Symbolic Verification of Cryptographic Protocols Protocol Analysis in the Applied Pi-Calculus

David Baelde

LSV, ENS Paris-Saclay

2018

Deduction system for standard primitives

Assume we only have pairs and asymmetric encryption, with projections and decryption being destructors.

$$\frac{1}{n} \qquad \frac{u \ v}{\langle u, v \rangle} \qquad \frac{\langle u, v \rangle}{u} \qquad \frac{\langle u, v \rangle}{v}$$

Deduction system for standard primitives

Assume we only have pairs and asymmetric encryption, with projections and decryption being destructors.

$$\frac{u}{n} \quad \frac{u}{\langle u, v \rangle} \quad \frac{\langle u, v \rangle}{u} \quad \frac{\langle u, v \rangle}{v}$$

$$\frac{u}{\mathsf{pub}(u)} \quad \frac{u}{\mathsf{aenc}(u, v)} \quad \frac{\mathsf{aenc}(u, \mathsf{pub}(v)) \quad v}{u}$$

Terminology: composition and decomposition rules.

Deduction system for standard primitives

Assume we only have pairs and asymmetric encryption, with projections and decryption being destructors.

$$\frac{u}{n} \quad \frac{u}{\langle u, v \rangle} \quad \frac{\langle u, v \rangle}{u} \quad \frac{\langle u, v \rangle}{v}$$

$$\frac{u}{\mathsf{pub}(u)} \quad \frac{u}{\mathsf{aenc}(u, v)} \quad \frac{\mathsf{aenc}(u, \mathsf{pub}(v)) \quad v}{u}$$

Terminology: composition and decomposition rules.

Lemma

Let Φ be a frame and u be a message.

 $\Phi \vdash u$ iff u can be deduced from $img(\Phi)$ using the above rules^a.

^aWithout any rule introducing names in $bn(\Phi)$.

Problem

Given Φ and u, does $S \vdash u$?

Theorem

For the standard primitives, the intruder detection problem is in PTIME.

Definition

A deducibility constraint system is either \perp or a (possibly empty) conjunction of deducibility constraints of the form

$$T_1 \vdash u_1 \land \ldots \land T_n \vdash u_n$$

such that

•
$$T_1 \subseteq T_2 \subseteq \ldots \subseteq T_n$$
 (monotonicity)

• for every *i*, $fv(T_i) \subseteq fv(u_1, \ldots, u_{i-1})$ (origination)

Definition

The substitution σ is a solution of $C = T_1 \vdash^? u_1 \land \ldots \land T_n \vdash^? u_n$ when $T_i \sigma \vdash u_i \sigma$ for all *i* and $img(\sigma) \subseteq T_c(\mathcal{N})$.

• $S_1 := \langle sk_i, pub(sk_a), pub(sk_b) \rangle$, $aenc(\langle pub(sk_a), n_a \rangle, pub(sk_i))$ $S_1 \vdash ? x$

• $S_1 := \langle sk_i, pub(sk_a), pub(sk_b) \rangle$, $aenc(\langle pub(sk_a), n_a \rangle, pub(sk_i))$ $S_1 \vdash^? aenc(\langle x_a, x_{na} \rangle, pub(sk_b))$

- $S_1 := \langle sk_i, pub(sk_a), pub(sk_b) \rangle$, $aenc(\langle pub(sk_a), n_a \rangle, pub(sk_i))$ $S_1 \vdash^? aenc(\langle x_a, x_{na} \rangle, pub(sk_b))$
- $S_2 := S_1$, $\operatorname{aenc}(\langle x_{na}, n_b \rangle, x_a)$ $S_2 \vdash^? \operatorname{aenc}(\langle n_a, x_{nb} \rangle, \operatorname{pub}(sk_a))$

