Provably secure compilation of side-channel countermeasures

Gilles Barthe
Benjamin Grégoire
Vincent Laporte

2018-02-07

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07

0/29

Introduction

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 1/29

Side-channels

“Computers are made of stuff”

Running a program:

» requires power, time, etc.
» produces heat, light, sound, etc.
> leaves traces (memory cache, branch predictor, etc.) v \

All these “side-channels” carry information about what is going on inside the machine.

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 2/29

Side-channel attacks

Power Analysis

Example: modular exponentiation (r

r=1;

for(i = base - 1; 0 <= i; --i) {

r = r’ mod p;

if(k>>i)&1)r=

Vincent LAPORTE et alii

(r * x) mod p;

01--01--000

Him

(Kocher et al.,

= gk (mod p)), as found in RSA

0001-- -001--0 1--1-- 1-- 0 1--0 0 1--

T

“Introduction to differential power analysis”, 2011)

Provably secure compilation of side-channel countermeasures 2018-02-07

3

Side-channel attacks

Cache attacks
Cache memory is shared among concurrent processes.

Many attacks, e.g..:

» Percival, 2005, against RSA in OpenSSL

» Osvik, Shamir, Tromer, 2006, against AES

> Gras, Rasavi, et al., 2017, against ASLR

» Kocher et al., 2018, against OS-level isolation
> ...

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 4/29

Constant-time programming

Software-based defense against side-channel attacks:

» control-flow (loop, if conditions)
» memory accesses (array indices)

should not depend on secret (sensitive) values.

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures

2018-02-07

5/29

Problem

» Do compilers preserve or break the constant-time property?
» Can a secure program be written in a high-level language?

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 6/29

Counter-example A: emulation of conditional-move

Before

int cmove(int x, int y, bool b) {
return x + (y - x) * b;

}

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 7129

Counter-example A: emulation of conditional-move

Before

int cmove(int x, int y, bool b) {
return x + (y - x) * b;

!
After

int cmove(int x, int y, bool b) {
if (b) {
return y;
}else {
return x;
}
}

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 7129

Counter-example B: double-word multiplication

Before

long long limul(long long x, long long y) {
return x * y;

}

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 8/29

Counter-example B: double-word multiplication

Before

long long limul(long long x, long long y) {
return x * y;

!
After

long long limul(long long x, long long y) {
long a = High(x);
long ¢ = High(y);
if a] o) {
A
}else {
return Low(x) * Low(y);
}
}

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 8/29

Counter-example I': tabulation

Before

char rot13(char x) {
return 'a’' + ((x - 'a' + 13) % 26);

}

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 9/29

Counter-example I': tabulation

Before
char rot13(char x) {
return 'a’' + ((x - 'a' + 13) % 26);
}
After

char rot13(char x) {
static char table[26] = "nopqrstuvwxyzabcdefghijklm?;
return table[x - 'a'];

}

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 9/29

Contributions

» Which compiler passes do preserve constant-time?
» How to convince you that a compiler preserves constant-time?
Theorem (Constant-time preserving compiler)

compile(p) = p’ — constant-time(p) — constant-time(p’).

» Machine-checked proofs using Coq

» Tractable proofs

> A generic framework

» Illustrative instantiations on example languages and compilation passes

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07

10/ 29

Compiler correctness a la Coq

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 11/29

Language semantics

> A type for programs

> A type for execution states

> An initial state for every program and every valuation of the input parameters
> Result extraction from final states

> A small-step execution (deterministic) relation between states (- — -)

Program behavior: set of input-result pairs related by —*:

input — s, — s; — ... — s — result

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 12/29

Proof technique: simulation diagrams

Given a relation ~ between source and target execution states,
if initial states (for the same input values) are in relation
if related final states yield the same result

If the following diagram holds
a——hH

«
2

o@—f
then the compiler is correct

(moreover, the ~ relation is a relational invariant of any two related executions).

