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Coarse-grain locking
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Fine-grain locking (pessimistic)
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One lock per node:
— Traversals acquire locks in a “hand over hand” fashion.
— If node is locked, we can add a node after it.

— If two adjacent nodes are locked, we can delete the second.
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One lock per node:
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— If two adjacent nodes are locked, we can delete the second.




Fine-grain locking (pessimistic)

2| s s é?“ =

One lock per node:
— Traversals acquire locks in a “hand over hand” fashion.
— If node is locked, we can add a node after it.
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Fine-grain locking (optimistic)
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Fine-grain locking (optimistic)
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Fine-grain locking (optimistic)
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Re-traverse the list OR perform deletions in two steps

Leaks memory: cannot dispose deleted nodes.




Actions (pessimistic algorithm)
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Ownership transfer

Add node [_’ “
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Local and shared state

Pessimistic algorithm
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Local and shared state

Pessimistic algorithm
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Local and shared state
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Local and shared state
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Local and shared state

Pessimistic algorithm
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Local and shared state

Pessimistic algorithm
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Local and shared state
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Local and shared state
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Actions (optimistic algorithm)
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Local and shared state

Optimistic algorithm

Shared  [2] 1{z]]

Delete node QJFE:?J o QJLE%JL
| A




Local and shared state

Optimistic algorithm
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Interference: other threads
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Interference: other threads
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Stability
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Lock

Unlock
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Stability
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Assertions

P, Q,R, .. — separation logic assertions
p,q,n .. — RGSep assertions
(shared state assertion)
V

P ::=/Fi| Pl[lo=a | pval|pag|ax.p|wvx.p
( local state assertion )

P, ) & P()

def
Pll, s) &> P(s)

(o = 9)(,s) <?§f> 314 lo. dom(l1)ndom(l2)=@ A I=l1ulo A p(l1,8) A g(l2,S)
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Actions

X0,y s~ x> Avy

X~ AVY 5 X~ 0,vy

X = AV,Z
X AVY >
+ 2+~ 0,wW,y
X = A,V,y Vg X > A,V,Z
* Y A,W,Z

X > AV,Y S X = AV,Z
« Yy > AW,Z + Y > AW,z
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Parallel composition

Cisat (p1, R u G, G1, a1)
Cosat (p2, R u Gi, Ga, qp)

(Cq1 || Co) sat (p1xp2, R, G1 u Go, g1%02)
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Atomic commands

(P}C{Q)

} C{
Csat (P, R, G, Q

| ocal commands

(P2, Qo) € G
(Py+ P2} C{Q1 Qo)

(atomic C)sat (P1 #|P2 « F

2, G, Q1 =

p,q stable under R
(atomic C) sat (p, @, G, q)

(atomic C)sat (p, R, G, q)

Qo « F
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Stability

— Local state assertions are trivially stable

— Shared state assertions:

S| is stable under (P, Q)

if and only if
P®5 Qs> S

(P -®9) () &< 3h’. dom(h)ndom(h’)=a A P(h’) A S(h u h’)
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Some further topics

Tool support:
— Symbolic execution with stabilization
— Action inference

— Linearization point inference (SmallfootRG & Cave)

Deny-guarantee & concurrent abstract predicates:
— Make interference specs first class

— Logical/abstract separation
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