- $S_1 := \langle sk_i, pub(sk_a), pub(sk_b) \rangle$, $aenc(\langle pub(sk_a), n_a \rangle, pub(sk_i))$ $S_1 \vdash^? aenc(\langle x_a, x_{na} \rangle, pub(sk_b))$
- $S_2 := S_1$, $\operatorname{aenc}(\langle x_{na}, n_b \rangle, x_a)$ $S_2 \vdash^? \operatorname{aenc}(\langle n_a, x_{nb} \rangle, \operatorname{pub}(sk_a))$
- $S_3 := S_2$, aenc $(x_{nb}, pub(sk_i))$ $S_3 \vdash$? aenc $(n_b, pub(sk_b))$

- $S_1 := \langle sk_i, pub(sk_a), pub(sk_b) \rangle$, $aenc(\langle pub(sk_a), n_a \rangle, pub(sk_i))$ $S_1 \vdash^? aenc(\langle x_a, x_{na} \rangle, pub(sk_b))$
- $S_2 := S_1$, aenc($\langle x_{na}, n_b \rangle, x_a$) $S_2 \vdash^?$ aenc($\langle n_a, x_{nb} \rangle$, pub(sk_a))
- $S_3 := S_2$, aenc $(x_{nb}, pub(sk_i))$ $S_3 \vdash^? aenc<math>(n_b, pub(sk_b))$
- $S_4 := S_3$, senc(secret, n_b) and $x_a = pub(sk_a)$ $S_4 \vdash$? secret

Constraint resolution

Solved form

A system is solved if it is of the form

$$T_1 \vdash^? x_1 \land \ldots \land T_n \vdash^? x_n$$

Proposition

If \mathcal{C} is solved, then it admits a solution.

Constraint resolution

Solved form

A system is solved if it is of the form

$$T_1 \vdash^? x_1 \land \ldots \land T_n \vdash^? x_n$$

Proposition

If C is solved, then it admits a solution.

Theorem

There exists a terminating relation \rightsquigarrow such that for any C and θ , $\theta \in Sol(C)$ iff there is $C \rightsquigarrow_{\sigma}^{*} C'$ solved and $\theta = \sigma \theta'$ for some $\theta' \in Sol(C')$. Here systems are considered modulo AC of $\wedge.$

$$\begin{array}{lll} (R_1) & \mathcal{C} \wedge T \vdash^? u \ \rightsquigarrow \ \mathcal{C} & \text{if } T \cup \{x \mid (T' \vdash^? x) \in \mathcal{C}, T' \subsetneq T\} \vdash u \\ (R_2) & \mathcal{C} \wedge T \vdash^? u \ \rightsquigarrow_{\sigma} \ \mathcal{C} \sigma \wedge T \sigma \vdash^? u \sigma \\ & \text{if } \sigma = \operatorname{mgu}(t, u), t \in \operatorname{st}(T), t \neq u, \text{ and } t, u \notin \mathcal{X} \\ (R_3) & \mathcal{C} \wedge T \vdash^? u \ \rightsquigarrow_{\sigma} \ \mathcal{C} \sigma \wedge T \sigma \vdash^? u \sigma \\ & \text{if } \sigma = \operatorname{mgu}(t_1, t_2), t_1, t_2 \in \operatorname{st}(T), t_1 \neq t_2 \\ (R_4) & \mathcal{C} \wedge T \vdash^? u \ \rightsquigarrow \ \bot & \text{if } \operatorname{fv}(T \cup \{u\}) = \emptyset, T \not\vdash u \\ (R_f) & \mathcal{C} \wedge T \vdash^? f(u_1, \dots, u_n) \ \rightsquigarrow \ \mathcal{C} \wedge \bigwedge_i T \vdash^? u_i & \text{for } f \in \Sigma_c \\ (R_{\operatorname{pub}}) & \mathcal{C} \ \rightsquigarrow \ \mathcal{C}[x := \operatorname{pub}(x)] & \text{if } \operatorname{aenc}(t, x) \in T \text{ for some } (T \vdash^? u) \in \mathcal{C} \end{array}$$

- **1** senc(n, k) ⊢? senc(x, k)
- Senc(senc(t_1, k), k) ⊢? senc(x, k)
 (two opportunities for R_2)
- **③** $S \vdash x \land S, n \vdash y \land S, n, \operatorname{senc}(m, \operatorname{senc}(x, k)), \operatorname{senc}(y, k) \vdash m$
- **⑤** $n \vdash ? x \land n \vdash ? senc(x, k)$

Constraint simplification proof (1)

Proposition (Validity)

If C is a deducibility constraint system, and $C \rightsquigarrow_{\sigma} C'$, then C' is a deducibility constraint system.