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 13/29

Example: While language with arrays

Syntax:

> eux=n|x|ale]|eoe

> cu=x=c¢cl|ale]=e|ifecc|loopced
Semantics:

> State: {C, p}

» Evaluation of expressions in an environment: [¢] 0

» Execution step, depending on the first instruction:
»{z=e;¢p}—{Cplx +[e],]}
» {ifec, éy;¢ pt—{¢;ép} where i is 1 if [e] , is true, 2 otherwise
» {loop ¢; e éy;¢ pt—{cpsife (éysloop ¢y ecy) €56, p}

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 14 /29

Example: constant-folding

> Replace constant sub-expressions by their values, e.g.:
> 1+2—3
» 0xe—0
» Simulation relation: { ¢;, p; } & { &, py } when:
> C, is the compilation of ¢;
> P2 =Py

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 15/29

Constant-time, formally

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 16 /29

Instrumented semantics

4
Decorate the small-step relation with a leakage: & >b

The leakage includes:

» Program counter (number of steps, direction of branches)
» Memory addresses, array offsets
» ... anything you want, to model various adversaries

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 17/29

A relational property

Definition (Constant-time)

For every two execution prefixes

y 2 ly

g ———— = Sg———»=S]——» 59

A R R /
ISy =S 5,

the leakages agree whenever the inputs agree:

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07

18/ 29

Example: leakage of the while language

Evaluation of expressions:

> access to array cells
> values of dividend (second arguments of divisions)

Execution of instructions:

> leakage of the evaluated expressions
> written array cells
» boolean values of branching conditions

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures

2018-02-07

19/29

Remark

Leakage preservation entails constant-time preservation.

Corollary: focus on compilation passes which do not preserve leakage.

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 20/29

CT-simulations

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 21/29

Lockstep CT-simulation

» Each target step is related by the simulation proof to a source step.
> Use this relation to justify that the target leakage is benign.
» Take two instances of the simulation diagram with equal source leakage;

and prove that target leakages are equal:

a/—t>b/

Q

e
~
=

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07

22/29

Lockstep CT-simulation

» Each target step is related by the simulation proof to a source step.

> Use this relation to justify that the target leakage is benign.

» Take two instances of the simulation diagram with equal source leakage;
and prove that target leakages are equal:

a/—t>b/

Q

~ T

Y

o —>

Use relations = between states to link the two executions.

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07

22/29

Example: constant folding

» May remove leakage: “0 x t[i]” — “0”
» Synchronized executions (=): the command is the same in both states.
» Equality of source leakages implies:

1. equality of target leakages;
2. both source executions stay synchronized;
3. both target executions stay synchronized.

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 23/29

Many-steps simulation

> Some compilation passes require a more general simulation diagram

a—»)

Y

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 24/29

Many-steps simulation

> Some compilation passes require a more general simulation diagram

a——» p a——»)
d +/5 O,/ +5 +B,

> Issue: how to (universally) quantify over instances of this diagram?
» Complying with hypotheses and conclusions is not enough

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07

24/29

Many-steps simulation

> Some compilation passes require a more general simulation diagram

a——) a—— =}
0t —y

> Issue: how to (universally) quantify over instances of this diagram?
» Complying with hypotheses and conclusions is not enough

» Explicitly state the number of target steps: use a function “n = num-steps(a, a)”

and prove the simulation diagram for this number of steps

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07

24/29

Many-steps CT-simulation

» The 2-diagram then generalizes to many-steps:

a’—>t b
Va4

K

> NB: also works for n, n” = 0 (the size of the source state needs to strictly decrease)

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 25/29

Example: constant-propagation

1. Analysis: what variables have a statically known value
2. Simplify expressions, as in constant folding, using the analysis result
3. Remove (some) trivial branches (depending on heuristics), e.g.:

> iflecy ey =0y

» loopc, 0cy — ¢4

Correctness:
> Need to remember the analysis results (e.g., with annotations in the program)
Constant-time preservation:

> Need to remember which branches are simplified (with similar annotations)

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07

26/29

More examples

Variable spilling

Expression flattening

Loop peeling

Pull common instructions out of branches
Swap independent instructions
Linearization

vVvVvyVvyVvyy

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 27129

More examples

Variable spilling

Expression flattening

Loop peeling

Pull common instructions out of branches
Swap independent instructions
Linearization

vVvVvyyVwvyy

v

Good news: constant-time is preserved

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 27129

Conclusion

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 28/29

Summary

» A main theorem to easily build constant-time preservation proofs on top of semantics
preservation proofs

» A handful of illustrative examples

» All proved using the Coq proof assistant

» Constant-time preservation proofs are generally easier that correctness proofs

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 29/29

Summary

» A main theorem to easily build constant-time preservation proofs on top of semantics
preservation proofs

» A handful of illustrative examples

» All proved using the Coq proof assistant

» Constant-time preservation proofs are generally easier that correctness proofs

Thanks!

Vincent LAPORTE et alii Provably secure compilation of side-channel countermeasures 2018-02-07 29/29

	Introduction
	Compiler correctness à la Coq
	Constant-time, formally
	CT-simulations
	Conclusion

