
IDE
Software Engineering Project Description

Alice Rixte, Kévin Le Run

September 2016

1 General description

This project aims to design an IDE (Integrated Development Environment) for
OCaml and possibly other languages. The goal is to organize the code in a dif-
ferent way than the conventional file structure. The functions and classes should
be arranged in an intuitive way so as to facilitate software design. However the
creation and design of the text editor is not within the scope of this project.

Browser The browser allows navigation through classes and functions in the
same way than file browsers. With a function selected, the user can edit its
implementation, its documentation, its tags, or its test functions and add
categories within modules. The user should also be able to interactively
run the function or its tests in isolation.

Function/Method finder Allows finding functions by name, by documenta-
tion keywords and by tags. Also allows finding functions by giving an
example of the expected inputs and outputs (through the help of a sim-
ple language). As an example, giving 3 and 4 as inputs and asking for
a function returning 7 could yield a function computing the addition of
integers.

Dependency graph Allows the user to see the code structure through a graph
of class and module dependency.

Import/Export Allows the user to switch between this IDE and a conven-
tional project structure. It analyses the .ml files to extract the code
structure. This feature has to be implement in a way such that if sev-
eral persons are working on the same projects, one can choose to use its
favorite text editor.

Language Plugins Allows adding more language support to the IDE with ex-
tensions that can be implemented separately from the main program, so
that plugins can be produced by the community. It should be able to
change the terminology of code structure (modules-¿packages, methods-
¿functions) and the hierarchy while still preserving the file-system-like

1



browsing and search features. It should redefine import and export fea-
tures to accommodate to the new language.

2 Detailed objectives

α Define a model abstracting the structure of any programming language

α Graphical User Interface (GUI)

α Saving, loading, exiting

α Browsing the structure

α Basic import/export

α Basic research

α External text editor integration

β Language plugins (with at least a Java plugin)

β Advanced research

β Advanced import/export

β Interactive function execution

β Compiler integration

β Interactive testing system (run tests only on selected modules and func-
tions)

?? Dependency graph

?? Debugger integration

?? Documentation generation

3 Comments

// This is a comment

2


