such talented students.

More generally, I have benefited from an exceptional work environment at LSV. I
am thankful to all my colleagues there who have contributed to make it a pleasant
and exciting place to work. Teaching at the Computer Science department has also
been a delightful experience. I would like to thank all the students who have made my
classes lively and interesting, as well as my colleagues, particularly Paul Gastin and Serge
Haddad. Last but not least, teaching with Hubert Comon has been a great experience
which has strongly influenced me. Surprisingly, Hubert’s influence on my research topics
has only started to show very recently, as shown in the last chapter of this manuscript.

I would finally like to thank Steve Kremer, Vincent Cheval and Itsaka Rakotonirina
for our interesting discussions on POR and for their remarks on preliminary versions of
this manuscript, Bruno Blanchet for many interesting discussions notably during my stay
at Prosecco, and Charlie Jacomme and Adrien Koutsos for being part of the Squirrel
team.

1.6 Outline

The rest of this document presents and discusses my main lines of work in security.
Chapter 2 defines the formal framework that is used to model protocols in most of my

work. This framework belongs to the category of symbolic models and more specifically
relies on the applied pi-calculus. The chapter is based on lecture notes from my past
teaching of symbolic proofs of security protocols, and its technical content is significantly
more detailed than in other chapters. The definitions and results that are presented are
however important for some of the discussion in the next chapters.

Chapter 3 presents my contributions to the verification of unlinkability through suf-
ficient conditions. I use it as an opportunity to carefully discuss the formal modelling of
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unlinkability, addressing several formal definitions that have been used in the literature.
Chapter 4 is dedicated to my works on partial-order reductions for security protocol

equivalences. This is historically my first line of research in the domain, drawing explicitly
from my past expertise in proof-search and linear logic. The contributions that resulted
from it are my most mature in the field of security. I attempt to put it in perspective
and identity questions that are left open.

Chapter 5 describes some recent work on a new approach to obtain proofs of security
protocols in the computational model. It is based on a logic that Bana and Comon have
recently proposed for proving computational indistinguishability [BC14], on which we
elaborate by developing a meta-logic and a dedicated proof assistant. This work opens
up several directions for future work which we plan to explore in the coming years.



2
A Symbolic Model for Security Protocols

One of the most successful frameworks for specifying and verifying protocols in the
symbolic model is the applied pi-calculus [ABF17], introduced by Abadi and Fournet
[AF01] and popularized notably through its use in Blanchet’s system Proverif [Bla+01].
Most of my work is based on variants of the applied pi-calculus, and we present in
this chapter one such variant. The goal is to introduce the technical notions that will
be used in the next chapters, providing enough background to be able to justify their
relevance in the context of the formal verification of security protocols. In particular,
we shall introduce and compare several notions of equivalence, even though only trace
equivalence is used in other chapters. We also give an overview of the state of the art
in automated verification of security protocols in symbolic models.

This chapter does not present any contribution of mine, and its only originality might
be in the presentation. It is based on lecture notes from my past teaching of the course
on symbolic proofs of protocols at the Master Parisien de Recherche en Informatique
(MPRI).

We shall not present our process algebra in the style of [AF01] featuring active
substitutions and extended processes (which is kept in, e.g., [ABF17; CK14; CCD13;
BCK20]) but work instead with configurations, similar to, e.g., [Bla16]. Although the
difference is shallow, we find that avoiding active substitutions makes the concepts more
accessible, and we have thus followed this approach both in our research papers and
when teaching.

The process algebra given here is a superset of the ones used in our main line of
POR works [BDH14; BDH15a; BDH17]: we shall see in due time how replication and
private channels need to be restricted. However it does not feature the destructors and
repetition operators present in [HBD19] nor the state manipulations of [BDM20], which
we will use in chapter 3.

7



8 CHAPTER 2. A SYMBOLIC MODEL FOR SECURITY PROTOCOLS

2.1 Terms

Terms will be used to model messages and computations over messages. We assume
several disjoint and countable sets of elementary objects: a set X of variables, which will
be denoted by w, x, y, z; a set N of names, which will be denoted by n, m, k; a set C
of channels, which will be denoted by c, d. Intuitively, names will be used to represent
the secrets of honest participants (nonces, keys, etc.) which the attacker will not know
a priori. We rely on a lightweight sort system featuring two sorts message and channel.
Names have sort message, channels have sort channel, and each variable comes with a
sort attached. We will however not specify the sorts of variables and terms when they
are irrelevant or can be inferred from the context. We assume that there are infinitely
many variables available for each of our two sorts.

Then, we assume a signature Σ, that is a set of function symbols whose sorts are
of the form messagek → message. Given a set elementary objects B, the set T (B) of
terms generated from B using Σ is defined as the least set containing B that is closed
by application of function symbols respecting their sorts. Terms will be noted s, t, u, v.

Example 2.1. One possible signature is Σ = {senc, sdec, pair, fst, snd, ok}. The symbols
senc and sdec, of arity 2, are meant to represent symmetric encryption and decryption.
Pairing is modeled using pair of arity 2 and projection functions fst and snd, both of arity
1. Finally, the symbol ok is of arity 0, i.e. it is a constant. When using this signature,
we will often write 〈s, t〉 rather than pair(s, t), and {m}k for senc(m, k).

Given a term t, we define fv(t) as the set of variables that occur in t. Similarly, fn(t)
(resp. fc(t)) is the set of names (resp. channels) occurring in t. For convenience, we also
define fnc(t) as fn(t) ∪ fc(t). A term is said to be closed when it contains no variable,
i.e. when it belongs to T (N ∪ C); it is these terms that are going to be communicated
between processes.

A substitution is a finite domain map from X to T (B) for some B, that respects
sorts: variables of sort s must be mapped to terms of the same sort. Substitutions will be
denoted by θ or σ, their domain will be noted dom(·). The application of a substitution
θ to a term t is defined as usual and noted tθ.

Two mechanisms have been used in the literature to provide a meaning to terms.
Terms may be considered up to an equational theory that indicates when two compu-
tations yield the same result [AF01]: for instance, one expects that sdec(senc(s, t), t)
and s represent the same message. Special function symbols, called destructors, may
also be subject to rewrite rules [AB05]. This yields a distinction between computations
(arbitrary terms, featuring destructors) and messages (destructor-free terms, obtained
after some number of rewriting steps) which is convenient to model computations that
may fail. For example, we may have that sdec(senc(s, k), k) rewrites to s but sdec(ok, k)
fails, indicating an encryption scheme where it is possible to distinguish random mes-
sages from actual ciphertexts. Rewrite rules can be encoded as equations [ABF17], but
equations are more general since they allow, e.g., to model the algebraic properties of
exclusive or. Rewrite rules are often easier to handle in automated verification, and the
two styles are thus often combined, as is the case in Proverif. For simplicity, we only
consider equations here, though the technical development would extend naturally to
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destructors.
Our equational theory is going to be generated from equations between terms that

may contain variables but no names — intuitively, computations should not distinguish
one name from another, as they are just random values. We thus assume a set of
equations E ⊆ T (X )2 over terms of sort message; we will use an infix notation for it,
writing s E t rather than (s, t) ∈ E. We then define the binary relation =E over T (N∪X )
as the least equivalence relation that contains E and is closed under substitution and
context closure.

Example 2.2. With the signature of example 2.1, consider E made of three equations:

sdec(senc(x, y), y) E x, fst(pair(x1, x2)) E x1, and snd(pair(x1, x2)) E x2.

We then have fst(sdec(senc(pair(ok, n), k), k)) =E ok but ok 6=E pair(ok, n).

Proposition 2.1. Let σ : N → N be a bijective renaming, and u, v be terms. We have
u =E v iff uσ =E vσ.

2.2 Processes

Protocols are distributed programs manipulating messages using cryptographic primi-
tives. They will be modelled as processes in a dialect of Abadi and Fournet’s applied
pi-calculus [AF01; ABF17] which, like the spi-calculus [AG99], elaborates on Milner’s
pi-calculus [Mil99]. The main difference between the seminal pi-calculus and its cryp-
tographic extensions is that cryptographic calculi have a first-class notion of message,
while only channel names can be communicated in the pi-calculus.

Processes are generated from the following grammar:

P,Q ::= 0 | (P | Q) | !P
| in(u, x).P | out(u, v).P | new x.P
| if u = v then P else Q

where x ∈ X and u, v ∈ T (N ∪ X ). In a conditional process testing u = v, we require
that the two terms are of sort message. In input and output constructs, we assume that
the term u is of sort channel.

We allow the communication of channels and the creation of private channels, thus
we do not constrain the sort of x and v in input, output, and new constructs. For
instance, new x.out(c, x).in(x, y).0 is a valid process if x is a variable of sort channel
and y a variable of sort message. For simplicity, we do not consider a type system that
would indicate whether a channel is meant to transport messages or channels, though
we never consider examples where such a discipline could not be imposed.

We will often omit the null process, writing e.g. out(c, u) instead of out(c, u).0 or
(if u = v then P ) instead of (if u = v then P else 0).

In a process, variables may be bound by in and new constructs. The set of free
variables of a process P is noted fv(P ). We say that P is closed when fv(P ) = ∅. We
write fn(P ) for the set of free names of P , fc(P ) for its free channels and fnc(P ) for
fn(P )∪ fc(P ). Processes will be considered up to α-equivalence, i.e. up to the renaming
of bound variables.
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(E,P ∪ {0})  (E,P)

(E,P ∪ {P | Q})  (E,P ∪ {P,Q})

(E,P ∪ {!P})  (E,P ∪ {P, !P})

(E,P ∪ {in(c, x).P, out(c, u).Q})  (E,P ∪ {P{x 7→ u}, Q})

(E,P ∪ {if u = v then P else Q})  (E,P ∪ {P}) when u =E v

(E,P ∪ {if u = v then P else Q})  (E,P ∪ {Q}) when u 6=E v

(E,P ∪ {new x.P})  (E ∪ {n},P ∪ {P{x 7→ n}}) when n 6∈ E ∪ fn(P , P )

(E,P ∪ {new x.P})  (E ∪ {c},P ∪ {P{x 7→ c}}) when c 6∈ E ∪ fc(P , P )

The last rule only applies when x is of sort channel, and the previous one only applies
when the bound variable is of sort message.

Figure 2.1: Internal reduction rules

2.3 Internal reduction

We now define how processes execute, by providing them with a reduction semantics.
Reduction steps need to occur under some new and parallel constructs, which is achieved
formally by defining our reduction relation not on processes but on internal reduction
configurations of the form (E,P) where E ⊆fin N ∪ C is called an environment and P
is a finite multiset of closed processes1. Intuitively, the configuration

({n1, . . . , np, c1, . . . , cq}, {P1, . . . , Pr})

represents the process

new x1 . . .new xp.new y1 . . .new yq. (P1 | . . . | Pr){ni 7→ xi}i∈[1;p]{cj 7→ yj}j∈[1;q].

Definition 2.1 (Internal reduction). The binary relation  on internal reduction con-
figurations is given by the rules of figure 2.1.

Note that new constructs are always executable, because we consider processes up
to α-renaming. The only constructs on which reduction may be stuck are inputs and
outputs, when their counterparts are not available in the multiset.

Example 2.3. Assuming that n1 and n2 are two distinct names, we have:

(∅, {(new n.out(c, n)) | (new n.out(c, n)) | (in(c, x).in(c, y).out(c, 〈x, y〉))})
 8 ({n1, n2}, {out(c, 〈n1, n2〉)})

Building on proposition 2.1, we easily obtain that names are interchangeable in in-
ternal reductions. From now on, a bijective renaming is a bijection over N ∪ C that
sends names to names and channels to channels.

1The notation X ⊆fin Y means that X is a finite subset of Y . Multisets are simply noted
{P1, . . . , Pn} and the union of multisets is noted ∪.
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Proposition 2.2. Let σ be a bijective renaming. For any internal reduction configura-
tions (E,P) and (E ′,P ′) we have (E,P) (E ′,P ′) iff (Eσ,Pσ) (E ′σ,P ′σ).

This result notably implies that the precise choice of name or channel is inessential
when reducing new constructs, as long as the freshness condition is respected. We shall
often use it with bijections that exchange only two elements, which we note {t↔ t′}.
Remark 2.1. Internal communications make internal reductions non-deterministic. Given
two processes P1 and P2, let us define:

P1 + P2
def
= new x, y. out(x, y) | in(x, z).P1 | in(x, z).P2

For any E and P , and any i ∈ {1, 2}, we have (E,P ∪ {P1 + P2}) ∗ (E,P ∪ {Pi}).

Application to modelling security properties

Several security properties can be formally defined using internal reduction. Such prop-
erties, including e.g. secrecy and authenticity, are broadly called reachability properties.
We detail next the case of secrecy, and refer the reader to [CK14; Bla16] for accounts
of authentication.

Intuitively, a value remains secret if no attacker can derive it. The only difficulty2 here
is to precisely define what we mean by attacker. We actually consider an attacker in the
style of Dolev-Yao [DY81], which can intercept and inject messages on public channels,
and derive new messages from the intercepted ones by applying function symbols and
the equational theory. Such attackers are elegantly captured by processes interacting
with the protocol’s processes, which leads us to the following definition.

Definition 2.2 (Secrecy). Let (E,P) be an internal reduction configuration, and s be
a closed term. We say that (E,P) does not ensure the secrecy of s when there exists
a closed process A such that E ∩ fnc(A) = ∅ and

(E,P ∪ {A}) ∗ (E ′, {out(c, u)} ∪ P ′)

for some E ′, P ′, c 6∈ E ′ and u =E s. Otherwise, we say that P ensures the secrecy of s.

Intuitively, the process A in this definition represents an arbitrary attacker. It can
perform any computation allowed in our semantics, communicating with P in any way,
possibly intercepting and injecting messages. The attacker can also generate new names
and compute new messages modulo =E by applying function symbols on known mes-
sages. The set of symbols E models the initial secrets of the protocol. Accordingly, we
only consider attacker processes which do not mention these secrets initially. Secrecy
then amounts to verify that the term s, relying on these a priori secrets, cannot be
learned by the attacker after some interaction with the protocol. If fnc(s) is disjoint
from E, then the secrecy of s obviously does not hold.

It is important that the internal reduction rules for new prevent the re-use of past
private symbols that have become unusued — freshness wrt. fn(P , P ) alone would not

2There is in fact another difficulty: one should carefully define the scenario in which secrecy is
considered. Many parameters such as the number of agents, sessions, or the possibility of corrupt
agents, have an impact on secrecy.
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be adequate. Without this, secrecy would fail for bad reasons: for instance the secrecy
of a name n would not be ensured by the null process (or any process that can reduce to
a process where n does not occur anymore) using the closed attacker new x.out(c, x)
and choosing n for the new name.

Example 2.4. Assume the theory of example 2.2, and consider the following process:

P
def
= in(c, x).if x = senc(sdec(x, k), k) then out(c, k) else out(c, senc(n, k))

We have that ({n, k}, {P}) ensures the secrecy of n, because the equation u =E

senc(sdec(u, k), k) holds iff u =E senc(v, k) for some v, and the attacker cannot provide
P with an input of that form. However, ({n, k}, {P, P}) does not ensure the secrecy of
n, as witnessed by the following attacker process:

A
def
= out(c, ok).in(c, x).out(c, x).in(c, y).out(bad, sdec(x, y))

Indeed, we have

({n, k}, {P, P,A}) ∗ ({n, k}, {out(bad, sdec(senc(n, k), k))})

and sdec(senc(n, k), k) =E n.

2.4 May-testing

We now turn to defining our reference notion of indistinguishability, through may testing.
Intuitively, we would like to declare that two processes are indistinguishable when any
experiment yields some outcome with one process iff the same outcome can be obtained
with the other process. Our experiments should include communications, message ma-
nipulations and tests, which will be obtained by taking processes as experiments. The
outcome of experiments could be an output on some channel, but we prefer to take
an abstract outcome by enriching processes with a success construct — this does not
change the resulting equivalence and slightly simplifies the theory. The new construct
plays no role in executions but its presence at toplevel in configurations indicates a
successful test.

The notion of test will be relative to an environment, indicating which names and
channels are private and should thus not be mentioned in tests. It will be useful for
technical developments to allow tests to mention past outputs of processes. This is
achieved through the notion of frame, from which we derive a notion of configuration
that generalizes internal reduction configurations and on which we define may testing.

Definition 2.3 (Frame). A frame, noted E.σ, is composed of an environment E ⊆fin

N ∪ C and a mapping σ : X → T (N ∪ C) that respects sorts and has finite domain.
Frames will be denoted by Φ or Ψ.

A frame Φ = E.σ may be extended in two ways: we write Φ ∪ {t} for (E ∪ {t}).σ
and we write Φ∪{w 7→ t} for E.(σ∪{w 7→ t}). Frames are often used as substitutions:
we simply write tΦ for tσ and dom(Φ) for dom(σ). The first component of a frame Φ
is noted E(Φ).
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Definition 2.4 (Configuration). A configuration is a pair K = (P ,Φ) where Φ is a
frame and P is a multiset of closed processes.

When K is a configuration, Φ(K) denotes its frame. In frames and configurations,
the sets of private names and channels act as a binder. We thus define

fn(Φ)
def
=

⋃
x∈dom(Φ)

fn(Φ(x)) \ E(Φ) fn((P ,Φ))
def
= fn(Φ) ∪ fn(P) \ E(Φ)

and similarly for fc(K) and fnc(K).

Definition 2.5 (Test). Let Φ be a frame. A Φ-test is a process T that may feature the
special success construct, such that TΦ is closed and the names and channels of E(Φ)
do not occur in T .

Definition 2.6 (May testing). Let (P ,Φ) be a configuration and T a Φ-test. We say
that (P ,Φ) passes T , noted (P ,Φ) |= T , when (E(Φ),P ∪ {TΦ})  ∗ (E ′,P ′) for
some (E ′,P ′) such that success ∈ P ′.

Testing yields a notion of indistinguishability between configurations that have the
same sets of candidate tests, which is captured by the following compatibility condition.

Definition 2.7 (Compatibility). We say that two configurations (P ,Φ) and (Q,Ψ) are
compatible when E(Φ) = E(Ψ) and dom(Φ) = dom(Ψ).

Definition 2.8 (May testing equivalence). We say that two compatible configurations
K1 and K2 are may-testing equivalent, written K1 ≈m K2, when they satisfy the same
tests: for all Φ(K1)-tests T , we have K1 |= T iff K2 |= T .

Application to modelling security properties

Process indistinguishability can be used to model various security properties. For in-
stance, we may say that a protocol is anonymous when a session of the protocol corre-
sponding to identity A is indistinguishable from a session of B — to obtain an actual
definition, one would have to consider these two sessions in a sufficiently rich context.
It is also possible to derive an alternative definition of secrecy: we may say that a
configuration (P ,Φ) ensures the secrecy of s when

(P ∪ {in(c, x).0},Φ) ≈m (P ∪ {in(c, x).if x = s then out(c, ok)},Φ)

for some arbitrary channel c that does not occur in (P ,Φ).
Interestingly, indistinguishability allows to define a stronger notion of secrecy: instead

of requiring that the attacker cannot deduce the secret, we require that the attacker
cannot distinguish this term from any other one. The following definition is adapted
from [Bla04; Bla16].

Definition 2.9 (Strong secrecy). Let (E,P) be an internal reduction configuration with
free variables. We say that it preserves the strong secrecy of its free variables when, for
any closed substitutions θ and θ′ of domain fv(P) and such that fnc(θ, θ′) ∩E = ∅, we
have (Pθ, E.∅) ≈m (Pθ′, E.∅).
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Example 2.5. Variable x is not strongly secret in ({k}, {if x = ok then out(c, ok)}) but
it is in ({k, c}, {if x = ok then out(c, ok)}) and ({k, r}, {if x = r then out(c, ok)}).
Variables x, y are not strongly secret in ({k}, {out(c, {x}k), out(c, {y}k)}) but they are
in the randomized version ({k, r1, r2}, {out(c, {〈x, r1〉}k), out(c, {〈y, r2〉}k)}).

Linear tests

We have naturally defined may-testing equivalence using the most general class of test
at hand, in order to account for all possible adversarial environments. However, a more
limited class of tests turns out to already yield the same discriminating power.

Definition 2.10 (Linear test). We define the syntactic classes of static tests S and
linear tests L by the following grammar, where C and R denote open terms:

S ::= if R = R′ then S else 0

| if R = R′ then 0 else S

| success

L ::= in(C, x).L | out(C,R).L | S

Note that linear tests may feature inputs and outputs of either sort. For example,
in(c, x).out(x, ok).success is a linear test verifying that it is possible to receive a channel
x and emit on it.

Theorem 2.1. Let K1 and K2 be two compatible configurations in which success does
not appear as a (sub)process. We have K1 ≈m K2 iff K1 and K2 satisfy the same linear
Φ(K1)-tests.

2.5 Labelled transitions

We have seen that internal reduction and may-testing equivalence can be used to model
security properties. However, the resulting definitions are not directly amenable to verifi-
cation: reachability properties such as weak secrecy involve a quantification over arbitrary
attackers; equivalence properties such as strong secrecy similarly require to consider all
possible tests. As is standard in concurrency theory, we now turn to labelled transition
systems (LTS) to clarify the study of the possible interactions of a process with its
environment.

We have introduced frames in the previous section to represent the attacker’s knowl-
edge, i.e. the past outputs of the protocol. The variables in the domain of a frame are
often called handles and denoted by w, and they are used by the attacker to indirectly
refer to past outputs. Concretely, the attacker derives messages by applying Φ’s substi-
tution to terms with variables in dom(Φ) that do not feature private names or channels;
such terms are called recipes.

Definition 2.11 (Recipe). Let Φ be a frame. A Φ-recipe is a term of T (dom(Φ)∪N ∪
C \ E(Φ)). We use the letter R for arbitrary recipes, and C for recipes of sort channel.
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({0} ∪ P ,Φ) τ−→ (P ,Φ)

({P | Q} ∪ P ,Φ) τ−→ ({P,Q} ∪ P ,Φ)

({!P} ∪ P ,Φ) τ−→ ({P, !P} ∪ P ,Φ)

({in(c, x).P, out(c, u).Q} ∪ P ,Φ) τ−→ ({P{x 7→ u}, Q} ∪ P ,Φ)

({if u = v then P else Q} ∪ P ,Φ) τ−→ ({P} ∪ P ,Φ) when u =E v

({if u = v then P else Q} ∪ P ,Φ) τ−→ ({Q} ∪ P ,Φ) when u 6=E v

({new x.P} ∪ P ,Φ) τ−→ ({P{x 7→ n}} ∪ P ,Φ ∪ {n}) when n 6∈ E(Φ) ∪ fn(P,P ,Φ)

({new x.P} ∪ P ,Φ) τ−→ ({P{x 7→ c}} ∪ P ,Φ ∪ {c}) when c 6∈ E(Φ) ∪ fc(P,P ,Φ)

({out(c, u).P} ∪ P ,Φ) out(C,w)−−−−−→ ({P} ∪ P ,Φ ∪ {w 7→ u})

when Φ `C c and w 6∈ dom(Φ)

({in(c, x).P} ∪ P ,Φ) in(C,R)−−−−→ ({P{x 7→ RΦ}} ∪ P ,Φ)

when Φ `C c and R is a Φ-recipe

Figure 2.2: Labelled transition rules

Definition 2.12 (Deduction). Let Φ be a frame, and t a closed term. We write Φ `R t
when R is a Φ-recipe such that RΦ =E t. We say that Φ allows to deduce a term t,
and write Φ ` t, when there exists R such that Φ `R t.

Example 2.6. Let n, k ∈ N and Φ = {n, k}.{w 7→ senc(n, k)}. We have Φ ` m for
any name m 6∈ E(Φ), but Φ 6` n. However, Φ∪{w′ 7→ k} ` n by considering the recipe
sdec(w,w′).

The previous two definitions do apply to sort channel, though for this sort the situ-
ation is much simpler: a recipe is either a (public) channel or a variable of sort channel;
deduction is also simplified in that the equational theory has no impact on terms of sort
channel.

Our labelled transitions will take place between configurations (P ,Φ) as defined in
definition 2.4. Actions are of the form τ , in(c, R) or out(c, w) where R is a recipe and
w is a handle.

Definition 2.13. The labelled transition relation −→ is given by the rules of figure 2.2.

Again, these rules must be understood as respecting sorts. This means, for instance,
that the rule for in(c, R) transitions only applies when the active process is of the form
in(c, x).P with x and R of the same sort.