Proposition (Validity)

If C is a deducibility constraint system, and $C \rightsquigarrow_{\sigma} C'$, then C' is a deducibility constraint system.

Proposition (Soundness)

If
$$\mathcal{C} \rightsquigarrow_{\sigma} \mathcal{C}'$$
 and $\theta \in \mathsf{Sol}(\mathcal{C}')$ then $\sigma \theta \in \mathsf{Sol}(\mathcal{C})$.

Proposition (Termination)

Simplifications are terminating, as shown by the termination measure (v(C), p(C), s(C)) where:

- v(C) is the number of variables occurring in C;
- p(C) is the number of terms of the form aenc(u, x) occurring on the left of constraints in C;
- s(C) is the total size of the right-hand sides of constraints in C.

Left-minimality & Simplicity

A derivation Π of $T_i \vdash u$ is left-minimal if, whenever $T_j \vdash u$, Π is also a derivation of $T_j \vdash u$.

A derivation is simple it is non-repeating

and all its subderivations are left-minimal.

Proposition

If $T_i \vdash u$, then it has a simple derivation.

Lemma

Let $C = \bigwedge_j T_j \vdash^? u_j$ be a constraint system, $\theta \in Sol(C)$, and *i* be such that $u_j \in \mathcal{X}$ for all j < i. If $T_i \theta \vdash u$ with a simple derivation starting with an axiom or a decomposition, then there is $t \in subterm(T_i) \setminus \mathcal{X}$ such that $t\theta = u$.

Lemma

Let $C = \bigwedge_j T_j \vdash^? u_j$, $\sigma \in Sol(C)$. Let *i* be a minimal index such that $u_i \notin \mathcal{X}$. Assume that:

- T_i does not contain two subterms $t_1 \neq t_2$ such that $t_1\sigma = t_2\sigma$;
- *T_i* does not contain any subterm of the form aenc(*t*, *x*);

• u_i is a non-variable subterm of T_i .

Then $T'_i \vdash u_i$, where $T'_i = T_i \cup \{x \mid (T \vdash^? x) \in \mathcal{C}, T \subsetneq T_i\}$.

Lemma

Let $C = \bigwedge_j T_j \vdash^? u_j$, $\sigma \in Sol(C)$. Let *i* be a minimal index such that $u_i \notin \mathcal{X}$. Assume that:

- T_i does not contain two subterms $t_1 \neq t_2$ such that $t_1 \sigma = t_2 \sigma$;
- *T_i* does not contain any subterm of the form aenc(*t*, *x*);

• u_i is a non-variable subterm of T_i .

Then $T'_i \vdash u_i$, where $T'_i = T_i \cup \{x \mid (T \vdash x) \in \mathcal{C}, T \subsetneq T_i\}$.

Proposition (Completeness)

If C is unsolved and $\theta \in Sol(C)$, there is $C \rightsquigarrow_{\sigma} C'$ and $\theta' \in Sol(C')$ such that $\theta = \sigma \theta'$.

Concluding remarks

Improvements

- A complete strategy can yield a polynomial bound, hence a small attack property
- Equalities and disequalities may be added
- Several variants and extensions may be considered: sk instead of pub, signatures, xor, etc.

We have not answered the original question yet!

- Symbolic semantics, (dis)equality constraints
- The enumeration of all interleavings is too naive

Complexity

- Deciding whether a system has a solution is NP-hard
- Reminder: for a general theory, security is undecidable