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Deduction system for standard primitives

Assume we only have pairs and asymmetric encryption, with projections
and decryption being destructors.

n
u v
〈u, v〉

〈u, v〉
u

〈u, v〉
v

u
pub(u)

u v
aenc(u, v)

aenc(u, pub(v)) v
u

Terminology: composition and decomposition rules.

Lemma
Let Φ be a frame and u be a message.

Φ ` u iff u can be deduced from img(Φ) using the above rulesa.
aWithout any rule introducing names in bn(Φ).
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Intruder detection

Problem
Given Φ and u, does S ` u ?

Theorem
For the standard primitives, the intruder detection problem is in PTIME.
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Deducibility constraints

Definition
A deducibility constraint system is either ⊥ or a (possibly empty)
conjunction of deducibility constraints of the form

T1 `? u1 ∧ . . . ∧ Tn `? un
such that

T1 ⊆ T2 ⊆ . . . ⊆ Tn (monotonicity)
for every i , fv(Ti ) ⊆ fv(u1, . . . , ui−1) (origination)

Definition
The substitution σ is a solution of C = T1 `? u1 ∧ . . . ∧ Tn `? un
when Tiσ ` uiσ for all i and img(σ) ⊆ Tc(N ).
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Example: Needham-Schroeder

S1 := 〈ski , pub(ska), pub(skb)〉, aenc(〈pub(ska), na〉, pub(ski ))
S1 `? x

S2 := S1, aenc(〈xna, nb〉, xa)
S2 `? aenc(〈na, xnb〉, pub(ska))

S3 := S2, aenc(xnb, pub(ski ))
S3 `? aenc(nb, pub(skb))

S4 := S3, senc(secret, nb) and xa = pub(ska)
S4 `? secret
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Constraint resolution

Solved form
A system is solved if it is of the form

T1 `? x1 ∧ . . . ∧ Tn `? xn

Proposition
If C is solved, then it admits a solution.

Theorem
There exists a terminating relation  such that for any C and θ,
θ ∈ Sol(C) iff there is C  ∗σ C′ solved and θ = σθ′ for some θ′ ∈ Sol(C′).
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Simplification of constraint systems

Here systems are considered modulo AC of ∧.

(R1) C ∧ T `? u  C if T ∪ {x | (T ′ `? x) ∈ C,T ′ ( T} ` u

(R2) C ∧ T `? u  σ Cσ ∧ Tσ `? uσ
if σ = mgu(t, u), t ∈ st(T ), t 6= u, and t, u 6∈ X

(R3) C ∧ T `? u  σ Cσ ∧ Tσ `? uσ
if σ = mgu(t1, t2), t1, t2 ∈ st(T ), t1 6= t2

(R4) C ∧ T `? u  ⊥ if fv(T ∪ {u}) = ∅,T 6` u

(Rf ) C ∧ T `? f (u1, . . . , un)  C ∧
∧

i T `? ui for f ∈ Σc

(Rpub) C  C[x := pub(x)] if aenc(t, x) ∈ T for some (T `? u) ∈ C
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Examples of simplifications

1 senc(n, k) `? senc(x , k)

2 senc(senc(t1, k), k) `? senc(x , k) (two opportunities for R2)

3 S `? x ∧ S, n `? y ∧ S, n, senc(m, senc(x , k)), senc(y , k) `? m

4 S `? x ∧ S `? 〈x , x〉

5 n `? x ∧ n `? senc(x , k)
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Constraint simplification proof (1)

Proposition (Validity)
If C is a deducibility constraint system, and C  σ C′, then C′ is a
deducibility constraint system.

Proposition (Soundness)
If C  σ C′ and θ ∈ Sol(C′) then σθ ∈ Sol(C).

Proposition (Termination)
Simplifications are terminating, as shown by the termination measure
(v(C), p(C), s(C)) where:

v(C) is the number of variables occurring in C;
p(C) is the number of terms of the form aenc(u, x) occurring on the
left of constraints in C;
s(C) is the total size of the right-hand sides of constraints in C.
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Constraint simplification proof (2)

Left-minimality & Simplicity
A derivation Π of Ti ` u is left-minimal if, whenever Tj ` u, Π is also a
derivation of Tj ` u.
A derivation is simple it is non-repeating
and all its subderivations are left-minimal.

Proposition
If Ti ` u, then it has a simple derivation.

Lemma
Let C =

∧
j Tj `? uj be a constraint system, θ ∈ Sol(C),

and i be such that uj ∈ X for all j < i .
If Tiθ ` u with a simple derivation starting with an axiom or a
decomposition, then there is t ∈ subterm(Ti ) \ X such that tθ = u.
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Constraint simplification proof (3)

Lemma
Let C =

∧
j Tj `? uj , σ ∈ Sol(C).

Let i be a minimal index such that ui 6∈ X .
Assume that:

Ti does not contain two subterms t1 6= t2 such that t1σ = t2σ;
Ti does not contain any subterm of the form aenc(t, x);
ui is a non-variable subterm of Ti .

Then T ′i ` ui , where T ′i = Ti ∪ {x | (T `? x) ∈ C,T ( Ti}.

Proposition (Completeness)
If C is unsolved and θ ∈ Sol(C), there is C  σ C′ and θ′ ∈ Sol(C′)
such that θ = σθ′.
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Concluding remarks

Improvements
A complete strategy can yield a polynomial bound,
hence a small attack property
Equalities and disequalities may be added
Several variants and extensions may be considered: sk instead of pub,
signatures, xor, etc.

We have not answered the original question yet!
Symbolic semantics, (dis)equality constraints
The enumeration of all interleavings is too naive

Complexity
Deciding whether a system has a solution is NP-hard
Reminder: for a general theory, security is undecidable
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