Our LTS features transitions with labels out(c, w) and in(c, R) representing commu-
nications with the environment. It also allows communications that are internal to the
process, with label τ . By inspecting the rules of figure 2.2, one immediately sees that
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(P ,Φ) τ−→ (P ′,Φ′) implies (E(Φ),P)  (E(Φ′),P ′). The converse does not hold, but
only for unimportant technical reasons: when executing a new process in an internal
reduction (E,P)  (E ′,P ′), the choice of fresh symbol is not necessarily valid wrt.
(P , E.σ) where σ is an arbitrary substitution; however, it is always possible to choose a
fresh name that is also fresh with respect to the desired σ.

Application to modelling security properties

Using the labelled transition system, we can characterize the notion of secrecy of defini-
tion 2.2 without having to explicitly quantify over all attackers.

Lemma 2.1. The next two statements are equivalent, for any configuration (P ,Φ) and
closed term s:

(1) There exists a trace t and a configuration (P ′,Φ′) such that (P ,Φ) t−→ (P ′,Φ′)
and Φ′ ` s.

(2) There exists a multiset of processes Q in which the names and channels of E(Φ)
do not occur such that (E(Φ),P ∪ QΦ) ∗ (E ′, {out(c, u)} ∪ P ′) for some E ′,
P ′, c 6∈ E ′ and u =E s.

Corollary 2.1. Let (E,P) be an internal reduction configuration and s be a closed term.
We have that (E,P) does not ensure the secrecy of s iff there exist t, P ′ and Φ′ such
that (P , E.∅) t−→ (P ′,Φ′) and Φ′ ` s.

In the proof of lemma 2.1, establishing that (2) implies (1) is similar to a step in the
proof of theorem 2.1 where linear tests and their underlying static tests are replaced by
the trace t and the deducibility of s.

2.6 Trace equivalence

We now build on the LTS to define notions of process indistinguishability. We first
introduce static equivalence, which corresponds to indistinguishability of past outputs,
without further interaction with the protocol. Then we define trace equivalence, which
captures the indistinguishability of protocols when interactions are allowed. As we shall
see, trace equivalence coincides with may-testing equivalence under a reasonable condi-
tion.

Definition 2.14 (Static equivalence, Φ ∼ Ψ). Let Φ and Ψ be two frames such that3

dom(Φ) = dom(Ψ) and E(Φ) ∩ fnc(Ψ) = E(Ψ) ∩ fnc(Φ) = ∅.
We say that Φ and Ψ are statically equivalent, noted Φ ∼ Ψ, when for all recipes

R,R′ ∈ T (dom(Φ) ∪N ∪ C \ E(Φ) \ E(Ψ)), we have RΦ =E R
′Φ iff RΨ =E R

′Ψ.

Example 2.7. Consider the theory of example 2.2 and take Φ := {k,m, n}.{w 7→ {n}k}
and Ψ := {k,m, n}.{w 7→ m}. We have Φ ∼ Ψ but Φ∪{w′ 7→ k} 6∼ Ψ∪{w′ 7→ k}, by

3Note that the second condition can always be obtained by α-renaming frames, i.e. changing the
names of E(Φ). Without this condition, static equivalence would not be compatible with α-renaming.
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considering the recipes w and senc(sdec(w,w′), w′). The extended frames are however
still statically equivalent in the theory extended with the equation senc(sdec(x, y), y) E x,
which expresses that encryption is surjective: intuitively, decryption can never fail in that
case, so the attacker has no way to distinguish a ciphertext of an unknown name from
another unknown name.

We observe that static equivalence preserves the satisfaction of static tests, as stated
in the next proposition. We write Φ |= S when (∅,Φ) |= S.

Proposition 2.3. Let Φ and Ψ be two frames such that Φ ∼ Ψ. Let S be a static test
that is both a Φ-test and a Ψ-test. We have Φ |= S iff Ψ |= S.

We now seek to express indistinguishability with respect to attackers that can interact
with protocols, expressing these interactions concisely as traces in our LTS. We first
introduce some notations to focus on the actions that can be observed by the attacker,
e.g. exclude τ actions.

Definition 2.15 (Observable action and trace,⇒). We say that an action is observable
when it is not τ , and that a trace is observable when it contains only observable actions.
We write K t⇒ K ′ when t is an observable trace, and K t′−→ K ′ for some trace t′ obtained
from t by inserting τ actions.

Definition 2.16 (Trace inclusion v, trace equivalence ≈). Let K1 and K2 be two
compatible configurations. We say that K1 v K2 when, for all t and K ′1 such that
K1

t⇒ K ′1, there exists K ′2 such that K2
t⇒ K ′2 and Φ(K ′2) ∼ Φ(K ′1). We say that

K1 ≈ K2 when both K1 v K2 and K2 v K1 hold.

In order to relate trace equivalence and may-testing equivalence, we first need to
relate observable traces and linear tests.

Definition 2.17 (Lt[S]). Given an observable trace t and a static test S, we define the
linear test Lt[S] as follows:

Lin(C,R).t[S]
def
= out(C,R).Lt[S]

Lout(C,w).t[S]
def
= in(C,w).Lt[S]

Lε[S]
def
= S

Proposition 2.4. For any (P ,Φ), (P ′,Φ′), t and S such that (P ,Φ) t⇒ (P ′,Φ′) and
Φ′ |= S, we have (P ,Φ) |= Lt[S].

Proposition 2.5. For any (P ,Φ), t and S such that (P ,Φ) |= Lt[S], we have (P ,Φ) t⇒
(P ′,Φ′) for some (P ′,Φ′) such that Φ′ |= S.

From these two basic propositions we immediately obtain that trace equivalence
implies may-testing equivalence.

Lemma 2.2. For any compatible configurations (P ,Φ) and (Q,Ψ),

(P ,Φ) ≈ (Q,Ψ) implies (P ,Φ) ≈m (Q,Ψ).

As shown in [CCD13], the converse implication can only be obtained under an addi-
tionnal assumption, called image-finiteness.
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Definition 2.18. A configuration (P ,Φ) is image-finite when, for all observable traces
t, only finitely many frames can be obtained after executing t up to static equivalence,
i.e. {Φ′ | (P ,Φ) t⇒ (P ′,Φ′)}/∼ is finite.

This assumption is quite mild. It immediately holds, in particular, for replication-free
configurations. In order to break it, replication must be used to spawn an unbounded
number of internal communications to create an infinite non-deterministic choice.

Lemma 2.3. For any compatible and image-finite configurations (P ,Φ) and (Q,Ψ),

(P ,Φ) ≈m (Q,Ψ) implies (P ,Φ) ≈ (Q,Ψ).

Proof sketch. Assume, for the sake of absurdity, that the two configurations are may-
testing equivalent but not trace equivalent. We know that the two configurations can
execute the same traces because they satisfy the same tests of the form Lt[success].
Hence it must be that, starting from one of the configurations, we can obtain a frame
that is not statically equivalent to any of the frames that can be obtained from the other
configuration. Say, for instance, that we have

(P ,Φ) t⇒ (P ′,Φ′) and, for all (Q′,Ψ′) such that (Q,Ψ) t⇒ (Q′,Ψ′),Φ′ 6∼ Ψ′.

Since our configurations are image-finite, there exists Ψ′1, . . . ,Ψ
′
n such that any of the

Ψ′ above is statically equivalent to some Ψ′i. In particular, we have Φ′ 6∼ Ψ′i for all i,
thus one can construct a static test S such that Φ′ |= S but Ψ′i 6|= S for all i. Hence
(P ,Φ) |= Lt[S] but (Q,Ψ) 6|= Lt[S], which is absurd.

Corollary 2.2. Trace equivalence and may-testing equivalence coincide for compatible
image-finite configurations.

Remark 2.2. In order to simplify our presentation, we have only considered constructor
symbols and equations. One might wonder how the previous results change with the
addition of destructors symbols in terms, coming with some computation relation and a
construction let x = u in P else Q for processes which can reduce to P{x 7→ v} for
any v such that u computes to v, and reduces to Q when there is no such v.

If the rewrite relation is convergent up to the equational theory, our development can
be adapted. Linear tests have to be enriched with let constructs, static equivalence has to
be enriched to account for computability tests (see e.g. [HBD19]), proofs become a little
bit more technical, but trace equivalence and may-testing equivalence still coincide on
image-finite configurations. However, that result breaks when the computation relation
is non-deterministic; we will present a counter-example. To the best of our knowledge,
this observation has not been made in the literature, but experts may be well aware of
it given that the works considering calculi with destructors restrict to the deterministic
case [Bla09; BAF08; ABF17].

Consider Σ = {f, g, h, ch, val} where f, g and h are binary constructors coming with
an empty equational theory E, and the following rewrite rules for the destructors ch and
val:

ch(h(x, y)) → f(x, y) val(h(x, y), f(x, y)) → h(x, y)
ch(h(x, y)) → g(x, y) val(h(x, y), g(x, y)) → h(x, y)
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Consider now two processes:

P
def
= new n, k. out(c, h(n, k)).in(c, x).in(c, y).

let = val(h(n, k), x) in let = val(h(n, k), y) in if x = y then out(c, n)

Q
def
= new n, k. out(c, h(n, k)).in(c, x).in(c, y).

let = val(h(n, k), x) in let = val(h(n, k), y) in if x 6= y then out(c, n)

The following test is satisfied by P but not by Q:

in(c, w).let z = ch(w) in out(c, z).out(c, z).in(c, ).success

We show, however, that our processes are trace equivalent. This is easily checked for
traces of length at most 4, i.e. for the prefixes of out(c, w).in(c, R).in(c, R′).τ . It is also
the case for traces of length at most 6, composed of two more τ actions, because both
of our processes can only perform the second (resp. third) τ action when R (resp. R′) is
ch(w). Indeed, in order to execute a second τ action, we must be able to evaluate RΦ
to either f(n, k) or g(n, k), thus R must be ch(w) where w refers to the initial output
of the process. The argument is similar for the third τ .

The only trace of length seven that could be considered is thus

out(c, w).in(c, ch(w)).in(c, ch(w)).τ.τ.τ.out(c, w′)

and this trace can be executed by P and Q, with identical resulting frames. In the case
of Q, this is because the two occurrences of ch(w) can be evaluated differently, to yield
f(n, k) and g(n, k) respectively.

To bridge this gap between trace equivalence and may-testing equivalence, one would
have to enrich the notion of trace to keep track of when and how recipes are evaluated.

Application to modelling security properties

The previous result allows to reformulate all indistinguishability-based security properties
(e.g. strong secrecy) in terms of trace equivalence, provided that protocols are modelled
as image-finite processes. Less obviously, static equivalence can also be used to model
some security properties.

Example 2.8 (Offline guessing [CDE05]). Some protocols use low-entropy secrets (pass-
words, PIN code, etc.) for which brute force attacks cannot be ruled out. However, such
attacks must typically be carried out offline, because of limitations on the number or
frequency of protocol runs, which means that the attacker needs an offline means of
testing whether a guessed value is the actual secret. Resistance against such attacks
can thus be modelled as follows: the configuration (P ,Φ) is resistant against the offline
guessing of s if, for all t and (P ′,Φ′) such that (P ,Φ) t⇒ (P ′,Φ′) we have

Φ′ ∪ {n} ∪ {w 7→ s} ∼ Φ′ ∪ {n} ∪ {w 7→ n}
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where w ∈ X \ dom(Φ′) and n is a fresh name that does not occur in Φ′, which we add
to the environment of Φ′.

As reported in [CDE05] a password-based key exchange protocol that would output
encryptions using the password as key would not be resistant against offline guessing
in settings where the attacker can distinguish a name from a ciphertext using a known
key. Formally, such a protocol could only satisfy the above condition in theories with
surjective encryption (cf. example 2.7).

2.7 Observational equivalence and bisimilarity

Among the many process equivalences studied in concurrency theory, two more equiva-
lences have been considered in the context of security protocols: labeled bisimilarity and
observational equivalence.

Definition 2.19. Observational equivalence is the largest symmetric relation R over
configurations such that, whenever (P ,Φ) R (Q,Ψ), the following conditions hold:

1. (P ,Φ) out(c,w)−−−−→ iff (Q,Ψ) out(c,w)−−−−→ ;

2. for all (P ′,Φ′) such that (P ,Φ) ε⇒ (P ′,Φ′),
there exists (Q′,Ψ′) such that (Q,Ψ) ε⇒ (Q′,Ψ′) and (P ′,Φ′) R (Q′,Ψ′);

3. for any environment E ′ disjoint from E(Φ) ∪ E(Ψ),
for any multiset of processes A not using symbols from E(Φ) ∪ E(Ψ),
(P ∪ A,Φ ∪ E ′) R (Q∪A,Ψ ∪ E ′) holds.

The first condition requires that the two configurations can perform the same im-
mediately observable outputs. The second one requires that internal reductions of one
configuration (which may change its observable outputs) can be matched by reductions
of the other configuration in such a way that the relationship is maintained. The last
condition imposes that our relation is reasonably contextual.

Example 2.9. Consider the following processes, using channels a, b1 and b2 and the
notation of remark 2.1 for non-deterministic choice:

P
def
=

(
out(a, ok).out(b1, ok)

)
+
(
out(a, ok).out(b2, ok)

)
Q

def
= out(a, ok).

(
out(b1, ok) + out(b2, ok)

)
The configurations ({P}, ∅) and ({Q}, ∅) can perform the same observable traces:

out(a, w).out(b1, w
′), out(a, w).out(b2, w

′) and their prefixes, for any handles w and
w′. They are actually trace equivalent (and thus may-testing equivalent) since static
equivalence conditions are obvious.

However, the two configurations are not observationally equivalent. There exists

(Q,Ψ) such that ({Q}, ∅) ε⇒ (Q,Ψ), (Q,Ψ) out(a,w)−−−−→ and,

for each i ∈ {1, 2}, (Q∪ {in(a, x)},Ψ) ε⇒ out(bi,w′)−−−−−→ .
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This cannot be matched by P : for any ({P}, ∅) ε⇒ (P ,Φ) such that (P ,Φ) out(a,w)−−−−→
there is some i ∈ {1, 2} for which (P ∪ {in(a, x)},Φ) ε⇒ out(bi,w′)−−−−−→ does not hold.

The previous example shows why observational equivalence is stronger than trace
equivalence: the former relation forces processes to make early choices, while trace
equivalence allows processes to make choices based on the full trace that must be exe-
cuted.

Definition 2.20. Bisimilarity in the largest symmetric relation R on configurations such
that, whenever (P ,Φ) R (Q,Ψ), the following conditions hold:

1. Φ ∼ Ψ;

2. for all (P ′,Φ′) such that (P ,Φ) τ−→ (P ′,Φ′),
there exists (Q′,Ψ′) such that (Q,Ψ) ε⇒ (Q′,Ψ′) and (P ′,Φ′) R (Q′,Ψ′);

3. for all α and (P ′,Φ′) such that4 fnc(α) ∩ E(Ψ) = ∅ and (P ,Φ) α−→ (P ′,Φ′),
there exists (Q′,Ψ′) such that (Q,Ψ) α⇒ (Q′,Ψ′) and (P ′,Φ′) R (Q′,Ψ′).

Bisimilarity obviously implies trace equivalence, but the opposite does not hold in
general, as witnessed, again by the processes of example 2.9. However, it has been
shown [CCD13] that the implication holds for determinate configurations, i.e. the con-
figurations such that, for any trace t, the execution of t can only yield one configuration
up to some equivalence — which may be trace equivalence or observational equivalence
without any impact on the resulting definition.

Bisimilarity and observational equivalence have been shown to coincide for the full
applied pi-calculus [ABF17]. As a corollary, bisimilarity is contextual in the sense of
condition 3, definition 2.19 — the same holds for trace equivalence on image-finite
configurations, as a by-product of corollary 2.2.

In the context of security protocols, modeling indistinguishability as observational
equivalence rather than may-testing equivalence is too strong. Indeed, inequivalence
does not imply the existence of an attacker that could effectively distinguish whether it
is interacting with one process or another. However, it can be easier to verify that two
processes are bisimilar rather than trace equivalent, roughly because bisimulation forces
immediate choices5.

4The executability of α by (P,Φ) imposes that the action does not mention any symbol of E(Φ), but
we need to explicitly impose the same condition wrt. E(Ψ), otherwise the equivalence would break for
irrelevant reasons. We do not have a similar condition for trace equivalence because we have defined it
for compatible configurations. That is not possible with bisimilarity since compatibility is not preserved
by simultaneous executions of observable actions.

5The difference leads to different complexity classes for finite state processes: bisimulation is in
PTIME but trace equivalence is PSPACE-complete [HS96]. However, with the added difficulties of the
applied pi-calculus, the complexity analysis does not show a difference anymore: both bisimulation and
trace equivalence become coNEXP-complete [CKR18].
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2.8 Verification Techniques

The idea of applying formal methods to verify security protocols using symbolic models
is several decades old [DY81]. Successful tools for automatically analyzing protocols
in such settings have started to emerge a bit later [Low96] and have become much
more powerful since then, notably covering larger classes of attackers and supporting
more primitives [Bla01; Arm+05; Cre08; Mei+13]. Reachability properties such as
secrecy, authentication and other correspondence properties have kept researchers busy
for decades. More recently, equivalence properties have received a lot of attention, due to
new technical challenges and increasing concerns over privacy in our age of surveillance
capitalism and digital state surveillance. We present next an overview of the state of the
art of this specific problem: automated verification of security protocol equivalences in
the symbolic model. We shall broadly distinguish two classes of systems, based on their
ability to analyze protocols with unbounded sessions, i.e. processes with replication.

Bounded sessions

Several tools implement decision procedures for various process equivalences for a bounded
number of sessions. Even when the length of traces is bounded in this way, there are
still infinitely many traces due to the arbitrary recipes that may be used in input actions.
This prolific attacker problem can be tackled in various ways, which has a lead to a
variety of tools, notably Akiss [Cio+12], SPEC [TNH10], Deepsec [Che+18; CKR18]
and SAT-Equiv [CDD18]. Before presenting them below in more details, we can already
point out their common strengths and weakenesses. A clear strength of these tools is
that they are fully automated. Leaving aside the possibility that the analysis does not
terminate in a reasonable amount of time, these tools always conclude with a proof or
an attack, which can immediately be understood by the user. The major downside,
of course, is that they can only analyze scenarios with a bounded number of sessions.
Another problem is that verification time increases sharply when scenarios are enriched,
at least for the tools that rely on an exploration of all possible symbolic traces, i.e. all
of the above mentioned systems except SAT-Equiv. This has been mitigated with the
development and integration of partial-order reduction techniques (cf. chapter 4).

The system Akiss [Cio+12] implements a semi-decision procedure based on a logical
encoding of (an approximation of) trace inclusion. In order to decide P v Q, each
symbolic trace of P is considered separately, up to partial-order reductions. For each
trace, a set of Horn clauses is produced that abstractly describes the possible choices
and observations of the attacker for that trace. A resolution-based semi-algorithm is
then used to extract from the clauses a finite symbolic description of all possible traces
of one process, which can then be tested against the other process. When primitives
are described through a subterm convergent equational theory, this procedure has been
shown to terminate [Cha+16]. Moreover, the approximation of trace inclusion becomes
exact if processes are determinate. Hence the tool provides an exact decision procedure
in such cases. An initial limitation of the procedure behind Akiss is that it only supports
conditional with equality tests and no else branches (so no disequality checking) but
this limitation has been lifted later on [GK17]. A strength of the Akiss system is that it
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supports a large class of primitives: the only requirement is that primitives are specified
through rewrite rules that have the finite variant property [CD05], which allows to model
standard primitives such as symmetric and public-key encryption, signatures, but also
more advanced ones such as blind signatures. The exclusive or primitive does not fall in
that category due to its associativity and commutativity, but a specific extension of the
Akiss system provides support for it [Bae+17].

The system SPEC [TNH10; TNH16] implements a decision procedure [TD10] for
bisimilarity in the spi-calculus, an ancestor of the applied pi-calculus that supports a
fixed set of standard primitives. Like the original procedure behind Akiss, it only sup-
ports equality testing, not disequality. The system relies on a dedicated decision pro-
cedure [TD10] which analyzes all symbolic traces, and is implemented using the logic
programming system Bedwyr [Bae+07] (on which I have worked with Alwen Tiu and
others) to help with some high-level optimizations.

Finally, the tool Deepsec [Che+18; CKR18] implements decision procedures for trace
equivalence and variants of it. It is the successor of Apte [Che13; Che14] which it im-
proves thanks to insights from Akiss as well as low-level implementations. The procedure
used by Deepsec considers all symbolic traces, and for each one computes the possible
execution results for each process. This gives rise to two sets of frames with associated
constraint systems, which need to be solved in order to check that each solution on
one side is matched by a solution on the other side. The system features the most
advanced partial order reductions: their integration is less superficial than in Akiss,
and notably interacts with constraint solving to perform more reductions based on data
(in)dependencies; moreover, Deepsec features some symmetry elimination techniques
that further improve verification time on the many case studies featuring several copies
of a role. Deepsec allows the user to model primitives using a subterm-convergent rewrite
system, which covers a wide range of primitives, only leaving out the most problematic
ones such as blind signatures or exclusive or.

We conclude this section by mentioning SAT-Equiv [DCD17; Cor+17; CDD18],
which implements a very different procedure. It proceeds by reducing trace equivalence
to the standard model-checking techniques of graph planning and SAT solving. This
is made possible by a typing result which allows to bound the size of recipes when
looking for attacks, which constrains the class of protocols that can be analyzed. Besides
this limitations, SAT-Equiv supports a fixed set of standard primitives (symmetric and
asymmetric encryption, signatures and hashes) and does not feature else branches. Yet,
this is enough to cover many case studies, on which SAT-Equiv significantly outperforms
the above-mentionned tools [CDD18]. The procedure of SAT-Equiv scales much more
gracefully than its competitors, in part because it does not rely on an exploration of
symbolic traces, which remains costly even with partial-order reduction techniques.

Unbounded sessions

Verifying equivalences for unbounded sessions is significantly harder than for bounded
sessions: there is little hope to obtain even semi-decision procedures. However, some
successful tools exist which are based on algorithms that can prove equivalences in
practically relevant cases.
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Proverif [Bla+01; Bla01] and Tamarin [Bas+12; Mei+13] are two systems that
have initially been developed to prove reachability properties of security protocols with
unbounded sessions. These two systems follow very different approaches. The former is
based on the applied pi-calculus, while the latter is primarily based on multiset rewriting,
though it includes a compiler from the applied pi-calculus to multiset rewriting, called
SAPIC [KK16]. Proverif’s verification technique is based on a translation of processes
to Horn clauses, to which a dedicated resolution-based satisfiability checking is applied.
Tamarin, on the other hand, performs a backward reachability analysis using symbolic
protocol executions and constraint solving. Due to its approach, Proverif is imprecise: it
may sometimes return with no clear answer, neither being able to prove the property nor
to find an attack against it. In cases where automated proofs are not obtained, Tamarin
can be guided either with the definition of intermediate lemmas, or by specifying proof
steps much like in interactive theorem proving. Guidance through intermediate lemmas
is the subject of ongoing work6 in Proverif. Finally, the two tools support different
cryptographic primitives: both tools allow user-defined primitives via equations or rewrite
rules subject to some constraints, but Tamarin also features builtin support for some
primitives that Proverif does not fully handle, such as Diffie-Hellman exponentiation and
exclusive or.

Both Proverif and Tamarin have been extended with the ability to prove a strong form
of equivalence, called diff-equivalence in both cases [BAF08; BDS15b]. The basic idea
of diff-equivalences is that it is often useless to consider general equivalence problems,
since equivalence-based security properties are often expressed as equivalences between
processes that share the same structure, only differing in a few messages. Moreover, it is
often the case that these two similar processes are equivalent for the simple reason that
each execution trace of one process can be matched by the “same” trace of the other
process; in other words, there is no need to ponder choices in the processes’ execution.
The precise definitions of diff-equivalences differ in Proverif and Tamarin, with an impact
on the processes that are related, but both diff-equivalences are strictly (much) stronger
than observational equivalence (and thus than trace equivalence). This approach has
proved effective to prove strong secrecy or anonymity for various protocols, but the
constraints imposed by diff-equivalence are sometimes too strong, as is the case with
unlinkability (cf. chapter 3).

Other lines of work have been explored to establish equivalences for unbounded
sessions. We note in particular the work of Cortier et al. [Cor+17], which provides a
type system for proving equivalences: although the technique is, as the previous ones,
not complete, it has brought its own unique successes.

