RGSep

Viktor Vafeiadis

Coarse-grain locking

:

11]

13|

A

Fine-grain locking (pessimistic)

2‘ »3“ »5“ »7“ »11“ »13“

One lock per node:
— Traversals acquire locks in a “hand over hand” fashion.
— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2‘ »3“ »5“ »7“ »11“ »13“

One lock per node:
— Traversals acquire locks in a “hand over hand” fashion.
— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

h2] EB“ 150 I o T K1

One lock per node:
— Traversals acquire locks in a “hand over hand” fashion.
— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2 | és“ s[5 7] o]

One lock per node:
— Traversals acquire locks in a “hand over hand” fashion.
— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2| éﬂl_ éfﬂ“ I I T o K1

One lock per node:
— Traversals acquire locks in a “hand over hand” fashion.
— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

Al=H é5“ =K =E

One lock per node:
— Traversals acquire locks in a “hand over hand” fashion.
— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2| -{s] éﬂl_ *é?“ K I

One lock per node:
— Traversals acquire locks in a “hand over hand” fashion.
— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (pessimistic)

2| s s é?“ =

One lock per node:
— Traversals acquire locks in a “hand over hand” fashion.
— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.

Fine-grain locking (optimistic)

Jz_“ Lo s 17

Fine-grain locking (optimistic)

:

11]

13|

E? |

Fine-grain locking (optimistic)

JZ_“ B B *é?“ K I

Re-traverse the list OR perform deletions in two steps

Leaks memory: cannot dispose deleted nodes.

Actions (pessimistic algorithm)

L ock

Unlock

Add node

Delete node

IZ

|:—> “

e

|:EIZ

Ownership transfer

Add node [_’ “

C Node becomes shared

Delete node éJ@\%“::?JI_ + é“ —{ |
N

Node becomes local)

Local and shared state

Pessimistic algorithm

Shared : “ —>] 3 “

|_ocal

Add node g_l —> — éle :7J|_

Local and shared state

Pessimistic algorithm

Shared 2 Pl 5 7 el el
6

Add node g_l —> — éle :7J|_

Local and shared state

Pessimistic algorithm

Shared 2 Pl 5 7 el el
6

| ock > =) |:—>

Local and shared state

Pessimistic algorithm

Shared : “ —>] 3 “

| ock > =) |:—>

Local and shared state

Pessimistic algorithm

Shared : “ —>] 3 “

Delete node QJFE:?J_ — éJ —{]
N

Local and shared state

Pessimistic algorithm

Shared 2 “ —> S “ |:
A

L.ocal uﬂ
Al

Delete node QJFE:?J_ — éJ —{]
N

Local and shared state

Pessimistic algorithm

Shared 2 “ —> S “ |:
A

L.ocal uﬂ

Local and shared state

Pessimistic algorithm

Actions (optimistic algorithm)

L ock

Unlock

Add node

Delete node

IZ

f-

e

Local and shared state

Optimistic algorithm

Shared [2] 1{z]]

Delete node QJFE:?J o QJLE%JL
| A

Local and shared state

Optimistic algorithm

Shared 2]l sl ol [f>{n] -l

Delete node QJFE:?J
A
A

Interference: other threads

:

g am

11]

13|

_E? |

10

Interference: other threads

:

g am

_E? |

11‘ ‘|3|_

10

Interference: other threads

s

am

_E? |

11‘ ‘|3|_

10

Interference: other threads

s

11‘ ‘|3|_

10

Stability

l

Lock

Unlock

11

Stability

l

Add node

Delete node

—{]

11

Assertions

P, Q,R, .. — separation logic assertions
p,q,n .. — RGSep assertions
(shared state assertion)
V

P ::=/Fi| Pl[lo=a | pval|pag|ax.p|wvx.p
(local state assertion)

P,) & P()

def
Pll, s) &> P(s)

(o = 9)(,s) <?§f> 314 lo. dom(l1)ndom(l2)=@ A I=l1ulo A p(l1,8) A g(l2,S)

12

Actions

X0,y s~ x> Avy

X~ AVY 5 X~ 0,vy

X = AV,Z
X AVY >
+ 2+~ 0,wW,y
X = A,V,y Vg X > A,V,Z
* Y A,W,Z

X > AV,Y S X = AV,Z
« Yy > AW,Z + Y > AW,z

13

Parallel composition

Cisat (p1, R u G, G1, a1)
Cosat (p2, R u Gi, Ga, qp)

(Cq1 || Co) sat (p1xp2, R, G1 u Go, g1%02)

14

Atomic commands

(P}C{Q)

} C{
Csat (P, R, G, Q

| ocal commands

(P2, Qo) € G
(Py+ P2} C{Q1 Qo)

(atomic C)sat (P1 #|P2 « F

2, G, Q1 =

p,q stable under R
(atomic C) sat (p, @, G, q)

(atomic C)sat (p, R, G, q)

Qo « F

15

Stability

— Local state assertions are trivially stable

— Shared state assertions:

S| is stable under (P, Q)

if and only if
P®5 Qs> S

(P -®9) () &< 3h’. dom(h)ndom(h’)=a A P(h’) A S(h u h’)

16

Some further topics

Tool support:
— Symbolic execution with stabilization
— Action inference

— Linearization point inference (SmallfootRG & Cave)

Deny-guarantee & concurrent abstract predicates:
— Make interference specs first class

— Logical/abstract separation

17