6Personal communication with Vincent Cheval, October 2020.
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Modelling and Verifying Unlinkability

Unlinkability is defined informally in the ISO 15408 standard [09] as follows: the prop-
erty holds when a user may make multiple uses of a service or resource without others
being able to link these uses together. This is a strong notion of privacy, which implies
anonymity and more generally ensures that users cannot be tracked — unlinkability is
actually sometimes called untraceability. It is particularly desirable in mobile telephony
and RFID applications such as electronic passports, contactless payment, etc. Unlink-
ability is an interesting case study both in terms of formal modelling and verification.
We present and compare several formal definitions of unlinkability in section 3.2. We
then explain in section 3.3 why it is not currently possible to directly verify strong forms
of unlinkability using current automatic tools, and present some conditions that imply
unlinkability and can be (mostly) automatically verified.

This chapter is based on [HBD16; HBD19] where Hirschi, Delaune and myself have
introduced sufficient conditions for strong unlinkability, and [BDM20] where Delaune,
Moreau and myself extend this line of work to protocols with various forms of state.

3.1 Definitions

We describe informally the class of protocols that we shall consider, and the extensions of
the process algebra of chapter 2 on which they rely. Although the notion of unlinkability
may be considered for protocols with more than two roles (see, e.g., [Ara+10]) we only
consider the case of two-party protocols. Since most of our case studies involve tags
and readers, we shall use this terminology to refer to our roles.

In our protocols, tags own secret information that may be used to identify them.
This information, which we call identity parameters, may be available in different forms
to readers, and may even not be available at all, depending on the protocol. The
most common situation is the one where each reader session has access to the identity
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parameters of all tags. It is the case of RFID authentication protocols, where readers are
used to control access to some building, track items in shops or factories, etc. Sometimes,
it makes sense to consider reader sessions that are specific to a single identity. This is the
case in some e-passport protocols which are used after an optical scan of the passport
that we typically do not model: after this scan, the reader expects to interact with the
passport whose key has been optically read. As pointed out in [JW09] such scenarios
could also be relevant to account for the possibility of tracking a user’s set of tags based
on how they might be recognized or not by readers from several systems. For instance,
employees of a company might have access to some buildings and not others. Finally, it
is sometimes the case that readers do not need any access to identity parameters, e.g.
if they can verify credentials based on a trusted authority.

Example 3.1. The OSK protocol [OSK+03] involves tags that store a private key,
updated by iterating some hash function h, and communicated to readers using another
hash function g. Each session of a tag reads from its memory the current key k, writes
h(k) in memory, and sends g(h(k)). Readers in the OSK protocol have access to a
shared database of all known keys. Upon receipt of a message m, a reader session will
determine whether m = g(hn(k)) for some key k from the database and some n ∈ [0; b]
for some bound b that is a parameter of the protocol definition. If such a k is found,
the tag is recognized and the database entry k is replaced by hn+1(k). Otherwise, the
tag is rejected.

We now describe in more details how this variety of protocols can be described
formally, illustrating each ingredient on the previous example.

Tag processes. We assume that the tag role is given as a closed process T (~k) whose

free names ~k will be shared by all sessions of the same tag. These names are called the
identity parameters of a tag, and are typically used to represent a tag’s secret key. Of
course, each tag session can generate its own nonces, using new constructs in T (~k).

Depending on the protocol, multiple sessions of the same tag (i.e. multiple copies of

T (~k)) may or may not be allowed to run concurrently. We thus consider process algebras
extended with a weak form of sequential composition P ;Q and a repetition operator

!

P
which roughly stands for P ;P ; . . . but with the ability to abort each session P . We
assume that the protocol definition comes with the choice of an operator †T ∈ {!,

!

}
so that †TT (~k) represents multiple sessions of the same tag: these sessions can run
concurrently when †T = !, but only sequentially when †T =

!

.
In some protocols, tags have an internal memory which is mutated from one session

to the next. We model such protocols in [BDM20] using an enriched process algebra
featuring mutable cells identified by references r. In such cases, each tag has access to
a single tag reference containing its identity parameters: the tag process is of the form
T (r).

Example 3.2. The tag process for the OSK protocol is:

T (r)
def
= get(r, y).set(r, h(y)).out(cT , g(y))

Concurrent tag sessions are not authorized for this protocol, hence we take †T =

!

.
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Reader processes. Depending on the protocol under consideration, we may consider
reader roles of different forms. Identity-specific readers R(~k) may be considered when

each session of the reader is meant to interact only with tags of a specific identity ~k.
When readers are identity-generic, we use a parameter-less process R. In order to model
the database that most generic readers use, we consider in [BDM20] an extended process
algebra whose new constructs will be illustrated in the next example.

As with tags, reader sessions may or may not run concurrently depending on the
protocol, and we allow this choice to be expressed via an operator †R ∈ {!,

!

}.
Example 3.3. The OSK protocol of example 3.1 has identity-generic readers. In order
to model them we introduce destructors TestOSK and UpdateOSK equipped with the
following reduction rules for all n ∈ [0; b]:

TestOSK(y, g(hn(x)))→ ok UpdateOSK(g(x))→ h(x)

The reader process is then as follows:

R
def
= in(cT , x).

lookup y such that z = TestOSK(y, x), y′ := UpdateOSK(x) in
out(cR, ok) else out(cR, error)

The lookup construct attempts to find some database entry y for which TestOSK(y, x)
computes successfully, and it replaces this database entry with the value y′ obtained as
the result of the evaluation of UpdateOSK(x). Our reader process issues messages that
explicitly indicate if the protocol succeeds or not: this is good practice since the outcome
of authentication protocols is usually observable.

Communication between tags and readers. The precise channels used in the tag
and reader processes are not important for our technical development. The previous
examples use the convention from [BDM20] where tags and readers respectively emit on
distinct channels cT and cR, but a different convention is used in [HBD16; HBD19]. In
both cases, however, we rule out private channels so that all sessions of a same role use
the same channels. We will thus work with processes that are not determinate: we will
discuss below in which cases this is (in)essential.

We assume that the tag and reader processes can interact successfully when they
share the same identity. In order to conveniently express and use this natural assumption,
we impose a few restrictions on the shape of our two role processes. We view the
else branches of conditionals as error branches, and restrict them to a single output.
Moreover, we assume that one role process consists of a succession of blocks composed
of an input followed by some tests and an output — tests may be conditionals, database
lookups but also the evaluation of destructors through let. The other role must start
with an output and then follow the same structure. We finally assume that when a
tag and reader processes with the same identity parameters have an honest interaction
where each output of one role is forwarded to the input of the other role, all tests are
successful, so that the execution continues until both roles successfully complete.
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Remark 3.1. As reported in [Ara+10], the French implementation of the BAC e-
passport protocols is linkable to the disclosure of too much information through its
error messages. At some point of the protocol the reader has to perform two tests:
the first one ensures that the received message originates from a tag with the expected
identity, while the second avoids replays from past sessions of that tag. The French im-
plementation of that protocol issued different error messages in these two cases, which
makes it possible to track a passport. The syntactic constraints that we impose on our
processes happen to forbid this kind of problem: indeed, we impose that all tests are
performed at once with a single else branch.

Initialization. Some initialization procedure is required when readers rely on a shared
database, and when tags rely on a mutable state. We thus assume a process I(r,~k)

which is in charge of properly initializing, for a new tag of identity ~k, both the readers’
database and the tag’s memory r.

Example 3.4. For the OSK protocol, the initialization process takes the initial key k of
the tag, sets it in the tag’s memory r and inserts it in the reader’s database:

I(r, k)
def
= set(r, k).insert(k)

3.2 Modelling unlinkability

Two main approaches to modelling unlinkability have been followed in the literature. We
first present the approach based on an ideal functionality, which we follow in our work.
Then we briefly comment on the other, game-based approach.

3.2.1 Definitions based on ideal functionality

Arapinis et al. [Ara+10] have proposed notions of unlinkability for a large class of pro-
tocols featuring an arbitrary number of roles and which can be expressed using the full
expressivity of the applied pi-calculus.

They first consider a notion of weak unlinkability which attempts to capture the
following intuition: “an attacker cannot tell when two transitions of a trace are initiated
by the same user”. They thus consider a process which models all possible uses of the
protocol, with an arbitrary number of sessions of each role, and require that:

� for every execution trace t of this process with n observable actions,

� for every i and j such that i ≤ j ≤ n and the ith and jth observable actions of t
correspond to the same role R,

� there exists an indistinguishable trace t′ such that the ith and jth observable actions
of t′ do not correspond to different sessions of the role R with the same identity.
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In other words, weak unlinkability implies that the attacker can never be sure that he
is looking at two actions that originate from two different sessions of the same user. It
remains possible for the attacker to tell that two actions correspond to the same session
— for example, the protocol might feature explicit session identifiers, which indeed does
not contradict unlinkability.

An undesirable aspect of weak unlinkability is that it is expressed in an ad-hoc fash-
ion, rather than as a process equivalence which could be proved using standard tools.
The authors of [Ara+10] address this problem by introducing a second notion, strong
unlinkability. Roughly, they declare that a role R is strongly unlinkable in some protocol
when observational equivalence holds between two processes: the first one allowing an
arbitrary number of identities, and for each one an arbitrary number of sessions of each
role; the second process, however, can only perform a single session of role R for each
identity. In other words, they are asking that the real uses of role R are indistinguishable
from ideal uses where each new session corresponds to a new identity.

It is shown [Ara+10, Theorem 1] that weak unlinkability does not imply strong
unlinkability. A counter-example protocol is given, with tag and reader roles, such that
the reader emits a particular message to signal when it sees twice the same tag1. Unlike
the authors of [Ara+10] we consider that this protocol suffers from an actual linkability
attack: the reader can be used to track a tag by identifying when it is used again. Hence
we consider that weak unlinkability is too weak. Unfortunately, strong unlinkability is
also too strong because it is based on observational equivalence, as we shall see in the
next section after having given a formal definition.

We now introduce the two notions of unlinkability that we have worked on, both of
which are strongly inspired by the strong unlinkability of [Ara+10].

Identity-specific readers

We have first considered in [HBD16; HBD19] some protocols without a database nor
states, and with identity-specific readers. In that setting, we have considered the follow-
ing notion of unlinkability expressed in terms of trace equivalence.

Definition 3.1 ([HBD19, Definition 10]). The protocol is said to be identity-specific
unlinkable when the following trace equivalence holds:

! new ~k.
(
†TT (~k) | †RR(~k)

)
≈ ! new ~k.

(
T (~k) | R(~k)

)
The process on the left of this equivalence is called multiple-session process. The

process on the right, corresponding to an ideal situation, is called the single-session
process.

Example 3.5 ([HBD19, Examples 9 and 15]). We consider a toy protocol, where tags
are stateless and readers are identity-specific, given informally in Alice & Bob notation

1The precise counter-example of [Ara+10] uses private channels, but its general idea can be repli-
cated without such means. In fact, we give in [BDM20, Appendix A.A] a protocol that is only weakly
unlinkable, without using a database, mutable state nor private channels.
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as follows:
1. R→ T : nR
2. T → R : nT
3. R→ T : mac(〈nR, nT 〉, k)
4. T → R : mac(〈nT , nR〉, k)

This protocol uses a MAC (Message Authentication Code) primitive, and the tags and
readers share a MAC key k as a single identity parameter. The nonces nT and nR are
generated respectively at the beginning of each session of the tag and reader. To avoid
an obvious reflection attack (where nT = nR) we assume that the reader systematically
checks that the first message it receives is not the one he sent initially. The protocol is
formally given by the following processes, using the expected signature and equational
theory where, in particular, the mac symbol is free:

R(k)
def
= new nR.out(cR, nR).in(cR, x1).

if x1 6= nR then
out(cR,mac(〈nR, x1〉, k)).in(cR, x2).
if x2 = mac(〈x1, nR〉, k) then out(cR, ok) else out(cR, error)

else out(cR, error)

T (k)
def
= in(cT , y1).new nT .out(cT , nT ).in(cT , y2).

if y2 = mac(〈y1, nT 〉, k) then
out(cT ,mac(〈nT , y1〉, k))

The protocol is unlinkable according to definition 3.1 when †R =

!

. Unlinkability fails
otherwise since it is possible only with the multiple-session process to have a successful
interaction between two sessions of the reader role with the same identity: nonces nR
and n′R will be exchanged, after which mac(〈nR, n′R〉, k) will be sent by the first reader;
then the messages mac(〈n′R, nR〉, k) and ok can be obtained with the multiple-session
process, when the second reader also has identity k, but this is impossible with the
single-session process.

We have shown in [HBD19] that the strong unlinkability of [Ara+10], when instanti-
ated in the natural way for two-party protocols such as ours, is equivalent to definition 3.1
where trace equivalence is replaced by observational equivalence.

The difference between trace equivalence and observational equivalence is crucial
here: in fact, the property based on observational equivalence cannot hold for most
protocols! We sketch below the argument for the impossibility, considering an arbitrary
protocol that is assumed to satisfy two mild conditions:

1. The honest interaction between a tag and a reader can only succeed when they
share the same identity. Moreover, the adversary can distinguish between the
success and the failure of such an interaction, e.g. by recognizing special public
constants2.

2As mentioned before, we consider this assumption to be reasonable because the outcome of proto-
cols can often be observed in practice. This is not always the case: see, e.g. the Private Authentication
protocol [Aba02]. Moreover, it might be useful to make a distinction between a physical observation
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2. The interaction is initiated by the reader role.

Recall that observational equivalence coincides with labelled bisimilarity, and suppose
that the multiple and single-session processes of our protocol are bisimilar. The multiple-
session process may start by spawning a new reader session, with some identity ~k, which
will output a message. Then, a session of tag ~k may be spawned, and the first output
of the reader may be forwarded to the first input of the tag. Since the multiple and
single-session processes are bisimilar, there must be a way to match this sequence of
observable actions in the single-session process so that bisimilarity is preserved. The
output of the reader can be matched wlog. by the output of some reader of identity ~k′

on the single-session side. Then the outputted message must be forwarded to the first
input of a new tag session with some identity ~k′1.

� If ~k′ 6= ~k′1, bisimilarity cannot be preserved because a full honest interaction can
take place between the reader and tag session in the multiple-session side, but not
in the single-session one. By hypothesis, the difference will be observable.

� If ~k′ = ~k′1, consider continuing the execution of the multiple-session process by
performing enough dummy interactions with the tag to make it fail (which will
easily be matched on the single-session side) and then initiating a new session of

tag ~k, to which the first output of the reader is passed. This must be matched
on the single-session side by a tag session with identity ~k′2 6= ~k′, which cannot
preserve bisimilarity: indeed, a honest interaction can take place in the multiple-
session process but not in the single-session one.

A related point is that it seems impossible to modify our multiple and single-session
processes to obtain determinate processes, without trivializing the resulting notion of
unlinkability.

Identity-generic readers

We have then considered, in [BDM20], the case of protocols with generic readers in
which readers (resp. tags) may rely on a database (resp. state). In that setting, we force
†R = ! and †T =

!

as it is the most reasonable choice, which fits all the case studies
that we have considered.

Definition 3.2 ([BDM20, Definition 5]). The protocol is said to be identity-generic
unlinkable when the following trace equivalence holds:

!R | ! new r,~k.
(
I(r,~k);

!

T (r)
)

≈ !R | ! new r,~k.
(
I(r,~k); T (r)

)
of the outcome of the protocol (e.g. a door opens) and an observation through electronic communica-
tions (e.g. in a man-in-the-middle attack). Filimonov et al. [Fil+19] seem to make such a distinction.
They consider that the failure of bisimilarity-based unlinkability that we describe is an attack, and
propose to fix protocols by encrypting their final message to render successful and failing interactions
indistinguishable.
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Example 3.6. The OSK protocol is not unlinkable according to our definition. As
reported in [JW09] an adversary can desynchronize a tag’s memory and the readers’
database by querying the same tag b times and dropping the tag’s outputs. After this, the
reader will reject messages from new sessions of the same tag. Such a desynchronization
attack immediately yields a counter-example trace for our identity-generic unlinkability:
after dropping b tag outputs and forwarding the next one to a reader, the adversary can
observe an error only in the multiple-session scenario.

We observe in [BDM20] that OSK suffers from linkability issues even in the idealized
case where b is set to +∞. Indeed, the attacker can simply trigger two sessions of the
same tag, obtaining the messages g(k) and g(h(k)), before feeding these messages in
reverse order to reader sessions: the first reader session will accept g(h(k)) and replace k
with h(k) in its database, hence the second session will reject g(k). This yields another
failure of identity-generic unlinkability.

We have finally shown in [BDM20] that the OSK protocol is unlinkable according to
our definition when b = +∞ and when readers do not update their databases.

As in definition 3.1, the processes used in definition 3.2 are not determinate. This
is however not essential: we shall see in section 3.3.2 that identity-generic unlinkability
can be expressed using some form of diff-equivalence; it could also be rephrased in
terms of observational equivalence, or using determinate processes, without becoming
unrealistically strong.

Comparisons

Our identity-generic unlinkability can be compared with weak unlinkability and identity-
specific unlinkability: it sits in between these two notions and is the most appropriate
definition when readers are generic.

It can be shown that identity-generic unlinkability is stronger than weak unlinkability
[BDM20, Proposition 1] and that this implication is strict. In a nutshell, we provide an
artificial protocol [BDM20, Example 16] where the reader can tell that two tag sessions
out of three have the same identity, but cannot tell which two, hence identity-generic
unlinkability fails but weak unlinkability holds.

We observe next that identity-specific unlinkability can fail for protocols which are
identity-generic unlinkable. The next example illustrates this general phenomenon3 on a
real protocol.

Example 3.7. We consider the Basic Hash protocol of [BCH10], which is an abstrac-
tion of the randomized hash-based access-control protocol proposed in [Wei+04]. The
protocol has generic readers with access to a database which is never modified. It is

3Juels & Weis make a similar observation in [JW09] when they consider cross-reader privacy of the
Hash Lock protocol.
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defined as follows in our setting4, where eq is a binary destructor testing for equality5:

T (r)
def
= new n. get(r, y).out(cT , 〈n, h(n, y)〉)

I(k)
def
= set(r, k).insert(k)

R
def
= in(cT , x).lookup y such that = eq

(
snd(x), h(fst(x), y)

)
, y′ := y

then out(cR, ok) else out(cR, error)

For each new session, the tag sends a nonce n together with the hash of n using the
tag’s private key. Readers use their database to verify that the received messages are
authentic. The protocol obviously does not prevent replay attacks, but it is unlinkable
according to definition 3.2.

Consider now a model of the same protocol but with identity-specific readers:

T ′(k)
def
= new n. out(cT , 〈n, h(n, k)〉)

R′(k)
def
= in(cT , x).if snd(x) = h(fst(x), k) then out(cR, ok) else out(cR, error)

The protocol is not unlinkable according to definition 3.1 because of the replay attack:
forwarding a tag’s output to two reader sessions can yield ok in the multiple-session
scenario but not in the single-session one where a single reader is available for any given
identity.

The previous example shows that the right definition of unlinkability depends on
the intended use case: the Basic Hash protocol is meant to have generic readers in
practice, and its identity-specific model yields a false attack that is avoided with the
proper identity-generic model.

We finally show that, in some sense, identity-specific unlinkability implies identity-
generic unlinkability. Given a stateless protocol Π with identity-specific readers, †R = !
and †T =

!

, we can define a protocol Π∗ with identity-generic readers as follows:

I∗(r,~k)
def
= set(r,~k).insert(~k)

T ∗(r)
def
= get(r,~k).T (~k)

R∗
def
= lookup ~k such that x = ok, y′ := y in R(~k)

In other words, R∗ non-deterministically picks some identity parameters ~k from the
database, and then executes as the identity-specific reader R(~k). We have shown in
[BDM20, Proposition 2] that Π∗ satisfies our identity-generic unlinkability when Π satis-
fies identity-specific unlinkability. The converse should not hold in general, because the
multiple-session process of definition 3.2 for Π∗ still allows multiple reader sessions —
note, however, that example 3.7 is not a counter-example since, if we call Πg and Πs the
identity-generic and identity-specific protocol models in that example, we do not have
Πg = Π∗s.

4Since the tag’s memory r is never modified, we could obtain a simpler model by directly passing k
to the tag role. We have used r here to stick to the convention of definition 3.2.

5The equality destructor is simply defined by the rewrite rule eq(x, x)→ x.
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3.2.2 Game-based definitions

Game-based definitions of unlinkability have also been proposed, and are arguably more
common than the previous notions based on ideal functionality, at least in the compu-
tational model.

Juels and Weis [JW09] have proposed to define strong privacy for RFID protocols
through a game where the adversary attempts to distinguish two tags of his choice.
They consider the most common setting for RFID protocols, where readers are identity-
generic and tag sessions cannot be executed concurrently. In their game, the attacker
can interact with a reader and an arbitrary number of tags T1, . . . , Tn. The reader
can spawn multiple sessions concurrently, while each tag can spawn multiple sessions
sequentially. Each new session initiated by the attacker is associated to a distinguished
communication channel, so that the attacker can precisely control its interactions with
these sessions. The game is in two phases:

1. During the learning phase, the attacker can trigger an arbitrary number of sessions
of the reader and tags.

2. Eventually, the attacker chooses to enter the guessing phase where the attacker
asks for a challenge on two tags Ti and Tj of his choice. The challenger then
chooses an identity x ∈ {i, j} which the attacker will have to guess. In order to
do so, the attacker is only allowed to interact (an arbitrary number of times) with
the reader, tags Tk with k 6∈ {i, j}, and with a special tag interface T which is an
alias for Tx.

In other words, the game captures the ability for the attacker to distinguish two tags of
his choice. The resulting privacy notion is stronger than anonymity because the attacker
may distinguish tags without knowing their identities.

For example, Juels and Weis have analyzed the OSK protocol in light of their no-
tion of strong privacy and have discovered desynchronization attacks that break it (cf.
example 3.6) despite an earlier analysis by Avoine [Avo05] concluding that the protocol
provides the strongest forms of privacy.

Many variants of this game have been used in the literature, both in the computa-
tional model [OSK+03; JW09] and the symbolic one [BMU08; CK17]. In computational
definitions, the tags, readers, and the game itself are interactive probabilistic Turing ma-
chines. The attacker is a probabilistic polynomial time Turing machine interacting with
these machines, and wins if it can guess x at the end with non-negligible probability. In
symbolic definitions, the game is expressed as an equivalence between processes. Since
each new session is created on a dedicated channel, these processes can be determinate
hence the specific choice of process equivalence becomes irrelevant.

Besides the unimportant distinction between the computational and symbolic defini-
tions, game variants differ on a few essential aspects. First, tag sessions may be allowed
to run concurrently. This obviously enables more attacks, and may be more reasonable
in some applications: it is the case with the DAA protocol in [BMU08] but also for
RFID protocols where, for instance, several copies of some RFID tag may be distributed
in group-based access-control applications. Second, the complete definitions may allow
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various forms of corruption, as is the case in [JW09; CK17; BMU08]. This is required to
capture some forms of forward privacy : in the event of a tag corruption, one wishes that
past interactions of this tag remain private. Third, the guessing phase may be repeated.
For instance, [BMU08] express their game as an observational equivalence between two
processes (choosing Ti or Tj respectively) that do not feature phases but are instead
composed of replicated subprocesses corresponding to the two phases: several learning
and guessing processes can thus be executed concurrently.

Comparisons

As shown by the previous brief discussion, there are lots of different games modelling
unlinkability. This variety is to a large extent justified, because it reflects a variety of
applications. However, it is important to understand the differences between various
definitions, at least when restricting to a particular kind of application.

We have observed in [HBD19] that the game of [JW09] systematically misses attacks
on unlinkability that exploit concurrent tag sessions, such as the one in example 3.5. This
is actually not very surprising because this game has been designed specifically for tags
with sequential sessions. The problem disappears with other games where concurrent
tag sessions are allowed, e.g. [BCH10; BMU08].

We believe that our generic-reader unlinkability based on the ideal functionality im-
plies the game-based notion of Jules and Weis, suitably represented in the applied pi-
calculus. The converse is not obvious, though it is likely that only artificial examples
could separate the two.

Brusò et al. [Bru+12] have attempted to give a unified account of various notions
of unlinkability using epistemic logic. They consider a broad class of so-called two-
agent games that have been used both in the computational and symbolic models, and
propose a unified definition of the resulting privacy notion using epistemic logic. To
achieve this, they necessarily leave out several details, resulting in the unification of
game-based notions that disagree on some protocols. For example, the games of Juels
and Weis [JW09] and Avoine [Avo05] are unified despite the fact that they disagree on
OSK. Brusò et al. also consider a class of three-agent games but, in their framework, two
and three-agent games are equivalent, and are also equivalent to a further generalized
game-based notion. Finally, they also consider the weak and strong unlinkability notions
of Arapinis et al. [Ara+10] — in order to incorporate strong unlinkability into their trace-
based framework they actually consider the variant of strong unlinkability expressed
in terms of equivalence, i.e. our notion of identity-specific unlinkability. They show
that all these notions of unlinkability, suitably expressed in their framework, coincide
under some conditions [Bru+12, Theorem 4]. They also provide some artificial but
interesting protocol examples where the notions do not coincide. Allowing themselves to
consider some very particular cases which are ruled out in some other frameworks, they
obtain some surprising results. By considering a protocol with a bounded number of
identities [Bru+12, Example 1] they show that weak unlinkability does not imply strong
unlinkability (which breaks because the bound on the number of identities is reached
earlier in the single-session scenario). They also consider a protocol where one bit of
information of tag identities leaks to the attacker, allowing him to distinguish between
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two types of readers [Bru+12, Example 2]: this leads to a failure of game-based notions
but notions based on an ideal functionality such as strong unlinkability can still hold if
there is an infinite supply of fresh identities of each type.

To conclude, we note that the OSK protocol is declared unlinkable in [BCH10]
according to some definitions based on a three-agent game expressed as observational
equivalence in the applied pi-calculus, but this does not show that this game is weaker
than e.g. strong privacy or identity-generic unlinkability. Indeed, this observation results
on an abusive assumption: the verification method of [BCH10] deals with protocols
where the tag role consists of a single output, and is based on the incorrect assumption
that the reader role can be nullified in such protocols without affecting unlinkability. As
seen in example 3.6, the reader can actually be used in several ways to track tags in the
OSK protocol.

3.3 Verification through sufficient conditions

We now turn to the problem of verifying the unlinkability notions of definitions 3.1
and 3.2. In both cases, we will see that off-the-shelf systems do not allow the automatic
verification of our properties, we will provide conditions that imply unlinkability and
which can be verified more easily, and use this approach to carry case studies.

3.3.1 Identity-specific unlinkability

In all of this section we consider two-party protocols with an identity-specific reader role,
not making use of a database nor states. This is the setting of [HBD19].

We have seen that identity-specific unlinkability crucially needs to be expressed in
terms of trace equivalence: using observational equivalence instead yields a notion that
no reasonable protocol would satisfy. Hence we cannot expect to directly verify our
unlinkability by using the major tools for proving equivalences of protocols with bounded
sessions, namely Proverif [Bla+01] and Tamarin [Bas+12], which only support diff-
equivalences6. Instead, we have proposed an approach based on sufficient conditions:
we propose two reasonable conditions that imply unlinkability and which can be verified
(mostly) automatically using off-the-shelf verification systems.

We present next these two conditions. We shall only provide their high-level intuition.
Their formal definitions require some heavy technical setup, notably involving annotations
of configurations and actions with agent identities.

6We note, among the more recent approaches, the TypeEquiv system which relies on a type system
to guarantee trace equivalence [Cor+18]. It is however not as automatic as Tamarin and Proverif and,
more importantly, still requires that the two processes to be proved equivalent have a similar structure.
In light of the complex trace mappings performed in identity-specific unlinkability proofs, we doubt that
this type-based approach could work, but it would deserve a careful consideration.
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Well-authentication

The well-authentication conditions requires that, whenever a test is successful in an
execution of the multiple-session process, the involved agent a must be having an honest
interaction with an agent a′ of the other role with the same identity. Moreover7, a′ must
not be having an honest interaction with an agent other than a.

Example 3.8. The identity-specific model of the Basic Hash protocol in example 3.7
does not satisfy well-authentication. If the output of a tag session a is sent to two reader
sessions a1 and a2, it will be accepted in both cases. Our condition fails after the second
successful test: a1 is having an honest interaction with a, but a is also having an honest
interaction with a2.

The complete definition [HBD19, Definition 19] excludes some trivial conditionals
which do not bring knowledge to the attacker, such as the replay-prevention test in the
reader of example 3.5. It also handles in a particular way the case where tags and readers
do not share secrets that we use to analyze the DAA and ABCDH protocols.

Frame opacity

The second condition [HBD19, Definitions 14] requires that, for any execution of the
multiple session process, the resulting frame is indistinguishable from its idealization.
This idealization is computed by associating to each protocol output a message which
may depend only on session nonces and past outputs.

Example 3.9. The protocol of example 3.5 ensures frame opacity when the MAC mes-
sages are idealized as nonces. The Basic Hash protocol ensures frame opacity when the
tag output is idealized as a pair of nonces.

Intuitively, frame opacity ensures that no information regarding the agents’ identities
leaks through messages. Well-authentication ensures that the attacker cannot gain any
information on the agent’s identities (not even the relationships between the agent’s
identities) through the outcome of tests — this matters because, even though tests
are not directly observable, they are often indirectly observable through error messages.
Together, these two conditions ensures unlinkability.

Theorem 3.1 ([HBD19, Theorem 1]). If the protocol ensures well-authentication and
frame opacity, then it is identity-specific unlinkable.

Mechanization and case studies

The interest of our two conditions is that they are much easier to verify than unlinkability.
This is obvious for well-authentication: it is a typical correspondence property, which
both Proverif and Tamarin can easily verify for a large class of protocols.

The case of frame opacity is a little more complicated. The general idea is to
prove a diff-equivalence between the original multiple-session process and a variant of

7This additional condition is not imposed in the case where identity parameters are unused in the
reader role, called the non-shared case in [HBD19]. All the examples detailed in this chapter belong to
the shared case.
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it which outputs idealized messages instead of real ones. The difficulty, however, is
that tests performed on the received messages in the real process are likely to fail in
the counterpart idealized execution, which leads to failures of diff-equivalence that are
irrelevant to frame opacity. For example, the reader of the Basic Hash protocol tests
that snd(x) = h(fst(x), k), which succeeds when x is a real tag output 〈n, h(n, k)〉 but
not when x is the idealization 〈n1, n2〉 of that same output. In [HBD16] we handle
this difficulty by removing tests, thus over-approximating the possible traces of the
protocol; we found that this is sufficient to verify frame opacity on many case studies.
We have then proposed in [HBD19] a more precise approach based on a modification of
Proverif, where we exploit the internal encoding of diff-equivalence as Horn clauses to
allow generalized bi-processes where one side of the process may refer to inputs of the
other side.

We have implemented a tool called UKAno [Hir16] which takes a protocol specifica-
tion as input, and then automatically derives Proverif files encoding our two conditions.
For frame opacity, our system can use a number of heuristics for choosing an appropriate
idealization, and allows user annotations when heuristics do not allow to conclude.

This methodology and its implementation in UKAno have allowed us to carry out a
number of case studies. This has allowed us to obtain (often for the first time) formal
proofs of unlinkability in unbounded sessions, and to find new attacks. We have generally
observed that a failure of one of our two conditions can easily be translated to an attack
against unlinkability, i.e. our conditions are tight in practice.

We have been able to verify the unlinkability of simple protocols such as the sequential
version of the protocol of example 3.5 and the Hash-Lock protocol [JW09] which is
similar to the Basic Hash protocol but prevents replay attacks. We have also studied
the LAK protocol [LAK+06], idealized without state updates, and discovered that it
fails unlinkability: in fact LAK readers do not properly authenticate tags, due to the
malleability of exclusive or, as reported in [DR08]. We have then verified the unlinkability
of the LAK protocol where exclusive or is replaced by pairing. Our approach has also lead
to a proof of unlinkability for the Basic Access Control (BAC) protocol used in electronic
passports, which had long been sought. In fact, we have also verified the unlinkability
of the combination of BAC with the subsequent Passive and Active Authentication
protocols.

We have also analyzed the PACE e-passport protocol. On this case study, our
approach has proved useful to highlight the importance of some fine points of the informal
specification. In particular, the protocol is linkable when concurrent reader sessions
are allowed. We have proposed a modification of the protocol, which we could prove
to be unlinkable using Proverif. We have also turned to Tamarin for verifying the
original protocol with sequential sessions. Surprisingly, the more complete modelling
of Diffie-Hellman exponentiation of Tamarin lead to the discovery of a new attack on
authentication, with no impact on unlinkability: this is the only case where we found
that our conditions were not tight, and we estimate that it is not worth tightening our
approach to cover such risky situations.

We have finally been able to verify unlinkability for more complex protocols: we have
analyzed some Direct Anonymous Authentication protocols that had been previously
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been proved unlinkable according to some game-based notion [SRC15], and the ABCDH
protocol [AH13] for attribute-based authentication, which is the only example where
Proverif needed more than a few minutes to conclude.

3.3.2 Identity-generic protocols

In [BDM20] we have considered the case of protocols where tags rely on a mutable
state and readers may use a database. In practice, such protocols are meant to have
identity-generic readers, and we have proposed the notion of identity-generic unlinkability
(definition 3.2) as a good model of unlinkability in that case.

Identity-generic unlinkability can be written as a diff-equivalence using the following
bi-process, where R′, I ′ and I ′′ will be detailed below:

!R′ | ! new r,~k. I ′(r,~k);

!

new r′, ~k′. I ′′(r′, ~k′); T (choice(r, r′))

The trick is to introduce the new identity ~k′ after the second (sequential) replication,
and to use only one of the two identities in each projection of the bi-process. In the
left projection, multiple sessions of a tag using r are possible. In the right projection, a
single tag session is allowed for each r′. We have thus managed to obtain multiple tag
sessions on the left, and single session on the right. It remains to adapt the database
and reader: the processes R′, I ′ and I ′′ can be derived from R and I so that, in the
left (resp. right) projection, only database entries inserted by I (resp. I ′) are taken into
account by R.

On the surface, it seems that this diff-equivalence could hold for identity-generic
unlinkable protocols. Indeed, a trace of the multiple-session process can be mapped
to a single reasonable trace of the single-session process: unlike in the identity-specific
case there is no question of which pairs of agents in the multiple-session execution
should have the same identity in the single-session execution. Unfortunately, the specific
diff-equivalences of both Proverif and Tamarin systematically fail to verify our diff-
equivalence when readers use a database. In Proverif, the database is modelled using a
table, and the two sides of a bi-process must perform a lookup in the same table. We
must thus tag the keys in the table, or adapt our bi-process to only insert in the table
the relevant keys (perhaps several times). In both cases, diff-equivalence fails because it
requires that the table lookup retrieves, on the two sides of the bi-process, table entries
e1 and e2 that had been inserted together using some insert(choice(e1, e2)); this is too
strong for our processes. A similar problem occurs with Tamarin, where database entries
are modelled using facts. As we will see in chapter 5, a diff-equivalence notion that
allows to decouple the database entries on both sides of the bi-process will allow us to
verify unlinkability.

Being faced again with the impossibility to directly verify unlinkability with exist-
ing tools, we set out to extend the previous approach to this new class of protocols
and unlinkability notion. The frame opacity condition is still relevant and immediately
adapted to our new setting. However, we modify well-authentication slightly: when
a test is successful, we impose (as before) that the corresponding role a is having an
honest interaction with an agent a′ of the dual role, but we allow a′ to be having honest
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interactions with other agents than a — the failures of unlinkability associated to this
constraint on a′ in the identity-specific case disappear with generic readers, and relaxing
the condition is necessary to capture examples such as the Basic Hash protocol where
replays are possible. Finally, in order to obtain sufficient conditions for unlinkability, we
need to add a third condition.

No-desynchronization

This new condition requires that, in any execution trace of the multiple-session protocol
where two agents a and a′ are having an honest interaction, any test performed by one of
these agents must be successful. Note that this property, which is actually the converse
of well-authentication, is obviously met when the tag and reader roles are stateless.

Example 3.10. The failures of unlinkability due to desynchronization attacks in ex-
ample 3.6 are actually failures of our no-desynchronization condition: after some trace
where the attacker manages to desynchronize some tag, a honest interaction between
new sessions of the tag and reader does not lead to a success.

Theorem 3.2 ([BDM20, Theorem 1]). If a protocol ensures well-authentication, frame
opacity and no desynchronization, then it is identity-generic unlinkable.

Mechanization and case studies

In order to formally verify our conditions on case studies, we have turned to Tamarin
since it allows to analyze more precisely the sequential sessions and the states of our
tags. We could carry out a number of case studies, summarized in figure 3.1. For each
protocol we indicate the status of the well-authentication (WA), frame opacity (FO) and
no-desynchronization (ND) conditions. The failure of ND for the OSK protocol leads
to an unlinkability attack as explained in example 3.6, and the situation is similar for
the LAK protocol [LAK+06] studied here with its state update mechanism. For both
protocols, we propose and verify several fixes. Finally, we managed to verify a protocol
inspired by the 5G AKA protocol — the original protocol being known to suffer from
several privacy issues [Ara+10; Bor+17; Kou19c].

As mentioned before, expressing well-authentication is standard in Tamarin. The
no-desynchronization condition is less usual, but could be expressed using the rich log-
ical language available to specify trace properties. Proving these properties, however,
often required significant user guidance including but not limited to the inclusion of
lemmas expressing useful invariants of the protocol, e.g. the increasing number of hash
applications in OSK. In these proofs, inductive reasoning was crucial to handle state up-
dates. Frame opacity could be proved using the approximate technique from [HBD16]:
it does not seem possible to extend Tamarin’s diff-equivalence method in a similar way
to what we did in Proverif. Again, this required a lot of guidance and careful modelling.
In particular, because inductive reasoning is only available for trace properties and not
equivalence properties in Tamarin, we had difficulties dealing with state updates and
ended up over-approximating process behaviors by removing state updates.
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Unlink. WA FO ND
Basic Hash ok 3 3 3

Hash-Lock ok 3 3 3

Feldhofer ok 3 3 3

OSK (v1) attack 3 7

OSK (v2) ok 3 3 3

LAK (pairs) attack 3 7

LAK (pairs, fix v1) ok 3 3 3

LAK (pairs, fix v2) ok 3 3 3

5G-AKA (simplified) ok 3 3 3

Figure 3.1: Summary of case studies: 3 means the condition holds and is automatically
proven with Tamarin, 7 means the conditions does not hold.

Although Tamarin provides some support for exclusive or, we found that it was
not sufficient to be able to analyze RFID protocols using this primitive, e.g. the MW
protocol [MW04b].

3.4 Conclusion

We have shown that strong notions of unlinkability are currently out of the reach of
direct verification, but that formal verification is possible through the use of sufficient
conditions. This pragmatic approach had been followed before us to verify unlinkabil-
ity [BCH10] on a restricted class of protocols, and has been applied since then to ballot
secrecy [HC19]. After all, protocol equivalence is a very hard problem, but protocol
designers achieve privacy by following some high-level intuitions, often encoded as best
practices; it would be a waste to forget about these when verifying protocols.

We list in our papers on unlinkability [HBD19; BDM20] some possible technical
improvements of our conditions and verification techniques. However, we have become
more interested in a new approach, described in chapter 5 which provides computational
guarantees but also enables the verification of xor-based protocols previously out of the
reach of Tamarin. We also note that the recent notion of session-equivalence [CKR19],
which implies trace equivalence and is less restrictive than diff-equivalence, may become
available in future versions of Proverif8 which would enable the direct verification of
identity-specific unlinkability.

Our works on unlinkability have contributed to a better understanding of the various
notions of unlinkability that have been proposed in the framework of the applied pi-
calculus. Several questions remain open regarding the comparison between our notions
of unlinkability and game-based definitions. Importantly, we should pursue our line of
work by considering corruptions, as has been done in other settings [JW09; BCH10].

8Personal communication with Vincent Cheval, October 2020.



42 CHAPTER 3. MODELLING AND VERIFYING UNLINKABILITY



4
Partial-Order Reduction Techniques

We have seen in section 2.8 that most tools for deciding trace equivalence on secu-
rity protocols with bounded sessions rely on an exploration of execution traces in some
symbolic semantics. When I joined LSV in 2012, existing tools and their underlying pro-
cedures were very recent [CCD11; TD10; CCK12], and research efforts had concentrated
on the verification of the generalizations of static equivalence that arise in these symbolic
semantics. Unsurprisingly, the exploration of symbolic execution traces was performed
naively, considering all possible interleavings of concurrent actions and thus encounter-
ing many times inessential variants of the same trace. This is a classic problem in the
verification of concurrent systems, which has been tackled through the development of
many partial-order reduction (POR) techniques [God96; Pel98; BK08]. Together with
Stéphanie Delaune and our PhD student Lucca Hirschi, I have worked on developing
such techniques that are applicable to the verification of protocol equivalences.

Baier and Katoen [BK08] point out that “[POR] is mainly appropriate to control-
intensive applications and less suited for data-intensive [ones]”. Compared to Petri nets
or concurrent programs, security protocols have very simple control structures: when
one assumes that all communications are mediated by the environment, there is no
synchronization at all. However, action dependencies crucially rely on data: in(c, R)
depends on out(c, w) when w occurs in R. In traditional POR, data is often ignored
through approximations, but this would weaken the reductions too much in our case
since any input would depend on any output. This degenerate situation arises when we
move from the analysis of a program’s behaviour to the analysis of all possible behaviours
of a protocol composed with arbitrary attackers: operations on distinct channels that
are independent in the former situation become dependent in the latter one. In order to
obtain powerful POR techniques for security, we thus need to take data into account.
Moreover, this must be done in a way that can be efficiently supported in the context
of symbolic execution and constraint solving.

43
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Several earlier works1 have designed POR techniques for the verification of cryp-
tographic protocols. Some techniques, e.g. [CJM03; CM05; FDW10], rely on or are
inspired by abstract POR concepts such as ample sets [Pel93] or sleep sets [God90].
Others, e.g. [MVB10], are designed directly in the concrete setting used for protocol
verification. The works presented in this chapter differ from these earlier works in two
important ways. First, our POR techniques take data into account in a way that is
suitable for symbolic execution. In contrast, all of the above works either approximate
data away or assume a finite set of possible messages. The notable exception is the
constraint differentiation technique of Mödersheim et al. [MVB10], from which we take
inspiration. Second, our POR techniques are appropriate for the verification of trace
equivalence. All of the above works only deal with reachability properties, except for the
work of Fokkink et al. [FDW10]. The techniques designed in that paper aim at reducing
the LTS of some process into a simpler LTS that must remain equivalent to the original
one. We follow a less constraining approach, which allows much stronger reductions:
we will reduce the LTS of two processes in such a way that the reduced systems are
equivalent iff the original systems were equivalent.

We present in section 4.1 our first and main line of work on POR for security protocol
equivalences [BDH14; BDH15a; BDH17]. It introduces the compression and reduction
techniques, which are correct for a class of action-deterministic processes. Lifting this
action-determinism condition has motivated another approach [BDH18a], presented in
section 4.2, which explicitly builds on the general POR concepts of persistent and sleep
sets.

4.1 Compression and reduction

The starting point of this first line of work on POR was the proof-theoretical concept of
focusing, on which I had worked during my PhD [BM07; BMS10; Bae12]. Originally, fo-
cusing is a complete proof-search strategy for linear logic, proposed by Andreoli [And92]
as an attempt to generalize uniform proofs [Mil+91] in order to design a logic program-
ming language based on linear logic [AP90]. The concepts behind focusing (e.g. polar-
ity) were later found to be relevant to virtually all logics [Her95; DJS95; LM09; BMS10;
Bae12] and have been used in unexpectedly varied applications in proof theory [Gir01;
Lau02; JNS05; CP05; CPP06; CMS08]. Focusing is now generally considered as one of
the fundamental ideas in proof theory, next to cut elimination. Given the possibility of
encoding processes as linear logic formulas [Mil93; Mil03] so that process execution is
encoded as proof search, it is to be expected that focusing can be transfered in some
way to improve the verification of processes.

We proposed in [BDH14] two successive POR techniques: the first one, called com-
pression, is a direct adaptation of focusing; it is further improved by a second tech-
nique, called reduction, which is inspired by the constraint differentiation technique of
Mödersheim et al. [MVB10]. The two techniques are proved to be sound wrt. trace

1The interested reader can find in [BDH15b] an extensive discussion of related works, not limited
to cryptographic protocol verification.
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equivalence for the restricted class of simple processes, where parallel compositions can
only occur at toplevel and parallel subprocesses rely on distinct channels. We imple-
mented our method in a modified version of SPEC [TNH10], and obtained dramatic
improvements. We showed later [BDH15a] that the same ideas could be put to work in
a general process algebra, under some action-determinism condition. This provided the
foundation for a mature implementation of our techniques in the main line of develop-
ment of Apte [Che13]. The integration of our POR techniques in the specific framework
of Apte, notably involving a complex symbolic semantics, required a careful justification
which was finally provided in a journal version of our first work [BDH17].

The rest of this section describes our techniques as presented in following [BDH15a].
We start by adapting the process algebra in section 4.1.1. Then, we present in sec-
tion 4.1.2 an annotated semantics which will be instrumental in lifting POR techniques
from reachability to trace equivalence. We introduce compression and reduction in
sections 4.1.3 and 4.1.4, and describe in section 4.1.5 how they can be integrated in
verification tools based on symbolic execution. Section 4.1.6 concludes with further
discussion, notably commenting on follow-ups of our work.

4.1.1 Model

We restrict the syntax of our processes to only consider replication and new constructs
in a particular form. We adapt the syntax of processes as follows, where c, a are terms
of sort channel, u is a term of sort message and x is a variable of sort message:

P,Q ::= 0 | (P | Q) | if u = v then P else Q
| in(c, x).P | out(c, u).P | !a~c,~xP

The last construct combines replication with channel and name restriction:

!a~c,~xP should be understood as ! new ~c. out(a,~c). new ~x. P.

In other words we restrict the creation of new names and channels to take place just after
a replication, which is without loss of generality. Moreover, we impose that replication
is always followed by an observable action, which emits on channel a all newly generated
channels. This imposes that all channels are public.

Our purpose with the constrained use of replication, which is indeed restrictive,
is to allow unbounded processes in a way that can be compatible with the action-
determinism condition that we will eventually define and impose on our processes. Our
techniques will ultimately be applied for the verification of bounded processes, but we
consider (some form of) replication anyway to show that the underlying theoretical
results apply in the unbounded case. In particular, this brings more depth to the analogy
with focusing. Moreover, it would be trivial to adapt our results to bounded replication,
which is interesting because the verification of a bounded replication !nP is generally
more efficient than that of n copies of P (i.e., P | . . . | P ) since symmetries cause
redundancies that are not eliminated by POR techniques.

The precise LTS definition of [BDH15a] is formulated in a specific way to ease the
technical development. We can ignore such details here, except for one essential point:
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all of this work takes place in a semantics without internal communications. From now
on we thus assume that −→ is defined as in figure 2.2 but without the fourth rule. In other
words, we force all communications to be mediated by the attacker — this is possible
because we do not consider private channels, but this choice will be discussed further in
section 4.1.6. We also impose wlog. that unobservable actions other than replication are
executed eagerly, and force the transitions corresponding to the several parts of !a~c,~nP to
be executed in one step (i.e., replication must be followed by new transitions and the
output on a).

Finally, we shall work under an action-determinism condition, as is common in
POR [BK08]. Intuitively, it imposes that any sequence of actions that the system may
perform can only be performed in one way. In other words, action-deterministic systems
respond deterministically when they are controlled by their environment. In the context
of process algebras, this can be made formal in several ways. The notion of determi-
nacy [CCD13] is quite permissive, as it only requires that for any trace, the executions
from the initial configuration can only lead to one configuration up to trace equivalence.
While this notion is the right one to consider for some theoretical investigations, it is
sometimes useful to consider a more structural criterion, such as the one given next2.

Definition 4.1 (Action-determinism). We say that a process is an input (resp. output,
or session) process on channel a when it is of the form in(a, x).P (resp. out(a, u).P , or
!a~c,~xP ). A configuration (P ,Φ) is action-deterministic when, for any t and (P ′,Φ′) such

that (P ,Φ) t−→ (P ′,Φ′), the multiset P ′ does not contain two input (resp. output, or
session) processes on the same channel.

The difference between action-determinism and determinacy is often irrelevant in
pratical examples. In particular, the discussions of chapter 3 regarding which unlinka-
bility notions can be modelled as equivalences of determinate processes carry over to
action-determinism. Our notion of action-determinism is the right one for our tech-
nical development, but its meaning can be questioned; we will come back to this in
section 4.1.6.

4.1.2 Annotated semantics

The first step in our development is to enrich the semantics with annotations that indicate
the provenance of actions in processes. In particular, annotations will indicate when two
actions originate from concurrent processes in a configuration. The key result about this
enriched semantics is that trace equivalence for the regular semantics coincides with trace
equivalence for the annotated semantics when configurations are action-deterministic.
In other words, the attacker does not gain any distinguishing power when annotations
are made observable.

We omit the specific definition of the annotated semantics, and refer the interested
reader to [Hir17] which provides definitions and proofs, fixing a problem in the definition
of [BDH15a]. For our present purpose it suffices to know that there are objects called

2Our notion of action-determinism is still not practical: checking that a configuration is action-
deterministic is undecidable. When implementing our POR techniques, more constraining syntactical
checks are used to ensure action-determinism.
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labels, noted `, equipped with an independence relation. Labels are used to identify
processes in a configuration and its successors, and independent labels will intuitively
identify concurrent processes. We define an annotated semantics by enriching the regular
LTS. Actions of the annotated LTS are labelled: they are of the form [α]` where α is
a regular action and ` is a label. Configurations are similarly enriched: they contain
labelled processes [P ]` and are subject to some well-labelling condition which notably
imposes that process labels are pairwise independent. Finally, transitions are adapted to
update labels in an appropriate way, notably ensuring that well-labelling is preserved by
transitions.

Example 4.1. Consider the labelled configuration ({[P ]`}, ∅) where

P
def
= in(c1, x) | out(c2, u2).out(c3, u3).

As in the regular semantics, two kinds of actions can be performed by this configuration
in the annotated semantics: [in(c1, R)]`1 and [out(c2, w)]`2 . After executing an action
of the second form, actions [out(c3, w

′)]`3 become available. The annotated semantics
is such that `1 and `2 are independent, but `2 and `3 are dependent. Indeed, the actions
on channels c1 and c2 may be executed in any order, without any impact on the resulting
configuration, but it is clearly not the case for the two outputs. Note, however, that
labels are not always sufficient to define action dependencies: when w occurs in R,
in(c1, R) can only be executed after out(c, w).

The previous example illustrates that control-flow and data-flow dependencies need
to be accounted for in our LTS. This is done formally in the next definition.

Definition 4.2. We say that the labelled actions α and β are sequentially dependent
when their labels are dependent, and recipe dependent when

{α, β} = {[in(c, R)]`, [out(c′, w)]`
′}

with w occurring in R. They are dependent when they are sequentially or recipe depen-
dent. Otherwise, they are independent.

Action independence precisely captures when two actions can be permuted:

Lemma 4.1 ([Hir17, Lemma 1]). Let A be a (well labelled) configuration, α and β be

two independent labelled actions. We have A α.β−−→ A′ iff A β.α−−→ A′.

More surprisingly, under the action-determinism condition, labels and unobservable
actions can be considered as observables without changing the resulting trace equiva-
lence: we show next that configurations which are trace equivalent (wrt. the regular
semantics) must also have the same labelled traces. Of course, this result relies on
the specific definition of the annotated semantics, which updates labels in a sufficiently
canonical way. We also have to assume that the initial configurations have the same
skeleton skel(•), which roughly means that they are labelled in the same way, and we
show that this property can be maintained throughout executions.

Lemma 4.2 ([Hir17, Lemma 2]). Let K and K ′ be two action-deterministic configura-
tions with the same skeleton, such that K ≈ K ′. For any execution

K [α1]`1−−−→ K1
[α2]`2−−−→ K2 . . .

[αn]`n−−−→ Kn
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there exists an execution

K ′ [α1]`1−−−→ K ′1
[α2]`2−−−→ K ′2 . . .

[αn]`n−−−→ K ′n

such that Φ(Ki) ∼ Φ(K ′i) and skel(Ki) = skel(K ′i) for all i ∈ [1, n].

Example 4.2. Take K = ({[in(a, x).(out(b, u).P1 | P2)]`},Φ) with P1 = in(c, z) and
P2 = in(d, z). Let K ′ be the configuration obtained from K by swapping P1 and P2.
The configurations K and K ′ are compatible. In the annotated semantics, we have

K [in(a,R)]`.[τ ]`1−−−−−−−−→ K1
[out(b,w)]`2 .[in(c,R′)]`3−−−−−−−−−−−−−→ K2

where each label is dependent with the previous one. We also have

K ′ [in(a,R)]`.[τ ]`1−−−−−−−−→ K ′1

but skel(K1) 6= skel(K ′1), reflecting the fact that the two configurations do not exhibit
the same immediately available actions: only K ′1 can perform an input on c. By the
previous lemma, this suffices to declare that K 6≈ K ′.

Our modified semantics gives rise to a modified trace equivalence, as will be the
case for the modified semantics corresponding to our POR techniques. We say that
two labelled configurations are compatible when they are well-labelled, have the same
skeletons, and the underlying regular configurations are compatible.

Definition 4.3 (Annotated trace equivalence, ≈a). Let K1 and K2 be two compatible
labelled configurations. We say that K1 ≈a K2 when, for any annotated execution
K1

t−→ K ′1, we have K2
t−→ K ′2 for some K ′2 such that Φ(K ′1) ∼ Φ(K ′2).

As a slight abuse of notation, we allow ourselves to compare labelled configurations
using regular trace equivalence, implicitly erasing all annotations.

Corollary 4.1. Let K and K ′ be two compatible annotated configurations that are
action-deterministic. We have K ≈ K ′ iff K ≈a K ′.

The rest of this section only uses the annotated semantics. In particular, from now
on, α stands for a labelled action and P stands for a well-labelled multiset of labelled
processes. However, we shall omit annotations in examples when they are irrelevant.

4.1.3 Compression

Our first POR technique is directly inspired by the notion of focusing from proof-
theory [And92]. This idea emerged in the context of backward proof-search in the
sequent calculus for linear logic: starting from a sequent, one attempts to find a rule
instance with this sequent as conclusion, and then attempts to recursively find a proof
for the rule’s premisses. One immediately observes that this search procedures features
some inessential non-deterministic choices: some invertible rules can be applied eagerly
without any risk of losing provability. Focusing shows that the other rules also enjoy a
strong property: one does not loose proofs when they are applied in a chained fashion.
This idea can be transposed to process calculi to yield a partial-order reduction tech-
nique. Moreover, for the case of action-deterministic processes, the technique is correct
for trace equivalence verification.
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Definition 4.4. A process P is positive if it is of the form in(c, x).Q, and it is negative
otherwise. A multiset of processes is initial if it contains only positive or replicated
processes, i.e., of the form !a~c,~nQ.

The compressed semantics is essentially a restriction of the annotated semantics
following to a particular strategy that alternates between negative and positive phases.
Execution starts in the negative phase, where outputs and unobservable actions are
executed until the configuration becomes initial. At this point a process of the initial
configuration is chosen: if it is positive, it is distinguished as the process under focus; if it
is replicated, a new copy of it is formed as placed under focus. Then, the positive phase
consists of executing actions of the process under focus as long as it remains positive.
When this is no longer the case, the focus is released and the compressed execution gets
back to a negative phase.

Between any two initial configurations, the compressed semantics executes a sequence
of actions, called blocks, consisting of the choice of a focus, followed by a (possibly
empty) sequence of input actions, the release of the focus, and a (possibly empty)
sequence of output and unobservable actions. By forcing the execution of blocks, the
compressed strategy prevents some interleavings, and yields a higher-level view of traces
as sequences of blocks rather than individual actions.

Example 4.3. Consider a configuration ({P},Φ) with

P
def
= !ac,kin(c, x).out(c, senc(x, k)).

According to the compressed strategy, once a replication is performed on P (together
with the associated new actions) the resulting process is under focus and must be
completely executed. Hence, sessions cannot be interleaved.

Our compressed strategy can be encoded explicitly as a compressed LTS [BDH15a],
which yields a compressed trace equivalence ≈c. It can be shown that any execu-
tion in the annotated semantics can be completed to obtain a longer execution that is
permutation-equivalent to a compressed execution [BDH15a, Lemma 17]. Thus com-
pression can be used to reduce the search space when verifying reachability proper-
ties. Further, because the compressed strategy is completely determined by labels and
skeletons, we actually have a coincidence between ≈c and ≈a for action-deterministic
configurations. By lemma 4.2 this means that regular trace equivalence coincides with
compressed trace equivalence for action-deterministic configurations.

Theorem 4.1 ([BDH15a, Theorem 19]). The equivalences ≈ and ≈c coincide for com-
patible action-deterministic configurations.

We note that the completeness lemma [BDH15a, Lemma 17] mentioned above uses
a simplified version of Miller and Saurin’s completeness proof for focusing [MS07]. This
argument is based on the existence of specific rule permutations, structured by polarity.
We note that, in the case of security protocols, these permutations are obvious, but
they have remained incompletely exploited so far even in the context of reachability
analyses. In fact, [CJM00] explicitly lists the possible permutations between input and
output actions, but they are only used in a modified ample set technique which does not
eliminate the interleavings of concurrent sequences of inputs.
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4.1.4 Reduction

Compression achieves a partial order reduction by forcing the execution of whole blocks.
However, much redundancy remains in the compressed LTS, because it allows arbitrary
interleavings of blocks, regardless of block independences — we say that two blocks are
independent when their actions are pairwise independent.

The idea of the reduced semantics [BDH15a] is to select, for each class of equivalent
traces, a single representative that can be executed. The precise definition of when two
traces are equivalent, given in [BDH15a], captures two ideas: first, permuting adjacent
independent blocks in a sequence of blocks yields an equivalent trace; second, changing
some input action in(c, R) into in(c, R′) when RΦ =E R

′Φ yields an equivalent trace.
The latter case, of course, requires to talk of this equivalence in the context of a specific
frame. When t and t′ are two equivalent traces wrt. Φ(K ′), we have K t−→c K

′ iff

K t′−→c K
′; it is precisely this sort of redundancy that our reduced LTS eliminates.

The recipe dependencies of definition 4.2 are sometimes called second-order data
dependencies, while first-order data dependency is defined in terms of messages rather
then recipes, as in the previous definition. First-order dependency is much stronger than
second-order dependency, and can thus yield stronger partial-order reductions.

Example 4.4. Consider a signature featuring pairs, a hash function h and some constant
init used to initiate sessions of Basic Hash tags. Consider the following configuration,
for distinct channels c and d and distinct names n and m (we omit labels because they
are irrelevant here):

T (c, n)
def
= in(c, x).if x = init then out(c, 〈n, h(n, k)〉)

K
def
= ({T (c, n), T (d,m)}, ∅)

The following trace can be executed by K in the compressed semantics:

in(c, init).τ.out(c, w).in(d, snd(〈w, init〉)).τ.out(d, w′)

This trace features two blocks that are dependent, due to the occurrence of w in the
recipe snd(〈w, init〉). However, that recipe obviously yields the same message as init
alone. After simplifying the recipe in this way, the two blocks are no longer dependent
and can be permuted. Thus, our trace is equivalent to the following one:

in(d, init).τ.out(d, w′).in(c, init).τ.out(c, w)

It is clearly useless to consider both traces when verifying reachability properties. They
are actually also redundant wrt. equivalence verification when configurations are action-
deterministic.

We now define the reduced semantics. In order to select a representative in each class
of equivalent traces, we assume an arbitrary partial order ≺ on blocks, that is insensitive
to recipes and such that independent blocks are always comparable. The lexicographic
extension ≺lex of ≺ will be used to compare sequences of blocks.
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Definition 4.5 ([BDH15a, Definition 23]). We define the authorization relation t B b,
where t is a sequence of blocks and b is a block, by the next three rules:

εB b
b and b′ are dependent

t′.b′ B b
b and b′ are independent b′ ≺ b t′ B b

t′.b′ B b

The reduced semantics is then defined as a restriction of the compressed one: we have
K b1...bn−−−→r K

′ when this execution holds in the compressed semantics and, for all i,
b1 . . . bi B bi+1.

It can then be shown ([BDH15a, Lemma 26]) that, if some trace t can be executed in
the compresses semantics, the only equivalent traces that are executable in the reduced
semantics are the ones that are are minimal wrt. ≺lex — these minimal traces only differ
in their recipes.

Example 4.5. Consider the following configuration, for some n ∈ N :

({in(c, x).in(c, y).out(c, n), in(d, z).out(d, n)}, {n}.∅)

Assume moreover that the order ≺ prioritizes blocks on channel c over those on d,
i.e., in(c, Rx).in(c, Ry).out(c, w) ≺ in(d,Rz).out(d, w′). In the reduced semantics, this
process has traces of length up to two blocks. Traces of length two are as follows:

� in(c, Rx).in(c, Ry).out(c, w).in(d,Rz).out(d, w′) for any plausible3 recipes Rx,
Ry and Rz;

� in(d,Rz).out(d, w′).in(c, Rx).in(c, Ry).out(c, w) when w′ occurs in either Rx or
Ry.

In other words, the block on d is only allowed first when data dependencies require it.

As before, the reduced semantics induces a reduced trace equivalence ≈r. It can be
shown that it coincides with ≈c. This crucially relies on the fact that minimal traces
wrt. some frame are also minimal wrt. statically equivalent frames.

Theorem 4.2 ([BDH15a, Theorem 28]). The equivalences≈ and≈r coincide for action-
deterministic compatible configurations.

4.1.5 Integration with symbolic semantics and verification tools

We have seen in section 2.8 that most tools for verifying bounded trace equivalence rely
on some form of symbolic semantics. We now discuss how our POR techniques can be
put to use in that context.

The compression technique can be immediately applied in a symbolic semantics, since
it does no rely on recipes. This already brings a significant reduction of the number of
traces to explore. Compression has actually been implemented in Akiss in order to restrict
the number of symbolic traces to be analyzed — however, that system does not benefit
from our second POR technique so far.

3This means that each recipe can only mention handles of previous outputs. For instance, w′ may
not occur in Ry.
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(b) Denning-Sacco protocol

Figure 4.1: Impact of our POR techniques in Apte (see [BDH15a] for details)

In order to also leverage our reduction technique, one has to somehow reflect the
authorization predicate t B b at the symbolic level. We have shown how a new kind
of symbolic constraint, called dependency constraint, can be added to various symbolic
semantics: this is done in [BDH14] for a standard symbolic semantics, and we ad-
dress in [BDH17] the much more technical case of Apte’s specific symbolic execution
framework. These dependency constraints are then passively maintained throughout
constraint resolution, and only serve to discard some solutions when they become unfea-
sible. This general integration scheme has lead to excellent results in SPEC [BDH14],
Apte [BDH15a] and Deepsec [CKR18].

Figure 4.1 shows the performance of Apte without POR, with compression alone
and with reduction, on a toy example and on the verification of strong secrecy for
the Denning-Sacco protocol. The graphs show how the verification time (in logarithmic
scale) increases with the number of protocol sessions. The expected exponential speedup
is confirmed, with a slightly lesser impact of reduction in the real-life protocol than in
the toy example.

The intended use of our POR techniques in symbolic verification tools justifies our
construction in two steps, building the reduced LTS on top of the compressed one.
Conceptually, one could apply the main idea behind our reduced LTS directly on the
regular LTS. This would yield a semantics that can execute only minimal representatives
of each class of equivalent sequences of actions. Going back to example 4.5, the reduced
traces of maximal length would be as follows:

� in(c, Rx).in(c, Ry).out(c, w).in(d,Rz).out(d, w′) for any Rx, Ry and Rz;

� in(c, Rx).in(d,Rz).out(d, w′).in(c, Ry).out(c, w) when w′ occurs in R′;

� in(d,Rz).out(d, w′).in(c, Rx).in(c, Ry).out(c, w) when w′ occurs in R.

The minimality condition expressed at the level of actions gives rise to the two inter-
leavings of blocks, as with the block-level reduced semantics, but also introduces traces
where blocks are interleaved. The action-level and block-level reduced semantics are
both optimal in theory: for any concrete trace (i.e. where recipes are explicit) there is a
single minimal permutation that is allowed in any of the two reduced semantics. How-
ever, when used in the context of symbolic execution, the action-level reduced semantics
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allows a priori more interleavings and would thus be less efficient than the block-level
reduced semantics. In contrast, the block-level reduced semantics benefits from the
cost-free pre-processing performed by compression — which is close to optimal when
data cannot be taken into account.

4.1.6 Discussion

Our work on POR started from the observation that the concurrent nature of security
protocols was too naively handled in the equivalence verification tools of the time, and
the intuition that focusing could be an inspiration for more efficient techniques. Since
the publication of our compression and reduction techniques, and our implementations of
these techniques in SPEC and Apte, our ideas have been recognized and adopted in the
community of researchers working on the topic. Kremer has implemented compression in
Akiss 4 and Cheval, Kremer and Rakotonirina have implemented both compression and
reduction in the first release of Deepsec [Che+18], the successor of Apte. In [CKR19],
the same authors have also (reformulated and) generalized our POR techniques, notably
accounting for private channels, and complementing them with symmetry reduction
techniques5.

Overall, it seems that our compression and reduction techniques are simple, effective
ideas that are here to stay. Their main limitation is the action-determinism condition
on which they crucially rely; one possible way to avoid this condition is explored in the
next section. Before moving on to this, we discuss how our techniques relate to the
verification of may-testing equivalence.

Semantical concerns

As pointed out at the beginning of this section, our techniques are designed for a se-
mantics without internal communication. Myself and my coauthors have informally
and incorrectly justified this choice by claiming that it only gives more power to the
attacker [BDH15a]:

[This] is reasonable when studying security protocols faced with the usual
omnipotent attacker. In such a setting, we end up considering the worst-case
scenario where any communication has to be made via the environment.

Such a reasoning is correct for reachability properties, where the attacker chooses a
trace to reach a bad state. It is not so for equivalence properties, where the attacker
chooses an observable trace to distinguish two systems, and the systems may exploit
the possibility of internal communications to achieve indistinguishable behaviour. This

4https://github.com/akiss/akiss/commit/fad7128c
5Symmetries are often present in processes used in cryptographic protocol verification, which typically

consist of parallel compositions of several instances of the same role (i.e., several renamings of the same
process). Two traces of such processes are then redundant when they are equal modulo renaming, which
is not captured by POR techniques. The problem can be limited if multiple sessions are represented by
means of (bounded) replication rather than parallel compositions, but dedicated symmetry reduction
techniques can eliminate more redundancies.

https://github.com/akiss/akiss/commit/fad7128c
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mistake has been pointed out and studied in depth in [BCK20]. In particular, it is
shown that may-testing equivalence (as in definition 2.8) is incomparable with the trace
equivalence derived from the LTS without internal communication (i.e. ≈ in this section).
In other words, our POR techniques are proved correct wrt. a modified trace equivalence,
but this modified equivalence is not appropriate wrt. our ultimate goal, i.e., proving may-
testing equivalence. We attempt to clarify here the status of our work in light of these
new observations.

The issue could be resolved, in principle, by adapting our POR techniques for the
unmodified LTS, thus restoring the close correspondence between trace equivalence and
may-testing equivalence (corollary 2.2). Unfortunately, our technical developments would
be significantly complicated by the inclusion of unobservable internal communications.
In the LTS without internal communication, all unobservable actions are only relevant
to one process. This allows us to execute unobservable actions eagerly and ignore them
when permuting observable ones. Internal communications obviously introduce a form
of synchronization, and prevent some rule permutations that we use to comply to the
compressed strategy. In order to account for internal communications, we would thus
have to relax the strategy, allowing the interruption of blocks at any point to perform
internal communications. It is in fact how internal communications on private channels
are handled in [CKR19]. However, handling public internal communications in this way
may significantly weaken the partial-order reduction achieved on many examples.

Another solution would be to show that our modified trace equivalence coincides with
may-testing equivalence for a sufficiently restricted class of processes. In fact, [BCK20,
corollary 2] establishes that the two equivalences coincide for strongly action-determinate
processes, which essentially correspond to our action-deterministic processes. However,
there is a gap in the proof of that result, acknowledged by the authors6. It is thus
currently unknown whether the equivalences coincide, or even whether our modified
trace equivalence implies may-testing for action-deterministic processes.

There is however a natural restriction of our class of action-deterministic processes
for which our modified trace equivalence coincides with may testing equivalence. Instead
of requiring that processes are action-deterministic wrt. the semantics without internal
communication, consider requiring action-determinism wrt. the original semantics. For
example, out(c, u).out(c, v) | in(c, x) is action-deterministic in the former sense but
not the latter, because the output on c can be executed in two ways in the semantics
with internal communication. This new take on action-determinism is actually in line
with our original intuition: the system should respond deterministically when controlled
by the attacker — as in standard cryptographic games7. Moreover, it can be shown
that this “true” action-determinism condition implies a complete absence of internal
communications [BCK20, lemma 6]. Hence, for the class of truly action-deterministic
processes, the removal of internal communications in our LTS has no impact on the
resulting trace equivalence, which coincides with may-testing equivalence.

We note that the issue with our work on POR actually remains in its continua-

6Private communication with Steve Kremer and Vincent Cheval, September 2020.
7More precisely, games in the computational model rule out non-determinism but allow probabilistic

choices: systems respond probabilistically when controlled by the attacker.
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tion [CKR19]. The authors of that paper propose a new way of avoiding the action-
determinism condition: they define a new equivalence, called session equivalence8, which
implies trace equivalence; then they observe that POR techniques (including compres-
sion and reduction) are actually correct for session equivalence without the need for an
action-determinism assumption. This is an appealing approach, because their notion of
session equivalence is quite natural — for instance, it could be shown that the sufficient
conditions of [HBD16] imply the session-equivalence version of unlinkability. However,
our semantic concern remains: since they do not consider a semantics with (public)
internal communication, there is no guarantee that their trace equivalence coincides (or
even implies) the standard may-testing equivalence.

4.2 Persistent and sleep sets

We describe a second approach [BDH18a] to POR for protocol equivalences. Our main
goal with this approach was to lift the action-determinism condition, but it is also an
opportunity to make use of classic POR concepts and explain their relationship with our
previous approach.

The specific setup of [BDH18a] slightly differs from the one of e.g. [BDH15a]. For
the present discussion, we can assume to be working with the same LTS as before (i.e.
without internal communication) except for a specific treatment of handles: instead of
allowing arbitrary fresh identifiers w in out(c, w) actions, we assume a fixed set of handles
of the form wc,i where c ∈ C and i ∈ N, and require that the ith output on channel c
uses the handle wc,i. This inessential difference avoids some spurious dependencies in
the transition system, allowing us to directly and effectively use abstract POR techniques
without having to work modulo α-equivalence.

4.2.1 Two classical POR techniques

We briefly present the notions of persistent and sleep sets [God96] which are defined for
an arbitrary action-deterministic transition system. We thus assume a set of states Q, a
set of transitions T , and a partial transition function δ : Q× T → Q. We write s α−→ s′

when s′ = δ(s, α). Given a state s, we define the set En(s) of enabled transitions in
state s as {α | (s, α) ∈ dom(δ)}. A set s is said to be final when En(s) = ∅.
Definition 4.6. Independence is the greatest relation↔ ⊆ T×Q×T that is symmetric,
irreflexive and such that, for all α↔s β, we have:

� if s α−→ s′ then β ∈ En(s) iff β ∈ En(s′);

� if s α−→ s1 and s β−→ s2, then s1
β−→ s′ and s2

α−→ s′ for some s′.

8Session equivalence is essentially our annotated trace equivalence, but the contribution of [CKR19]
is to observe that this technical device in our development can be reformulated as a meaningful equiv-
alence for end-users.
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Persistent sets

The idea of persistent sets is to select, at a given state s, a subset of enabled transitions
that is sufficiently independent of other actions, so that one does not loose any reachable
state when restricting to the execution of actions in persistent sets.

Definition 4.7. A set T ⊆ En(s) is persistent in some state s0 when, for all sequences
of actions s0

α0−→ s1 . . . sn
αn−→ sn+1 such that αi 6∈ T for all 0 ≤ i ≤ n, we have

that αn ↔sn α for all α ∈ T .

Note that En(s) is always persistent in s, so that any state that is not final admits
a non-empty persistent set. We can thus assume some function pset : Q → 2Q which
associates to any state s ∈ Q such that En(s) 6= ∅ a non-empty set which is persistent in
s. A trace s0

α0−→ s1 . . .
αn−→ sn+1 is persistent, written s0

α0...αn−−−−→pset sn+1, if αi ∈ pset(si)
for all 0 ≤ i ≤ n.

Proposition 4.1. Let s be a state. Any final state s′ that is reachable from s is also
reachable from s through a trace that is persistent.

Example 4.6. Let (P ,Φ) be a configuration. Assume that it is action-deterministic, so
that our LTS rooted in that configuration can be presented in terms of a δ function.

If out(c,wc,i) ∈ En(P ,Φ), then {out(c,wc,i)} is persistent in (P ,Φ): indeed, if some
sequence of actions can be executed that does not contain this output, it is executed by
parallel processes, and is thus independent of the output.

Assume now that P = {in(c, x).out(c, u), in(d, y).out(d, v)}. We have:

En(P ,Φ) = {in(c, R), in(d,R) | R is a Φ-recipe}

Note that two input transitions in(c, R) and in(c, R′) are dependent because one disables
the other. Thus a persistent set that contains some transition in(c, R) must contain
all transitions in(c, R′) where R′ is a Φ-recipe. Assume now that a persistent set T ⊆
En(P ,Φ) contains in(c, R) for all Φ-recipes R, but but no input transition on d. Then the
transitions in(d,R).out(d,wd,i).in(c, R′) are executable, for some i, for any Φ-recipe R
and Φ′-recipe R′ where Φ′ is the frame enriched with the output on d. These transitions
are also outside T provided that R′ is not a Φ-recipe, i.e. provided that it actually relies
on wd,i. Observe finally that in(c, R′) is dependent with all in(c, R′′) transitions of T ,
which contradicts the fact that T is persistent. Hence, non-empty persistent sets in
(P ,Φ) must contain all input transitions on both c and d, for all Φ-recipes.

Sleep sets

If a persistent set contains two independent actions, then the associated search has
redundancies. This has lead to the introduction of sleep sets, described next assuming
some arbitrary total ordering < on transitions.

Definition 4.8. A sleep set execution is an execution

(s0, ∅) = (s0, z0) α0−→ (s1, z1) . . . αn−→ (sn+1, zn+1)
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with states in Q × 2T such that s0
α0...αn−−−−→pset sn+1, and for any 0 ≤ i ≤ n we have

αi 6∈ zi and

zi+1 = {β ∈ zi | αi ↔si β} ∪ {β ∈ pset(si) | β < αi, αi ↔si β}.

The sets zi are called sleep sets, and specify some subset of enabled transitions whose
execution is not allowed anymore. Sleep set executions refine persistent executions by
prioritizing small actions: when some action is executed, smaller independent alternatives
are added to the sleep set. Transitions exit the sleep set when they are dependent with
the executed transition.

Proposition 4.2. If a final state is reachable from s in the original LTS, then it is also
reachable from (s, ∅) through a sleep set execution.

Example 4.7. Consider now the configuration of example 4.5:

(P ,Φ)
def
= ({in(c, x).in(c, y).out(c, n), in(d, z).out(d, n)}, {n}.∅)

As in example 4.6, the only non-empty persistent set in (P ,Φ) is En(P ,Φ). Thus,
regardless of the choice of pset, there is a persistent execution of in(c, Rx).in(d,Rz) for
any valid recipes Rx and Rz.

Assume that the ordering on transitions is such that in(c, R) < in(d,R′) for all R
and R′. A sleep set execution could start with an input on c:

((P ,Φ), ∅) in(c,Rx)−−−−→ ((P ′,Φ), ∅)

After that, it is actually possible to execute a whole block on c, followed by a block on
d, keeping an empty sleep set all along.

If we start instead with an input on d, we obtain:

((P ,Φ), ∅) in(d,Rz)−−−−→ ((P1,Φ), {in(c, R) | R is a Φ-recipe})

In other words, all inputs on c that were executable from the beginning have been put
to sleep. At this point, the persistent execution would likely force the output on d:

((P1,Φ), {in(c, R) | R is a Φ-recipe}) out(d,wd,0)
−−−−−−→ ((P2,Φ

′), {in(c, R) | R is a Φ-recipe})

We can now execute inputs on c, but only if their recipe is not a Φ-recipe: in other words,
the inputs on c that were executable from the beginning are forced to be executed at
that time in sleep set executions.

It can be checked that we also have a sleep set execution of

in(c, Rx).in(d,Rz).out(d,wd,0).in(c, Ry).out(c,wc,0)

exactly when Ry contains an occurrence of wd,0.

As this example suggests, sleep set executions are very close to our reduced ex-
ecutions, when reduction is applied on individual actions rather than blocks (cf. sec-
tion 4.1.5). Sleep sets allow further optimizations when blocks do not contain outputs.
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We have actually called such blocks improper and considered in our works a refinement
of compression where executions must stop after one such block [BDH14; BDH15b;
BDH17]. Sleep sets suggest alternative treatments: improper blocks could be treated
as outputs, i.e. their execution could be forced as soon as they become available. While
this does not seem to be stronger in our setting, we note that the slightly different treat-
ment of improper blocks in session equivalence [CKR19], where interleavings of improper
blocks are considered, might be improved in light of the sleep set technique.

4.2.2 Trace equivalence as a reachability property

In order to apply the sleep sets technique to the verification of protocol equivalences,
we reframe trace equivalence as a reachability problem in some action-deterministic
transition system.

In order to account for the multiple executions that arbitrary processes may perform
for a given trace, we need to consider sets of states. Starting with a formal state 〈A ≈ B〉
where A and B are two configurations, we are thus lead to consider, after the execution
on some trace t, formal states 〈A1 + . . .+An ≈ B1 + . . .+Bm〉 where A1, . . . , An are
the configurations such that A t−→ Ai, and similarly for B. Note that when the initial
processes A and B are action-deterministic, we always have n ≤ 1 and m ≤ 1.

We say that such a state is left-bad when some Ai is such that Φ(Ai) 6∼ Φ(Bj) for
all j, and symmetrically for right-bad states. A state is bad when it is left or right-bad.
We then have A 6≈ B iff some bad state is reachable from 〈A ≈ B〉. Because sleep
set executions only preserve the reachability of final states, we need to elaborate on
the previous ideas to make sure that bad states remain bad after the execution of more
transitions. This is done by introducing ghost configurations. The resulting definition of
the trace equivalence LTS in [BDH18a] is quite technical; we only illustrate its general
principle here, through an example.

Example 4.8. Assume some constants ok 6=E ko and public channels c 6= d, and consider
the following multiset of processes:

P(u)
def
= { in(c, x).if x = ok then out(c, u), in(c, x).out(c, ok).out(d, ok) }

We have (P(ok), ∅) 6≈ (P(ko), ∅), because the trace in(c, ok).out(c,wc,0) can lead to
the output of ko by P (ko) but not by P (ok).

In the equivalence LTS, the state 〈(P(ok), ∅) ≈ (P(ko), ∅)〉 can perform the transi-
tions in(c, ok).out(c,wc,0).out(d,wd,0).in(c, ko) to yield the following final state:

〈 (∅, {wc,0 7→ ok,wd,0 7→ ok}) + (⊥3, {wc,0 7→ ok,wd,0 7→ ok}) ≈
(∅, {wc,0 7→ ok,wd,0 7→ ok}) + (⊥3, {wc,0 7→ ko,wd,0 7→ ok}) 〉

The non-determinism associated to the execution of the first input on c yields two
configurations on each side of the state. The first configuration corresponds to a full
execution of the process, where the input on c is followed by an output of ok for both
P(ok) and P(ko), hence its empty set of processes. The second configuration is a ghost,
corresponding to the execution of the first output on c, followed by the output of u.
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After these first two steps the processes cannot perform out(d,wd,0) hence the ghost,
represented using the special symbol ⊥3 where 3 indicates at which step the ghost has
appeared. The ghost is crucial in this example since it carries, in the final state, the
frame where wc,0 7→ ko which witnesses the inequivalence.

We prove in [BDH18a, Proposition 3] that A 6≈ B is equivalent to the reachability of
a bad final state from 〈A ≈ B〉. Since the trace equivalence LTS is action-deterministic
by design, the abstract sleep set technique directly applies to it. When A and B are
action-deterministic, the analysis from the previous section suggests that sleep sets al-
low to recover a POR technique similar to the action-level variant of our reduction
technique. More importantly, sleep sets also provide a framework for designing partial-
order reductions without the action-determinism assumption. Much work remains to be
done, however, to obtain an effective method.

4.2.3 Computing persistent sets

At this point we know that, for any choice of persistent sets, the associated sleep set
executions will be sufficient to determine the existence of bad states, and hence decide
trace equivalence. In order to restrict these sleep set executions, we aim to obtain persis-
tent sets that are as small as possible9. In practical uses of POR, good enough persistent
sets are often determined statically: like we did in example 4.6 for action-deterministic
processes, one can statically determine persistent sets for programs involving mutexes,
shared memory, and other concurrency mechanisms [God96] by studying theoretically the
space of potential transitions. However, it seems difficult to follow the same approach
with our trace equivalence LTS, where independences depend on the non-determinism
of processes.

Example 4.9. Consider a state of the trace equivalence LTS of the following form,
where the right-hand side is irrelevant:

〈({out(c, u), in(c, x).out(c, v)},Φ) ≈ . . .〉

Transitions out(c,wc,0) and in(c, R) are enabled in that state, for any Φ-recipe R.
Moreover, these transitions do not disable each other. However, the transitions are not
independent because the executions of out(c,wc,0).in(c, R) and in(c, R).out(c,wc,0)
yield two different states, respectively

〈({out(c, v′)},Φu) ≈ . . .〉 and 〈({out(c, u)},Φv′) + ({out(c, v′)},Φu) ≈ . . .〉

where v′ = v{x 7→ RΦ} and Φt = Φ ∪ {wc,0 7→ t} for t ∈ {u, v′}.
In the absence of general theoretical criteria for determining non-trivial persistent

sets in the presence of such non-determinism, we set out to search for persistent sets
algorithmically: for each encountered state in the trace equivalence LTS, we will compute

9It is not the case that smaller persistent sets always yield a smaller state space in sleep set execu-
tions [God96]. Other factors come into play, e.g. the independences between states of the persistent
set. In the absence of a better criterion, aiming for small persistent sets is a common reasonable choice.
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a minimal persistent set10 by analyzing its transition graph. Such analyses cannot be
done directly in the concrete trace equivalence LTS, which features arbitrary recipes.
Instead, we naturally turn to a symbolic version of our LTS.

We define in [BDH18a] a symbolic trace equivalence LTS. Its precise definition relies
on common ideas, involving second-order variables representing recipes and first-order
variables representing the associated messages. A set of constraints over these variables
is attached to symbolic equivalence states; it applies to the variables present in each
of the state’s configurations. The input actions of our symbolic equivalence LTS are
however formulated in a specific way, to fit our purposes: in(c,Xc,i,W ) denotes the
ith input on channel c, for a recipe using handles from W . The fixed choice of second-
order variable Xc,i avoids spurious dependencies, like the fixed choice of handles in output
actions out(c,wc,i). Including the support W of the recipe in the action enables analyses
such as the ones carried out in example 4.6, which care crucially based on the distinction
between recipes available at different points of the executions, with a varying set of
available handles.

Remark 4.1. The handling of conditionals induces branching executions in the symbolic
equivalence LTS. After performing an observable action, all unobservable actions are
implicitly performed to simplify the resulting state, and the two possible executions of
conditionals are accounted for. Consider for example a symbolic state of the following
form, where C is a set of constraints:

〈({in(c, x).if x = u then P1 else P2},Φ) ≈ . . .〉C

Assuming that the elided parts of the state do not contain conditionals11, this state can
perform the transition in(c,Xc,i,W ) in two ways, to become either

〈({P1{x 7→ xc,iΦ },Φ) ≈ . . .〉C∧xc
i

Φ =u
or 〈({P2{x 7→ xc,iΦ },Φ) ≈ . . .〉C∧xc

i
Φ 6=u

where xc,iΦ is the first-order variable associated to Xc,i. The first symbolic state represents
the transitions where the condition x = u is evaluated successfully, and the second one
represents the others. Their sets of solutions are disjoint, which must be since the
concrete equivalence LTS is action-deterministic. This new kind of branching in the
symbolic LTS is not an issue, because we are applying the sleep set technique on the
concrete LTS, and only using the symbolic LTS as a tool to analyze the concrete one.

Remark 4.2. The inevitable consequence of differentiating inputs based of their support
is that the symbolic LTS features several redundant actions: for any given state and
channel there is a most general enabled input (the one with full support) which accounts
for all enabled inputs. One might worry that these redundancies might counter-balance

10Our approach is similar to dynamic POR [FG05] where dependencies are computed dynamically
on visited states, with more precision than could be achieved statically. Our LTS is however more
complex than the standard concurrent programs of [FG05], hence our need to analyze executions
beyond a visited state to obtain an interesting persistent set for it. Moreover, dynamic POR is used
with concrete executions while we must carry out our analysis in symbolic semantics.

11Otherwise, the branching factor would increase: when n conditionals are present at toplevel, we
need to consider 2n cases.
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the effect of the partial-order reductions that we are designing. This is irrelevant because,
as observed in the previous remark, we are not looking for partial-order reduction in the
symbolic LTS. Concretely, we justify how a single input can be considered when relevant
in our algorithms, notably through the notion of enabled cover [BDH18a].

Once this symbolic framework is in place, we can determine whether two actions
are independent by executing transitions symbolically. We actually over-approximate
this notion: when two symbolic actions are declared independent a symbolic state,
it must be the case that independence holds in the concrete equivalence LTS for all
valid instantiations of our actions and state; however, we do not aim for the converse
implication. This is enough to obtain interesting results, and allows us to work while
ignoring messages and recipes (except for their support) which avoids the cost of solving
constraint systems12.

We can finally search for minimal persistent sets: roughly, we initialize a set with
an arbitrary enabled transition, and saturate it until obtaining a persistent set — this
saturation process is described in more detail in [BDH18a]. We perform this construction
for all possible first actions, and keep a minimal set among the obtained ones. As before,
these computations completely ignore messages.

Example 4.10. Let P = {in(c, x).out(c, u).P1, in(d, y).out(d, v).P2} where P1 and P2

are arbitrary. When searching for a minimal persistent set for 〈(P ,Φ) ≈ (P ,Φ)〉, our
algorithm will seed the construction with one input action, say in(c,Xc,0, ∅), and saturate
it to obtain (the symbolic representation of) a persistent set. In that case the result is
the full enabled cover {in(c,Xc,0, ∅), in(d,Xd,0, ∅)}. The same result is obtained when
taking the input on d as seed. Indeed, the only non-empty persistent set is the full set
of enabled transitions, as explained in example 4.6.

We point out that the above computations can be performed regardless of the details
of P1 and P2: there is no need to execute these processes to notice the dependencies that
force the inclusion of the other input, i.e. the dependency between in(c,Xc,0, {wd,0}) and
in(c,Xc,0, ∅), and symmetrically. This is achieved algorithmically by exploring possible
transitions in a breadth-first fashion, which is crucial for performance.

In our approach, we have decided to ignore constraints. This obviously simplifies
our algorithms, and also renders our algorithms independent of the trace equivalence
tools where our partial-order reductions will be applied: once our persistent sets are
computed, we can simply restrict the explorations of the trace equivalence verifier along
sleep set executions that derive from our persistent sets. There is however one major
drawback: as we have seen in remark 4.1, each conditional induces a branching factor
in our symbolic equivalence LTS; when several conditionals are present at toplevel, an
exponential number of cases has to be considered. In the absence of any constraint
resolution, there is no way to discard cases. In other words, our symbolic approach has

12A trace equivalence verifier like Deepsec solves sets of constraint systems at each step of the
exploration of possible traces, to determine whether they are symbolically equivalent. This is equivalent
to determining whether one of our symbolic states is bad. It might be worth implementing a simpler
constraint resolution procedure for our analyses: for example, it would be useful to know when a
symbolic state admits no solution. The risk, however, would be to duplicate some work that will be
done by the trace equivalence verifiers.
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created its own state explosion issue.
In order to mitigate this issue, we propose in [BDH18a] a technique for collapsing

conditionals. It iteratively replaces a subprocess of the form if ϕ then α.P else β.Q by
γ.(if ϕ then P else Q) where the action prefixes α and β are either two outputs or two
inputs on the same channel, and:

� γ = α = β when α = β = in(c, x);

� γ = out(c,∆(u, v)) when α = out(c, u) and β = out(c, v), where ∆ is a new
function symbol.

In the case where action prefixes are inputs, the modification preserves the semantics
of processes. To say the same in the case of outputs, we would need to interpret ∆ as
a choice function which selects u when ϕ holds and v otherwise. This cannot be done
in our symbolic framework, and this needs not be done: the role of ∆(u, v) here is to
only to make sure that collapsing the two outputs does not create new independences.
We show in [BDH18a, Proposition 8] that our collapsing of conditionals is sound, in the
sense that symbolic persistent sets computed on the modified state are also persistent
sets for the initial one. This optimization is crucial in practice on most examples.

4.2.4 Integration in verification tools

Once symbolic persistent sets have been computed, we can derive from them a notion
of symbolic sleep set execution, which is a straightforward symbolic representation of
sets of concrete sleep set executions.

Example 4.11. Continuing example 4.10 and assuming that P1 = P2 = 0 for simplicity,
the blocks on c and d can be interleaved in two ways in the persistent and sleep set
executions. Assuming that inputs on c are prioritized by ≺, the interleaving starting
with c has empty sleep sets but not the other one, as expected:

(〈(P ,Φ) ≈ (P ,Φ)〉, ∅) in(d,Xd,0,dom(Φ))−−−−−−−−−−→ (〈(P1,Φ) ≈ (P1,Φ)〉, {in(c,Xc,0, dom(Φ))})
out(d,wd,0)
−−−−−−→ (〈(P2,Φ

′) ≈ (P2,Φ
′)〉, {in(c,Xc,0, dom(Φ))})

in(c,Xc,0,dom(Φ′))−−−−−−−−−−→ (〈(P3,Φ
′) ≈ (P3,Φ

′)〉, ∅)
out(c,wc,0)−−−−−−→ (〈(P4,Φ

′′) ≈ (P4,Φ
′′)〉, ∅)

Intuitively, this symbolic sleep set execution expresses that, in concrete traces, the only
inputs on c allowed after the block on d should be concretizations of in(c,Xc,0, dom(Φ′))
but not of in(c,Xc,0, dom(Φ)), i.e. their recipe must contain an occurrence of wd,0.

Our construction guarantees that any bad state in the concrete trace equivalence
LTS can be found through one of the concretizations of a symbolic sleep set execu-
tion [BDH18a, Proposition 7]. This can be used to restrict the exploration of the trace
equivalence verification tools that proceed by enumerating symbolic traces.

We have implemented our method in an OCaml library called Porridge13 [BDH18b],
which weighs about 6 000 lines of code. Although it is only a prototype, we have taken

13Porridge is also available on https://github.com/LCBH/deepsec.

https://github.com/LCBH/deepsec
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Test Size Time (ratio) Explorations (ratio) Time (s)

BAC (unlinkability) 4 7.6 7.23 12.23
Private Auth. (anonymity) 2 1.25 2.71 0.04
Private Auth. (anonymity) 3 1.67 4.01 0.04
Private Auth. (anonymity) 4 8.21 10.51 1.17
Private Auth. (anonymity) 5 14.89 16.61 10.57
Private Auth. (anonymity) 6 60.2 36.75 4864
Private Auth. (unlinkability) 2 2.29 9.6 0.16
Private Auth. (unlinkability) 3 14.06 29.77 79.57
Private Auth. (unlinkability) 4 46.2 46.69 7171
Feldhofer (anonymity) 2 1 4.72 0.03
Feldhofer (anonymity) 3 4.63 7.08 0.37
Feldhofer (anonymity) 4 22.47 16.3 544.93
Feldhofer (unlinkability) 4 36.27 22.58 1510.09

Table 4.1: Relative speed-up and reduction of explorations with Porridge vs. without
Porridge. In the last column, we show the computation time without Porridge. The size
refers to the total number of processes in parallel.
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Figure 4.2: Relative speed-up and reduction of explorations with Porridge vs. without
Porridge on Private Authentication (anonymity) of different sizes.

some care to make it efficient. As pointed out earlier, the symbolic state spaces that
are explored are often huge. It is thus important to only explore transitions that need
be, and to identify redundant computations — this is notably achieved through a careful
use of hash-consing, memoization, and priority queues. Our implementation is also
modular and re-usable: persistent set computation is provided as a functor, and works
over an arbitrary symbolic LTS; we also provide a functor that turns a symbolic LTS
into the LTS of its sleep set executions. This generality has already been exploited to
implement partial-order reductions for the trace inclusion LTS (which differs from the
trace equivalence LTS, and in particular does not induce the same independences) and
could also be used to apply our method for trace equivalence in the standard LTS where
internal communication is allowed.

Our release of Porridge [BDH18b] comes with a modified version of Deepsec with
support for our new POR technique. We have evaluated the improvements brought by
our technique over several examples. We reproduce in figure 4.2 and table 4.1 results
from [BDH18a], verifying anonymity and unlinkability on the BAC, Private Authentica-
tion and Feldhofer protocols — all these examples are not action-deterministic. The size
of an example is the number of parallel sessions. Ratios compare the verification time
(resp. number of explored states) without and with Porridge.
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Our techniques bring speed-ups, though not on the smaller examples, e.g. Private
Authentication with size 2 and 3. In these cases, the cost of the analysis performed
by Porridge exceeds the benefit of the partial-order reduction when Deepsec verifies the
equivalence. On larger examples the time spent computing symbolic sleep set executions
in Porridge does increase, but the impact of the partial-order reduction counter-balances
it. This trend is visible in Figure 4.2; we could not run large enough examples to confirm
an exponential speed-up.

4.2.5 Discussion

This second approach to POR, building on the abstract techniques of persistent and
sleep sets, and the algorithmic analysis of a trace equivalence LTS, has been validated
by effective partial-order reductions in Deepsec. However, improvements are not as
important as with our first technique for action-deterministic processes. The cost of
the pre-computation of sleep set executions is very high, and it is often unfeasible on
examples where the collapse of conditionals does not completely eliminate them. On
action-deterministic processes, our first optimization vastly outperforms the second one.

There is room for improvements. A theoretical improvement would be to adapt our
techniques to allow first-order rather than second-order dependency analyses. This would
make it possible to generate, as part of our sleep set executions, dependency constraints
that would be usable by tools such as Deepsec. The most promising avenue, however,
would be to integrate our analyses more tightly into a trace equivalence verifier. This
would make it possible to eliminate symbolic states when they have no solutions, and
avoid the symbolic state space explosion caused by conditionals. However, such an inte-
gration would require to handle the complex details of the verifier’s symbolic semantics,
in the code and probably in the theory. A further difficulty is that our persistent set
computations involve the exploration of symbolic executions before the explorations per-
formed for trace equivalence verification: some of our explorations will turn out to be
useless (because the POR avoids them) while some others will be explored later for trace
equivalence verification. Achieving good performances in such a system would likely rely
on delicate trade-offs between precision and efficiency, and a new architecture of the
verifiers where constraint solving capabilities would not be tied to the trace equivalence
verification procedure.

At a theoretical level, this second line of work has interestingly allowed to compare
our compression and reduction techniques with the persistent and sleep set techniques.
As illustrated above, sleep sets are similar to our reduced executions, but different. The
alternative viewpoint provided by sleep sets might be useful in future developments.

4.3 Conclusion

I have presented my work on two approaches to POR with effective applications to
the verification of trace equivalence for bounded processes. The first method relies on
an action-determinism assumption and has been widely adopted. The second method
lifts this assumption but has not been adopted; it is costly and only beneficial on large
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examples where conditionals can be collapsed. We have identified some directions for
improving that second approach. While these interesting technical challenges could bear
some fruits, some recent and ongoing developments seem more promising.

First, session equivalence provides an attractive alternative to trace equivalence which
diminishes the need for POR techniques beyond compression and reduction. Indeed, this
stronger equivalence seems to be sufficient for many applications in security including
anonymity and unlinkability, and it allows the compression and reduction techniques.

Second, a new generation of trace equivalence verifiers might arise which does not
need POR techniques at all. The SAT-Equiv system already falls in this category. More-
over, the procedure of Akiss is being redesigned to work on partial orders rather than
traces, which avoids the prior enumeration of symbolic traces. This ongoing develop-
ment, which has involved Gazeau, Kremer and Laporte, is now close to completion and
preliminary experimental results show massive improvements14. If this line of work proves
successful, our POR techniques will become less relevant, but we will have contributed
to bringing concurrency issues to the front stage in the domain of protocol equivalence
verification.

On a completely different note, a possible continuation of our works on POR would
be to bring ideas back to the field of proof search. Compression has been adapted from
the logical notion of focusing, and we have then enriched it with reduction. Our second
line of work also points to connections between persistent sets and focusing. It would
be theoretically interesting to devise analogues of these techniques in proof search. One
might for instance try to adapt the notion of lexicographically minimal trace to that of
minimal derivation tree. Such results could then be used to devise new proof search
techniques, probably starting with linear logic before moving on to richer settings. As
in our POR methods, this would require to work symbolically, which is natural in proof
search, where meta-variables and unification are classical tools.

14This information comes from a private communication with Steve Kremer in October 2020.
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5
A Meta-Logic for Proving Protocols in the

Computational Model

Squirrel!

Dogs in Up, Pixar, 2009

The previous three chapters deal exclusively with the symbolic model. This model,
or rather this class of models, stems from the seminal idea of Dolev and Yao [DY81]:
attacker capabilities can be represented symbolically using e.g. equational theories or
sets of inference rules. This has made it possible to leverage techniques from, e.g.,
automated deduction and rewriting, to obtain automated procedures for the verification
of security protocols. The resulting tools have been used to discover important flaws in
real-world security protocols, and provide proofs which increase our confidence in them.

However, the symbolic modelling of attacker capabilities is usually incomplete wrt.
the computational model, i.e. the standard model of cryptographers where messages
are bitstrings and primitives, protocols and attackers are probabilistic PTIME Turing
machines. We have seen a concrete example of incompleteness in section 3.3.1, where
Proverif missed some attack on the PACE e-passport protocol (later discovered thanks
to Tamarin) because it can only handle a subset of the Diffie-Hellman equational theory.
The question of computational soundness has been raised in a seminal paper by Abadi
and Rogaway [AR07] with a striking positive result: they showed that, despite the widely
different settings, computational indistinguishability coincides with static equivalence for
standard cryptographic primitives. This work has inspired many others, dealing with
active adversaries [MW04a], observational equivalence [CC08], Diffie-Hellman [Bre+11],
etc. However, computational soundness remains difficult to achieve, and results have
a limited practical impact so far due to strong assumptions such as the absence of
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key cycles [CC08], or modularity issues [CW11]. Actually, incompleteness is sometimes
inevitable: this is the case for exclusive or, at least when sessions are unbounded [Unr10].

Direct approaches have thus been proposed to use formal methods for the com-
putational analysis of protocols [CKW11; Bar+19]. In particular, the systems Cryp-
toverif [Bla06], Easycrypt [Bar+11], CryptHOL [BLS20] and F? [Bha+17] are quite
successful at proving primitives and protocols, with varying levels of detail and automa-
tion; we discuss them in more detail below.

Together with Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos and Solène
Moreau, we have recently developed a new approach to obtain computational proofs of
cryptographic protocols. It is based on the logic proposed by Bana and Comon [BC14;
Ban+20] for equivalence properties. The Bana-Comon logic, which we briefly present in
section 5.1, deals with indistinguishabilities between sequences of messages. To effec-
tively use it to prove reachability properties and protocol equivalences, we have designed
a meta-logic and corresponding proof systems, which we describe in section 5.2. We
have also developed an interactive proof assistant for this meta-logic, presented in sec-
tion 5.3, which has allowed us to demonstrate the usefulness of our method on various
case studies. We conclude the chapter in section 5.4, where we compare our approach
with other systems for proving protocols in the computational model, and discuss the
research questions that stem from this new development.

The contents of this chapter have been submitted anonymously in June 2020 at
the IEEE Symposium on Security and Privacy, and are currently undergoing a revision.
A long version of the submission, together with our source code and case studies are
available at https://github.com/squirrel-submission-sp21/squirrel-prover.

5.1 Base logic

The symbolic model is sometimes presented as a black-box idealization of the computa-
tional model [CKW11]. The idealization is visible already with the treament of secrets,
modelled as names. In the symbolic model, the attacker cannot deduce the name n from
senc(n, k), provided that k has only been used as encryption key in output messages.
In the computational model, a name n stands for a bitstring of length η (the security
parameter) that is chosen uniformly at random by the protocol. The attacker could
randomly guess this value, but this is unlikely: more formally, this can only occur with a
probability that is negligible1 in η. The black-box nature of the symbolic model comes
from the fact that attacker capabilities correspond to the functionalities of cryptographic
primitives, ignoring weaknesses of potential implementations. This is very visible with
(keyed) hash functions, for which there is no functionality. In the symbolic model, hash
functions come with no equational theory. As a consequence, they satisfy a form of
collision resistance, i.e. h(u, k) =E h(v, k) implies u =E v, but are also indistinguishable
from random functions, i.e. {k}.{w 7→ h(u, k)} ∼ {k}.{w 7→ n}. In the computational
model, asking that a keyed hash function is a pseudo-random function is very strong, and

1We say that a quantity λ(η) is negligible in η when, for any positive polynomial p(η), there is some
ηp such that λ(η) < 1/p(η) for any η > ηp.

https://github.com/squirrel-submission-sp21/squirrel-prover
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one may wish to prove protocols secure under weaker assumptions such as unforgeability
or collision-resistance — note, for instance, that a hash function could leak one bit of
the hashed value while remaining unforgeable and collision-resistant.

The approach of Bana and Comon, which they call computationally complete sym-
bolic attacker, is based on a crucial idea: instead of specifying symbolically what the
attacker can do, as Dolev and Yao proposed, a computationally sound logic should spec-
ify what the attacker cannot do. Bana and Comon have first designed in this way a
computationally sound logic for reachability properties [BC12], and then adapted the
approach for equivalence properties [BC14]. Unusually, the latter system is actually sim-
pler than the former, both in terms of justifying and using it [Ban+20]. We give below
a short introduction to the Bana-Comon logic for equivalences, which we call our base
logic. We follow the notations and definitions of [BC14] with only slight modifications
to avoid ambiguities between our base and meta-logic.

5.1.1 Syntax and semantics

The base logic is simply an instance of first-order logic, with a single sort message, and
a single predicate representing indistinguishability. We will be interested in the satisfac-
tion of formulas in particular structures, called computational models, where terms are
interpreted as probabilistic polynomial-time (PPTIME) Turing machines, and indistin-
guishability is interpreted as computational indistinguishability wrt. PPTIME adversaries.

In order to be able to suitably express cryptographic computations using terms, we
split function symbols in three categories2:

1. A set FB of symbols of arbitrary arity, meant to model non-adversarial compu-
tations such as cryptographic primitives. We assume that this set contains some
basic symbols:

� pairing 〈 , 〉, projection functions fst( ) and snd( );

� equality EQ( , );

� conditional if then else and boolean constants true and false.

Symbols representing cryptographic primitives will be noted as in other chapters,
e.g., aenc, adec, pub or h. We use the letter f to denote arbitrary symbols of FB.

2. A set NB of name symbols, of arity zero, noted n, m, k.

3. A special attacker symbol att( ).

For instance, one may write EQ(att(h(n, k)),n) which intuitively stands for the compu-
tation that compares some uniformly sampled nonce n with att(h(n, k)), i.e., the result
of some arbitrary computation performed by an attacker who has been given the hash
of n using key k.

2We use a specific style for names from now on, writing e.g. n instead of n. This serves as a reminder
that, although names and function symbols are both represented in the Bana-Comon framework as
function symbols of first-order logic, these two kinds of symbols have different semantics.
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We are interested in interpretations of terms as probabilistic computations repre-
sented by deterministic Turing machines featuring, in addition to their input and work-
ing tapes, three special tapes: the first one is used to pass the security parameter η in
unary; the second and third one are infinite tapes that will serve as sources of randomness
for the honest and adversarial computations. We define PPTIME Turing machines as
such machines that run in polynomial time wrt. η. As a particular case, PTIME Turing
machines are PPTIME Turing machines without the two random tapes.

Definition 5.1. A computational model M is given by:

� for each f ∈ FB of arity k, a PTIME Turing machine AMf with k input tapes;

� a PPTIME Turing machine AMatt with a single input tape.

We assume that the standard symbols EQ, true, false and if then else , are interpreted
in a standard way, e.g. EQ implements bitstring comparison.

Definition 5.2. The interpretation of a term t in some computational model M is
defined as follows, given a semantic assignment σ which maps variables to PPTIME
machines:

JxKMσ (η, ρ1, ρ2)
def
= σ(x)(η, ρ1, ρ2)

Jf(t1, . . . , tk)KMσ (η, ρ1, ρ2)
def
= AMf (Jt1KMσ (η, ρ1, ρ2), . . . , JtkKMσ (η, ρ1, ρ2), η)

Jatt(t)KMσ (η, ρ1, ρ2)
def
= AMatt(JtK

M
σ (η, ρ1, ρ2), η, ρ2)

JnKMσ (η, ρ1, ρ2)
def
= ρ1[n]

where ρ1[n] is an arbitrary portion of ρ1 of length η, such that the portions corresponding
to different names never overlap.

The base logic features a single predicate ∼ or rather, for each k ∈ N, a predicate
∼k of arity 2k. These predicates are interpreted, in all computational models, as com-
putational indistinguishability. We note Pr(ρ1, ρ2 : A(η, ρ1, ρ2)) the probability that the
machine A accepts, wrt. an appropriate probability distribution of the two infinite tapes
ρ1 and ρ2.

Definition 5.3. The atom u1, . . . , uk ∼ v1, . . . , vk is satisfied in a computational model
M when, for any PPTIME machine A, the following advantage is negligible in η:

|Pr
(
ρ1, ρ2 : A(Ju1K(η, ρ1, ρ2), . . . , JukK(η, ρ1, ρ2), η, ρ2)

)
−

Pr
(
ρ1, ρ2 : A(Jv1K(η, ρ1, ρ2), . . . , JvkK(η, ρ1, ρ2), η, ρ2)

)
|

Once satisfaction is defined for atoms, it is extended in the usual way to all formulas.
For instance, M, σ |= ∀x.φ when M, σ{x 7→ A} |= φ for any PPTIME machine A. As
usual, we say that a formula is valid when it is satisfied in all computational models. We
say that a formula φ is a logical consequence of the set of formulas S, noted S |= φ,
when all models of S are also models of φ.

Example 5.1. Assume that n and m are two distinct names. The formulas n ∼ m
and EQ(n,m) ∼ false are valid: indeed, the attacker cannot distinguish between two
random samplings with the same distribution, and there is a negligible probability that
two independent uniform samplings of length η coincide.
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The if then else function symbol allows to define other boolean constructs. We

write u
•
∧ v for if u then v else false, and define similarly u

•
∨ v and u

•⇒ v. Finally,
we write u

•
= v for EQ(u, v). These constructs allow to write propositional formulas

over equalities as terms, which will be useful to express reachability properties using
indistinguishability. For example,

(
att(h(t, k))

•
= h(t′, k)

•⇒ t
•
= t′

)
∼ true expresses

that, with overwhelming probability, if the attacker can obtain the hash of t′ from the
hash of t, then t is equal to t′.

Example 5.2. Consider the following base logic formulas:

(u ∼ true)⇒ (v ∼ true) (a)

(u
•⇒ v) ∼ true (b)

Formula (a) is a logical consequence of (b): if both u
•⇒ v and u are true with

overwhelming probability, then it must also be the case for v.
However, (a) does not generally imply (b). Consider a unary function symbol f

and a model M where f is interpreted as the machine that returns the first bit of
its argument. Then, for any arbitrary name n, the term f(n) is interpreted as the
probabilistic computation returning 1 with probability 1

2
, and 0 otherwise. We have

M 6|= (f(n) ∼ true) hence formula (a) is satisfied in M when u := f(n), regardless of
v. However,M 6|= (f(n)

•⇒ false) ∼ true. In words, f(n) is not true with overwhelming
probability, but it is also not false with overwhelming probability.

5.1.2 Cryptographic assumptions

We are usually interested in the validity of a formula in a class of computational models,
typically restricting to those models where some symbol interpretations satisfy some
cryptographic assumptions. In order to symbolically capture such assumptions, axiom
schemes are synthesized from cryptographic assumptions.

Example 5.3. Let t be a ground term where the names k and n do not occur. The
formula h(t, k) ∼ n is not valid, but it is satisfied in all models where h implements a
keyed hash function satisfying the PRF assumption, i.e. it is a pseudo-random function
family. Our formula is actually a logical consequence of the following axiom scheme,
which is proved sound wrt. our class of models [CK17, Proposition 3]:

~u, if c then true else h(t, k) ∼ ~u, if c then true else n

where ~u, t and c are (sequences of) ground terms such that

� k only occurs in key position in ~u, t and c;

� n does not occur in ~u, t and c;

� c is
•
∨1≤i≤n EQ(t, ti) where h(t1, k), . . . , h(tn, k) are all occurrences of hashes with

key k in ~u and t.
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The framework generally allows natural formulations of cryptographic assumptions
as axioms. Several standard cryptographic assumptions have been axiomatized, e.g.
collision resistance (CR-HK), pseudo-random function family (PRF), unforgeability un-
der chosen-message attack (EUF-CMA), indistinguishability under chosen-plaintext and
chosen-ciphertext attacks (IND-CPA, IND-CCA1 and IND-CCA2) key privacy (ENC-KP)
and decisional Diffie-Hellman (DDH) [BC14; CK17; Kou19b; Ban+20].

5.1.3 Analyzing protocols

In [BC14], Bana and Comon show how their logic can be used to prove equivalences
between protocols with bounded sessions. They assume that protocols are represented as
simple transition system and compute, for each protocol P , a term ΦP which intuitively
represents the frame that the attacker will obtain, depending on the choices of actions
to execute and of input messages. This encoding is such that two protocols P and
P ′ are computationnally indistinguishable iff ΦP ∼ ΦP ′ is valid. Since only a finite
number of traces can be chosen, this is actually equivalent to showing, for each trace
t, that Φt

P ∼ Φt
P ′ is valid, where Φt

P encodes the frame obtained by the attacker for
the execution of t, which depends on the choice of input messages by the attacker.
Concretely, these inputs are simply encoded as att(Φti

P ) for all prefixes ti of t: they are
the result of an arbitrary adversarial computation from past outputs.

This method has been used successfully to give formal proofs for various protocols,
including (fixed versions of) the RFID protocols LAK and KCL [CK17], the FOO elec-
tronic voting protocol [BCE18] and the 5G AKA protocol [Kou19b]. In some cases, only
a particular number of sessions is considered, e.g. one session with two honest voters
and a dishonest one for the FOO protocol [BCE18]. In other cases, a parametric proof
is given, e.g. it is shown that a modified version of the KCL protocol is unlinkable for
any fixed number of sessions [CK17]. In all cases, proofs are formal but manual, which
is both tedious and error-prone.

In their seminal paper, Bana and Comon conclude with hopes that proofs in their
logic could be automated and implemented efficiently. This has been tackled by Koutsos,
who came up with a 3-NExpTime procedure deciding provability in the Bana-Comon
logic for some fixed set of axioms [Kou19a]. The limitations of this theoretical result do
not mean that automatic provers cannot be built, but attempts have not been successful
so far.

A less ambitious goal is to only aim for machine-checked proofs, i.e. design a proof
assistant which will be guided by an expert user for the key steps of proofs, but which
might be able to automatically fill in the tedious details. Unfortunately, the verification
method described before does not fit well interactive proofs: it is not realistic to require
users to interactively prove one indistinguishability goal for each trace of the protocol,
as the number of goals would be prohibitive and the proofs would be very repetitive.
We have proposed to avoid this problem by designing a meta-logic which can uniformly
describe all such goals, and to prove them without explicitly considering irrelevant details
of execution traces.
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hash h

abstract ok : message

abstract error : message

name key : index → message

channel c

process tag(i ,j :index) =

new n; out(c, 〈 n,h(n,key(i ))〉)

process reader(j :index) =

in(c,x );

try find i such that snd(x ) = h(fst(x ),key(i ))

in out(c,ok)

else out(c,error)

system (!j R: reader(j ) | !i !j T: tag(i ,j )).

Listing 5.1: Basic Hash protocol in Squirrel

5.2 Meta-logic

Our meta-logic is a language which allows to conveniently specify properties protocol
executions. In order to illustrate the various concepts involved in its definition, we shall
use the Basic Hash protocol. More specifically, we consider the multiple-session process
for this protocol, given in listing 5.1 using the concrete syntax of the Squirrel prover; as
we shall see, our specification uses a variant of the applied pi-calculus for convenience
but our tool internally relies on a more primitive description of systems.

5.2.1 Syntax

Our meta-logic has three sorts. In addition to message, we consider terms of sort
timestamp for representing points in the execution of a protocol, and index for indexing
unbounded collection of objects. Variables of sort index are noted i, j, k; variables of
sort timestamp are noted τ ; variables of sort message are noted x, y, z.

The syntax of our meta-terms and meta-formulas is given in figure 5.1. There are
no constructs for terms of sort index other than variables: indices are purely abstract.
For terms of sort timestamp, noted T , we have a constant init which represents the
beginning of the execution, and a predecessor operation pred. We also assume some
set of action symbols for describing the possible actions of a protocol, each one coming
with an index arity: an action symbol a of arity k describes one kind of action of the
protocol, whose instances a[i1, . . . , ik] are timestamps.

Example 5.4. In listing 5.1, we have an unbounded number of copies tag(i,j) of the
tag role: intuitively, i corresponds to the identity of the tag and j identifies a session.
Each copy can perform a single action, identified by the timestamp aT [i, j]. For the reader
we would have two actions: aR[j, i] corresponding to when reader(j) successfully finds
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T := τ | init | a[i1, . . . , ik] | pred(T )

t := x | n[i1, . . . , ik] | f[i1, . . . , ik](t1, . . . , tn)
| input@T | output@T | frame@T
| if φ then t else t′

| find~i suchthat φ in t else t′

A := t = t′ | i = i′ | T = T ′ | T ≤ T ′ | cond@T | exec@T

φ := A | > | ⊥ | φ ∧ φ′ | φ ∨ φ′ | φ⇒ φ′ | ¬φ | ∀i.φ | ∃i.φ | ∀τ.φ | ∃τ.φ

Figure 5.1: Syntax of meta-terms and meta-formulas

some i and outputs ok, and aR1[j] when no such i is found.

Meta-terms of sort message extend terms of the base logic with indexed name and
function symbols. We treat conditionals as a special construct, and also consider a more
general find construct which allows to search for suitable indices among an unspecified
but finite domain. Finally, we consider macros input@T , output@T and frame@T which
will represent the input, output and frame at some point T of the protocol’s execution.

Finally, meta-formulas are first-order formulas where quantification is only allowed
over sorts index and timestamp. Atoms may be equalities over meta-terms or inequalities
over timestamps. We also include two macros: cond@T stands for the executability
condition of the action at T , and exec@T is the conjunction of all such conditions until
T .

Example 5.5. The following meta-formula expresses a simple authentication property
for the Basic Hash protocol:

∀i.∀j. cond@aR[j, i]⇒
(
∃j′. aT [i, j′] < aR[j, i] ∧

fst(input@aR[j, i]) = fst(output@aT [i, j′]) ∧
snd(input@aR[j, i]) = snd(output@aT [i, j′])

)
The semantics of our meta-terms and formulas can only be defined wrt. some pro-

tocol. A protocol P must be defined by specifying, for each action symbol a, an action
a[~i].(φ, o) where φ is a meta-formula specifying the executability condition of the action
and o is a meta-term of sort message specifying the output of the action. These actions
must also be equipped with a partial order < indicating their dependencies. Moreover,
each action a[~i].(φ, o) may only mention its dependent actions: the only timestamps
allowed in φ and o are the a′[~j] such that a′[~j] < a[~i], and a[~i] itself when used in
input@a[~i].

Example 5.6. The Basic Hash protocol is modelled by the following three actions, with
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an empty dependency relation:

aT [i, j].
(
>, 〈n[i, j], h(n[i, j], key[i])〉

)
aR[j, i].

(
snd(input@aR[j, i]) = h(fst(input@aR[j, i]), key[i]), ok

)
aR1[j].

(
∀i. snd(input@aR1[j]) 6= h(fst(input@aR1[j]), key[i])

)
, error

)
5.2.2 Semantics

The semantics of a meta-formula will be given by translating it to a base logic term.
This translation will be relative to one possible execution of our protocol, given through
the notion of trace model.

Definition 5.4. A trace model T wrt. some protocol P is a tuple (DI , DT , <T , σI , σT )
such that:

� DI ⊆ N is a finite index domain;

� <T is a total ordering on

DT := {init} ] {a[k1, . . . , kn] | a ∈ A, k1, . . . , kn ∈ DI}

which respects the dependency ordering < of P , and such that init is minimal;

� σI : I → DI and σT : T → DT are mappings that interpret index and timestamp
variables as elements of their respective domains.

In other words, a trace model fixes a finite set of indices, which induces a finite set
of concrete actions a[n1, . . . , nk] for ni ∈ DI . The trace model also fixes an interleaving
of these concrete actions. A suffix of this interleaving is usually clearly not executable:
for example, with the Basic Hash protocol, we are forced to schedule both aR[n,m] and
aR1[n] even though they can never both execute. This is not an issue: what matters is
that any possible execution is represented as the prefix of the interleaving of some trace
model.

Given a protocol P , a trace model T = (DI , DT , <T , σI , σT ) and a meta-term t,
we can define the translation (t)TP , which is a base logic term over a signature which
depends on the index domain DI . We notably have:

(n[~i])TP
def
= nσI(i1),...,σI(ik)

(f [~i](t1, . . . , tn))TP
def
= fσI(i1),...,σI(ik)

(
(t1)TP , . . . , (tn)TP

)
Conditionals are translated to conditionals, and find is translated as a sequence of nested
conditionals, enumerating all possible tuples over DI . The output and frame macros are
translated using the protocol definitions, and (input@T )TP = att((frame@pred(T ))TP).

We finally define the translation (φ)TP of a meta-formula. It is obtained by encoding
quantifiers as boolean combinations:

(∀i.φ)TP
def
=

•
∧k∈DI (φ)

T{i 7→k}
P

(∀τ.φ)TP
def
=

•
∧v∈DT (φ)

T{τ 7→v}
P
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We proceed similarly for existential quantifiers. Boolean connectives are translated to
their dotted counterparts. Atoms over messages (t = t′)TP are translated into (t)TP

•
=

(t′)TP . Finally, atoms over indices and timestamps can be fully interpreted in T and are
translated to true or false.

Example 5.7. Consider a trace model for the Basic Hash protocol P defined as explained
above, and fix DI = {1, 2}. In other words, there are only two identities and at most
two sessions per identiy. The acceptance condition of the reader is

(cond@aR[j, i])TP
def
= snd(x)

•
= h(fst(x), key1)

•
∨ snd(x)

•
= h(fst(x), key2)

where x = att((frame@pred(aR[j, i]))TP).

Our translation allows to define a notion of validity for meta-formulas, which intu-
itively means that the formula is true with overwhelming probability for any trace model
and for any computational interpretation.

Definition 5.5. A meta-formula φ is valid wrt. some protocol P when, for any trace
model T, the base logic formula (φ)TP ∼ true is valid.

We similarly define the validity of φ wrt. a class of computational models. For
instance, the meta-formula of example 5.5 expressing an authentication property for
the Basic Hash protocol is valid wrt. the class of models where h satisfies the EUF-
CMA assumption. This means that, for any execution trace of the protocol, and for
any computational interpretation of the primitives such that h is EUF-CMA, a PPTIME
attacker has a negligible probability of fooling a reader along this particular execution
trace. This is equivalent to saying that, for any bound b, and for any computational
interpretation of the primitives such that h is EUF-CMA, a PPTIME attacker has a
negligible probability of fooling a reader when interacting with the protocol for b actions
at most. The security guarantees expressed as validity may be called parametric : for
any fixed bound, the protocol is secure if used within the bound. It is weaker than a true
unbounded guarantee, where one would want attackers to have a negligible probability
of success, whatever the (necessarily polynomial) number of actions that they execute.

5.2.3 Equivalences

Consider two protocols P and P ′ over the same partially-ordered set of actions. In other
words, we assume a single set of action symbols A, a single partial order < over them,
but two sets of action descriptions PA and P ′A. Note that the notion of trace models
only depends on (A, <), so our two protocols have the same trace models. We say that
P and P ′ are equivalent when, for any trace model T, the following base logic formula
is valid3:

(frame@τ)TP ∼ (frame@τ)TP ′

In other words, we ask that for any trace the attacker cannot distinguish whether
it is interacting, along that trace, with P or P ′. This is properly encoded thanks to
our detailed notion of frame: our frames inform the attacker about the executability of

3As before, this notion of equivalence only brings parametric security guarantees.
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the protocol, and provide him with the protocol’s outputs in that case. Concretely, the
precise definition of our translation for the frame macro is such that following meta-
formula is valid:

τ 6= init⇒
frame@τ = 〈exec@τ, 〈if exec@τ then output@τ else empty, frame@pred(τ)〉〉

It is important to note that our notion of equivalence treats actions as observables.
This requires users to pay attention to how processes are written and translated to
actions. Indeed, it is often the case that protocol equivalences rely on the inability for
the attacker to observe whether some conditional has executed successfully or not; this
is not compatible with the transformation of process-level conditionals into two distinct
actions, as shown in example 5.4. In such cases, a process-level conditional should be
pushed at the level of messages: e.g., if φ then out(c, u) else out(c, v) would be
changed into out(c, if φ then u else v). A similar transformation is used when proving
the unlinkability of the Basic Hash protocol, to hide from the adversary the index that
is found by a reader: thanks to a suitable modification of the process we obtain actions
aR[j] instead of aR[j, i].

5.2.4 Proof systems

We now define some proof systems for deriving valid judgments in our meta-logic.

Reachability properties

For reachability properties, we consider sequents of the form Γ `P φ where Γ is a
multiset of formulas and φ is a meta-formula. Such a sequent is said to be valid when
the meta-formula

∧
Γ⇒ φ is valid with respect to the protocol P .

Conveniently, all rules of the classical first-order sequent calculus are sound for our
reachability sequents. We also have rules expressing various sound axioms regarding
timestamps and actions, shown in figure 5.2, as well as an induction principle over
timestamps. We also show in figure 5.3 some rules which are sound wrt. computational
models where ⊕ is interpreted as the exclusive or. Finally, some inference rules are
derived from the base logic axioms expressing cryptographic assumptions. This requires
to verify the side conditions of axioms schemes on meta-terms and formulas, taking into
account all possible expansions of our macros during the translation to the base logic.
Such a lifting is formally defined in our submitted paper, and we only illustrate it here
on simple examples.

The base logic has axioms ¬(t = n) for any ground term t in which n does not
occur. This can be lifted to a sequent calculus rule of the form

Γ, . . . ` φ
Γ, t = n[~i] ` φ

where the ellipsis is replaced by a formula expressing that n[~i] must occur in t, possibly
through macro expansions. In practice, if t contains an input macro and n is used in the
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NameIndep
n 6= m

Γ, n[~i] = m[~j] ` φ

NameEq
Γ, i1 = j1, . . . , ik = jk ` φ

Γ, n[i1, . . . , ik] = n[j1, . . . , jk] ` φ

ActDep
a[~j] < b[~i]

Γ, b[~i] ≤ a[~j] ` φ

ActIndep
a 6= b

Γ, a[~i] = b[~j] ` φ

ActEq
Γ, i1 = j1, . . . , ik = jk ` φ

Γ, a[i1, . . . , ik] = b[j1, . . . , jk] ` φ

Exec
Γ, ∀τ ′ ≤ τ.cond@τ ′ ` φ

Γ, exec@τ ` φ

Init

Γ, τ 6= init ∧ τ ≤ pred(τ) ` φ

Pred
Γ, τ ′ = pred(τ) ∨ τ ′ = τ ` φ

Γ, pred(τ) ≤ τ ′ ≤ τ ` φ

Figure 5.2: Some rules of our sequent calculus for reachability.

⊕-Nil

Γ ` t⊕ t = 0

⊕-Sym

Γ ` t⊕ t′ = t′ ⊕ t

⊕-Assoc

Γ ` t⊕ (t′ ⊕ t′′) = (t⊕ t′)⊕ t′′

Figure 5.3: Some XOR rules of our sequent calculus for reachability.

output of some action a, our formula will cover the possibility that a has been previously
executed.

We proceed similarly for the EUF-CMA axiom. The base logic axiom informally
states that, if u = h(v, k) holds, then it must be that v = v′ for some subterm h(v′, k)
of u and v. When lifting this axiom to our meta-logic sequent calculus, we obtain a
rule which performs a case analysis on all potential subterms h( , k), notably considering
past outputs containing subterms of this form.

Equivalence properties

For equivalence judgments, we consider sequents of the form ~u1 ∼ ~v1, . . . , ~un ∼ ~vn `P,P ′

~u ∼ ~v. We say that such a sequent is valid when, for any T, the following base logic
formula is valid:

(~u1)TP ∼ (~v1)TP ′ ⇒ . . .⇒ (~un)TP ∼ (~vn)TP ′ ⇒ (~u)TP ∼ (~v)TP ′

We show in figure 5.4 some rules of our sequent calculus for equivalences, which are
sound wrt. all computational models. We omit to specify the protocols P ,P ′ in sequents
when they are the same in all judgments of a rule. Note that the two rules where this is
not the case, i.e. Equiv-Term and Equiv-Form, make use of a reachability sequent
to justify some rewriting in an equivalence sequent.

In addition to these rules we derive, for each cryptographic assumption, a sequent-
calculus rule that is sound wrt. the corresponding class of models. Our full calculus
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Refl
~u is macro-free

∆ ` ~u ∼ ~u

Enrich
∆ ` ~u, ξ ∼ ~v, ξ′

∆ ` ~u ∼ ~v

Dup
∆ ` ~u, ξ ∼ ~v, ξ′

∆ ` ~u, ξ, ξ ∼ ~v, ξ′, ξ′
Axiom

∆, ~u ∼ ~v ` ~u ∼ ~v

FA
∆ ` ~u, t1, . . . , tn ∼ ~v, t′1, . . . , t′n

∆ ` ~u, f[~i](t1, . . . , tn) ∼ ~v, f[~i](t′1, . . . , t′n)

FA-♦
∆ ` ~u, φ, φ′ ∼ ~v, ψ, ψ′

∆ ` ~u, φ♦φ′ ∼ ~v, ψ♦ψ′
where ♦ ∈ {∧,∨,⇒}

Equiv-Term
`P t = t′ ∆ `P,P ′ ~u{t 7→ t′} ∼ ~v

∆ `P,P ′ ~u ∼ ~v

Equiv-Form
`P φ⇔ φ′ ∆ `P,P ′ ~u{φ 7→ φ′} ∼ ~v

∆ `P,P ′ ~u ∼ ~v

Induction
∆ `

(
~u ∼ ~v

)
{τ 7→ init}{

∆,
(
~u ∼ ~v

)
{τ 7→ pred(a[~i])} `

(
~u ∼ ~v

)
{τ 7→ a[~i]}

}
a∈A,~i 6∈fv(∆,~u,~v)

∆ ` ~u ∼ ~v
τ 6∈ fv(∆)

Figure 5.4: Generic inference rules for equivalences

comprises rules expressing the PRF assumption for hash functions, the decisional Diffie-
Hellman assumption, key privacy, IND-CCA1 as well as a rule expressing the information-
hiding feature of the exclusive or.

5.3 Squirrel

We have developed a proof assistant for our meta-logic, called Squirrel. It is a standalone
system, implemented in OCaml, and weighs about 12 000 lines of code. It can be used
interactively in Emacs through ProofGeneral.

As shown in listing 5.1, Squirrel allows users to specify protocols using a variant of
the applied pi-calculus. This specification is then automatically translated to a protocol
definition as a partially ordered set of actions. A bi-process can also be used to specify
at once two systems over the same set of actions, suitable for equivalence verification.

Cryptographic assumptions are, so far, implicit in symbol declarations. For example,
“hash h” declares a symbol h with index arity 0 and assumes that it satisfies the PRF
assumption. Tactics for collision resistance, unforgeability and pseudo-randomness are
then made available for this symbol. Additional assumptions may be made by specifying
axioms; two examples are given in figure 5.5.

Once the system has been properly defined in this way, Squirrel allows users to
establish proofs of reachability and equivalence properties for the declared protocols. In
each case, proofs are interactively constructed using tactics and tactic combinators, as
is now common in proof assistants. Most elementary tactics slightly elaborate on the
rules of our sequents calculi. We have also implemented two elementary tactics that
encapsulate basic automated reasoning:
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abstract tag1 : message

abstract tag2 : message

axiom tags_neq : tag1 6= tag2

Listing 5.2: Declarations made when verifying protocols where tags are used to distin-
guish messages.

abstract plus : message → message → message

axiom length :

forall (m1:message, m2:message) len(〈 m1,m2〉) = plus(len(m1),len(m2))

Listing 5.3: Declarations from the proof of anonymity of the Private Authentication
protocol, in order to be able to use CCA1 tactic as expected.

Figure 5.5: Example declarations with axioms.

goal wa_R :

forall (j:index),

cond@R(j) ⇒
(exists (i,k:index), T(i,k) < R(j) &&

fst(output@T(i,k)) = fst(input@R(j)) &&

snd(output@T(i,k)) = snd(input@R(j))).

Proof.

intros. (* introduce forall and implication *)

expand cond@R(j,i). (* expand cond macro *)

euf M0. (* apply EUF to the obtained formula *)

exists j1. (* conclude using index introduced by euf *)

Qed.

Listing 5.4: Proof of authentication for the Basic Hash protocol.

� The constraints tactics implements a complete decision procedure for the sat-
isfiability of a conjunction of atoms over indices and timestamps. It is used to
discharge reachability sequents which can be proved sound based on the presence
of such atoms.

� The congruence tactic deals with message equalities, performing a congruence
closure modulo equations expressing the primitives’ functionalities, and the equa-
tional theory of exclusive or.

We combine basic proof search with these automatic tactics to obtain a goal simplifi-
cation tactic simpl, which is applied by default to all new subgoals. In practice, this is
often sufficient to limit user interactions to the essential cases of a proof, as is the case
e.g. in the proof shown in listing 5.4.

Proofs of protocol equivalences are generally longer than for reachability properties.
They are generally performed by an immediate induction over the considered time. For
each action, one then has to shown the indistinguishability between the translations
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Protocol LoC Assumptions Security properties

Basic Hash [BCH10] 100 Prf,Euf-cma Auth. & Unlink.

Hash Lock [JW09] 130 Prf,Euf-cma Auth. & Unlink.

LAK with pairs [HBD19] 250 Prf,Euf-cma Auth. & Unlink.

MW [MW04b] 300 Prf,Euf-cma,Xor Auth. & Unlink.

Feldhofer [FDW04] 250 Cca1,Euf-cma Auth. & Unlink.

Private Authentication [Aba02] 60 Cca1,Euf-cma,Enc-kp Anonymity

Signed DDH [II19] 150 Euf-cma,Ddh Auth. & Strong Secrecy

Additional case studies, using the composition framework from [CJS20]

Signed DDH [II19] 200 Euf-cma,Ddh Auth. & Strong Secrecy

SSH (with forwarding agent) [YL] 750 Euf-cma,Ddh Auth. & Strong Secrecy

Table 5.1: Case Studies

of frame@a[~i] corresponding to the two protocols, assuming that the same holds for
pred(a[~i]). In order to conclude using this induction hypothesis, one has to get rid of
the last items of the frame, i.e. exec@a[~i] and if exec@a[~i] then output@a[~i] else empty.
This is done using the various tactics at our disposal. Non-trivial execution conditions are
typically handled by changing them into so-called honest meta-formulas which intuitively
express high-level property of the execution trace, which can be computed by the attacker
without referring to protocol-specific information — a typical honest meta-formula is the
right hand-side of the implication of the previous authentication property. Once exec
has been replaced with the same honest formula on both sides of the equivalence, they
can be removed thanks to a special tactic which derives from the base logic axioms FA
and Dup. This proof methodology has allowed us to develop proofs of unlinkability
for various protocols leveraging well-authentication properties, which are usually easily
proved — although this is not an application of the theorems from our earlier work on
sufficient conditions for unlinkability, it takes direct inspiration from it.

We show in table 5.1 a summary of our main case studies. We have proved (au-
thentication and) anonymity of the Private Authentication protocol [Aba02], providing
a mechanized and parametric version of the proof of Bana and Comon [BC14]. We have
also proved (authentication and) strong secrecy for the signed DDH key exchange [II19],
again providing a parametric proof of security for unbounded sessions. For this protocol,
as well as for the SSH protocol [YL], we have also obtained true unbounded security
guarantees through a mechanized proof of a single session using weaker axioms, thanks
to a recent composition result [CJS20] that we discuss in more detail below.

We have also established unlinkability for several protocols, using the identity-generic
unlinkability notion of definition 3.2 expressed as a diff-equivalence. In addition to pro-
viding (parametric) computational guarantees, these case studies bring several improve-
ments over our earlier work on reader-generic unlinkability. We have seen that the diff-
equivalence notions of Proverif and Tamarin are too restrictive to be able to conclude in
that case. Our notion of equivalence provides the necessary flexibility, by decoupling the
handling of the database from the representation of the process execution. We could
also prove, with no added difficulty, the MW protocol which relies on exclusive or and
could not be handled using Tamarin even with interactive guidance.
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5.4 Discussion

We have proposed a new method to obtain parametric proofs of security in the com-
putational model. Starting with the Bana-Comon logic for indistinguishability, we have
proposed a meta-logic which allows to describe arbitrary protocol executions, and for
which we have derived rich proof systems for reachability and equivalence properties.
We have implemented this meta-logic in a new proof assistant, called Squirrel, and
demonstrated that proofs in our framework can be concise and natural thanks to basic
automated reasoning. We discuss next some related work, before presenting directions
for future developments of our project.

5.4.1 Related work in the symbolic model

Before discussing our approach in the context of computational proofs, it is actually in-
teresting to relate it to verification techniques for the symbolic model. These techniques
have several advantages. The most obvious ones are a high degree of automation and
the ability to discover attacks: indeed, a failure to prove some property in our approach
does not immediately yield an attack; it only encourages the user to critically think about
the protocol, understand what missing axiom would allow to complete the proof, and
perhaps discover an attack on the protocol when this axiom is not satisfied.

Our approach has a number of advantages over verification in symbolic models.
First and obviously, we provide stronger guarantees: even though our computational
guarantees are only parametric, this is already stronger than unbounded guarantees in
the symbolic model. Second, our approach is modular: enriching the model with more
primitives and axioms never breaks a proof, unlike in the symbolic model. Third, we
inherit a nice feature of the Bana-Comon logic: in order to obtain proofs in this framework
one has to clearly state (as axioms) which assumptions are made on cryptographic
primitives to achieve the desired security property. It is often the case that some of
these assumptions are actually discovered in the process of searching for a proof. In
contrast, the symbolic model does not allow to finely express the range of possible
cryptographic assumptions, and the standard symbolic models of cryptographic primitives
often hides implicit cryptographic assumptions (see, e.g. [Jac+19] on signatures). There
are also some less fundamental but practically important differences, for instance in our
more flexible notion of diff-equivalence, and the much easier handling of protocols using
exclusive or.

Despite all these differences, proofs in Squirrel have interesting similarities with proofs
in Tamarin. Both provers proceed by backwards analysis: this is explicit in Tamarin’s
search for counter-example traces; in our case, the backwards reachability analysis is
induced by the use of inference rules such as the one reflecting the EUF-CMA crypto-
graphic assumption. As a result, the two provers do not rely on an enumeration of totally
ordered traces. Instead, each subgoal of a proof assumes that some partially ordered
subset of actions has been executed. We finally note that deeper similarities are found
in some recent work on signatures in Tamarin [Jac+19]. This work explores alternative
modelling techniques for signatures, in order to avoid implicit assumptions. Interestingly,
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it considers an approach which gives up on the Dolev-Yao style of specifying attacker
capabilities, and proposes instead to use axioms (restrictions in Tamarin terminology)
expressing what the attacker cannot achieve.

5.4.2 Related work in the computational model

Several mature tools already exist for proving protocols in the computational model.
The interested reader may find an extensive discussion in [Bar+19]. We focus here on
the most relevant comparisons.

Cryptoverif. Cryptoverif [Bla06] mechanizes the cryptographer’s standard proof tech-
nique of game hopping. It is highly automated, and can discover sequences of transfor-
mations from one game to another, but protocol proofs are often obtained by providing
the tools with hints on which transformations to apply. Its language is more precise than
our meta-logic, notably allowing to distinguish between messages of various sizes, and it
supports a very large range of cryptographic assumptions, allowing fine-grained protocol
analyses. Moreover, Cryptoverif provides concrete security guarantees, i.e. it derives
bounds on the attacker’s advantage, whereas our approach only provides asymptotic
guarantees.

We have translated some of our case studies to Cryptoverif for a practical comparison
of the tools’ abilities. Since Cryptoverif supports protocol specifications in the applied pi-
calculus, our models could be immediately translated. With the help of Bruno Blanchet,
we have then completed the corresponding proofs in Cryptoverif. The resulting scripts
are significantly simpler, thanks to the high level of automation of the tool.

A key difference between Cryptoverif and Squirrel is that the former proceeds by
transforming games, while the latter proceeds by transforming meta-terms corresponding
to a particular execution of the protocol under study. As a result, it would be very difficult
to extend Cryptoverif with support for mutable states (used e.g. to model the memory
cells of RFID tags) while our approach extends naturally to incorporate this notion — we
are already working on this extension, which is partially supported in the current version
of Squirrel.

Easycrypt. Easycrypt [Bar+11] is built on a general-purpose probabilistic relational
Hoare logic which can be used to formalize most pen-and-paper cryptographic proofs.
It makes use of SMT solvers to provide some level of automation. Like Cryptoverif, it
allows very precise descriptions of the type of messages, primitives and cryptographic
assumptions, and it also provides concrete security guarantees. Being based on a sequen-
tial programming language, Easycrypt is best suited for proving properties of primitives
(e.g. SHA-3 [Alm+19b]) and APIs (e.g. AWS key management [Alm+19a]). It is also
possible to prove protocols in Easycrypt (e.g. the TLS handshake [Bha+14]) but the
representation of concurrent processes as (nested) modules can be tedious. As an illus-
tration, we have carried out our Basic Hash unlinkability case study in Easycrypt: both
the specification and proof scripts are about ten times longer in the Easycrypt version.
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We note that frameworks on top of Easycrypt, such as EasyUC [CSV19], could help to
develop proofs of such systems in the future.

CCSA proofs in Coq. In [Ban+20], Bana et al. describe how the Bana-Comon logic
and axioms can be encoded in Coq, thus obtaining a minimal proof assistant for the
logic — note that they do not define the semantics of the Bana-Comon logic in Coq, nor
define the soundness of its proof system. They demonstrate this system on some simple
examples, proving indistinguishabilities for fixed numbers of sessions. The authors are
currently working on a more general encoding, still using Coq, that will enable parametric
proofs.

Their approach is very close in spirit to ours: they use the Coq language as a meta-
language over the Bana-Comon logic. Using a mature theorem prover might bring some
facilities for notations, automations, and perhaps domain-specific reasoning e.g. over
natural numbers. On the other hand, the custom approach that we follow with Squirrel
provides more flexibility to define tactics, but also a simpler interface that is specifically
tailored for the needs of protocol verification.

5.4.3 Future work

In order to confirm that Squirrel has its place next to other verification systems in the
computational model, we will have to consider more complex and varied case studies,
and we will have to find a way of providing truly unbounded rather than parametric
security guarantees.

Richer and more precise modelling

A natural target in the near future might be to mechanize the parametric proof of unlink-
ability for the modified AKA protocol of [Kou19b], though it would be more satisfying
to obtain first-time proofs for unmodified protocols, e.g. in the domain of e-voting or
secure messenging. Such case studies will require to enrich our approach and make our
prover more usable, as discussed next.

In order to handle more applications, we will have to enrich our notion of protocol, and
the applied pi-calculus variant used as frontend language. We are already working on the
addition of states. There is no conceptual difficulty: states can be incorporated into the
semantics of protocols, and macros can be added to reason about their values over time.
However, proofs quickly become unmanageable without some support to make it easy to
reason over states, e.g. to express that only some specific actions can modify some state.
Automatically generating and proving dedicated lemmas might provide a solution. Going
much further in this direction, one might consider proving implementations of protocols
as imperative programs. In a different direction, one could consider the addition of time
constraints in protocols, to analyze distance-bounding protocols.

More automation will obviously be needed to tackle these more complex applications.
The approach based on our constraints and congruence tactics has worked well on
our first set of case studies. However, these two procedures only communicate in a poor



5.4. DISCUSSION 85

way, unlike the decision procedures that cooperate with SMT solvers. It might be useful
to re-use techniques from the SMT community to obtain a more robust and scalable
automation. A more direct solution might simply be to discharge proof obligations in
first-order logic to SMT solvers, as is done in Easycrypt — note that this is possible
because, although we are not working within classical first-order logic, the theorems of
classical first-order logic are also theorems in our reachability meta-logic.

In order to support more applications, we will also have to support more primitives
and cryptographic assumptions. We are currently lacking several classic assumptions,
including IND-CPA, INT-CTXT, PRP. . . but applications such as electronic voting would
also require support for blind signatures, commitments, and associated cryptographic
assumptions. Most of these assumptions have already been translated to axioms in the
Bana-Comon logic, but it remains to lift them to our meta-logic. We now have an
established framework for doing so, which will certainly ease the handling of many new
axioms, but difficult cases might arise. In general, the challenge is to be able to express
the lifting of side conditions in our meta-logic; when doing so we allow ourselves to
over-approximate the side conditions, but over-approximating too much may result in
inapplicable tactics. Simply put, we are facing a general challenge in designing meta-
languages: they have to be simple enough to ease specification and reasoning, but rich
enough to express all required properties. Time will tell if our language strikes a good
balance for an interesting class of applications.

Unbounded verification

Currently, our approach only provides parametric security guarantees. Lifting this limi-
tation is our main theoretical challenge, which may be tackled in two different ways.

First, theoretical results could be devised to derive unbounded guarantees from para-
metric (or bounded) guarantees. One such result already exists, and has been used in
our case studies. In [CJS20], it is shown that the security of one session of a protocol
with specifically weakened axioms implies its unbounded security. The main idea behind
this technique is to focus on one session and treat the other sessions as an oracle which
gives more power to the adversary, hence weakening the axioms expressing cryptographic
assumptions. The SSH case study of table 5.1 is actually performed in the framework
of that paper, which allows to conclude that this protocol is secure for truly unbounded
sessions. More examples of this kind will have to be developed to better understand
the generality of this approach. Ultimately, the method should also be mechanized, by
synthesizing automatically from a process with unbounded sessions the single-session
process and oracles.

Second, it might be possible to analyze proofs in our meta-logic to derive a concrete
bound on the attacker’s advantage, and conclude that unbounded security holds when
this bound does not depend on the length of the trace. In our case studies, most
authentication properties are proved by only considering a few actions, so that we can
clearly conclude in this way that unbounded security holds. However, proofs by induction
over timestamps would not necessarily allow this kind of analysis to succeed. In practice,
almost all of our observational equivalence proofs are by induction, and we know that
reachability proofs for protocols with state will routinely require inductions. We will thus
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need ways to precisely analyze the attacker’s advantage in proofs by induction.

The Squirrel prover is, in our opinion, an appealing proposition for a simple approach
to protocol verification with strong computational guarantees. Proving this thesis will
require to address many challenges, and we welcome the perspective of spending years
of research on this project.

Avoir une idée, c’est une espèce de fête.

Gilles Deleuze, 1987
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equivalence decision: negative tests and non-determinism”. In: Proceedings
of the 18th ACM Conference on Computer and Communications Security,
CCS 2011, Chicago, Illinois, USA, October 17-21, 2011. Ed. by Yan Chen,
George Danezis, and Vitaly Shmatikov. ACM, 2011, pp. 321–330. doi:
10.1145/2046707.2046744. url: https://doi.org/10.1145/20467
07.2046744.

https://doi.org/10.1007/978-3-642-28869-2\_6
https://doi.org/10.1007/978-3-642-28869-2\_6
https://doi.org/10.1007/978-3-642-28869-2%5C_6
https://doi.org/10.1007/978-3-642-28869-2%5C_6
http://projects.lsv.ens-cachan.fr/APTE/
http://projects.lsv.ens-cachan.fr/APTE/
https://doi.org/10.1007/978-3-642-54862-8\_50
https://doi.org/10.1007/978-3-642-54862-8%5C_50
https://doi.org/10.1007/978-3-642-54862-8%5C_50
https://doi.org/10.1145/2046707.2046744
https://doi.org/10.1145/2046707.2046744
https://doi.org/10.1145/2046707.2046744


92 REFERENCES
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