
From focussed proof systems to complexity bounds

Anupam Das

École Normale Supérieure de Lyon, France
anupam.das@ens-lyon.fr

Abstract

We conduct a complexity-theoretic study of focussed proof systems, relating the alterna-
tion of synchronous and asynchronous phases in a proof to an appropriate alternating time
hierarchy, for instance the polynomial hierarchy. We propose a notion of ‘over-focussing’
that admits non-branching invertible rules during synchronous phases, due to the fact that
deterministic computations can equally be carried out by a nondeterministic machine. As
an application, we develop an over-focussed system for a fragment of intuitionistic proposi-
tional logic which we show to be already PSPACE-complete by a refinement of Statman’s
translation from true QBFs. We show that this translation has a well-behaved inverse,
preserving quantifier complexity, in the form of a QBF encoding of proof search for the
over-focussed system, demonstrating the usefulness of considering such systems. Con-
sequently we are able to delineate intuitionistic tautologies according to the polynomial
hierarchy and derive further proof-theoretic consequences for intuitionistic logic.

Contents

1 Introduction 2

2 Proof systems as algorithms: an overview 3

2.1 The classical approach: nondeterministic time bounds 3

2.2 Space bounds from proof search . 4

2.3 Invertibility and co-nondeterminism . 5

3 Bridging the time-space gap: the role of focussing 6

3.1 A recap on alternating time hierarchies . 6

3.2 Alternating time bounds from focussed systems . 7

3.3 Scope for improvement? The reason to over-focus . 9

4 Case study: a fragment of IPL 10

4.1 PSPACE-hardness of IPL and some motivations . 10

4.2 A refined translation and the positive Tseitin fragment 11

4.3 An ‘over-focussed’ system for PTPL . 14

4.4 Compatibility of proof search with the refined translation 17

5 Conclusions, further work and remarks 18

5.1 On the evaluation rule . 18

5.2 Lazy polarisation . 19

5.3 Towards a system of invertible rules for IPL . 19

A note on the novel aspects of this work Some parts of this article do not present
genuinely new material; in particular the contents of Section 2 are well-known to many proof
theorists, while Section 3 essentially formalises folklore. The purpose of these sections is to set
the context for the remainder of the article, in particular motivating the results of later sections.

1 Introduction

Focussed proof systems [1, 17] organise the process of bottom-up proof search into ‘synchronous’
and ‘asynchronous’ phases, distinguishing the steps where genuine choices are made from those
where no information is lost. This treatment of proof search has close connections to logic
programming [20] and the Curry-Howard correspondence [11]. The purpose of this article is to
examine the complexity-theoretic aspects of focussed systems.

We may naturally view synchronous phases as nondeterministic computation and asyn-
chronous phases as co-nondeterministic computation, in the proof-search-as-computation
paradigm. Consequently we may use focussed systems to obtain complexity bounds for logics
in terms of alternating time. The main advantage of this approach is the ‘focussing theorem’,
which allows systems to significantly reduce the number of alternations between synchronous
and asynchronous steps in the proof search space. As an analogy, this extends the idea that, for
quantified Boolean formulae (QBF), the quantifier hierarchy tightly delineates the levels of the
polynomial hierarchy; from a proof-theoretic viewpoint this is exemplified by the alternation of
asynchronous and synchronous phases in Boolean Truth Trees [12].

It is not difficult to formalise the bounds obtained from a focussed system. Let us, for
example, consider a logic L that is PSPACE-complete. We can encode a family ‘provability
predicates’ as, say, QBFs parametrised by the decide-depth of the proof search space. Decide-
depth can be calculated in polynomial time, as is implicitly shown in e.g. [22], and so give rises
to an encoding of L into true QBFs (QCPL), with formulae of the same decide-depth mapped
to ones of the same quantifier complexity. We formalise this encoding in Section 3.

However, the bounds obtained by doing this directly can be far from optimal. While there
can always be improvements, there is one particular aspect of focussed systems which does not
adequately preserve the analogy with nondeterministic and co-nondeterministic computation.
In a focussed system invertible rules must be applied during an asynchronous phase, regardless
of whether they are branching or non-branching. However, a non-branching invertible rule
corresponds to deterministic computation, and so does not contribute to overall complexity if
we are in a synchronous phase. For the sake of example, consider the class of formulae of some
system provable by only non-branching rules, regardless of whether they are invertible or not.
If the search space has depth d and lines of size w, then clearly this class is in NTIME(wd).
However the decide-depth of focussed proofs would grow linearly in the number of alternations
between invertible and non-invertible rules, and so the analogy with alternating complexity
breaks down.

In fact we can go further than this and extend the focussing methodology itself: if we are
in a synchronous phase in bottom-up proof search and reach a connective whose corresponding
rule is invertible and non-branching, then we may apply the rule but keep a focus on one
of its auxiliary formulae. This can be proved using usual rule permutation arguments. We
give an example of such a system, which we call an ‘over-focussed’ system, for a fragment of
intuitionistic propositional logic, in Section 4.

The general observation that bipoles in focussed systems sometimes commute also underlies
the development of ‘multi-focussed’ proof systems [6]. However those systems allow more proofs,
since each uni-focussed proof is also a multi-focussed proof. In particular this means that we
cannot obtain better bounds for proof search from such systems, since their search space is
strictly larger. On the other hand, an over-focussed system is more restrictive and admits fewer
proofs, and so is better suited for complexity-theoretic analysis.

A motivational application In Section 4 we apply the aforementioned ideas to a concrete
case study. It is well known that QCPL can be encoded into intuitionistic propositional logic
(IPL), due to Statman [26], and so IPL is PSPACE-hard. One way to show the converse,
PSPACE-membership, is to simply encode IPL back into QCPL. This is most naturally carried
out by encoding the Kripke relational semantics of IPL as QBFs, however the composition of
the two translations, QCPL → IPL → QCPL, does not preserve quantifier complexity. In fact,
as far as the author knows, there is no ‘natural’ such translation in the literature and this seems
to be related to various open problems in the area [12]. Phrased otherwise, how can we classify
intuitionistic formulae according to the polynomial hierarchy? To address this question we will
develop an over-focussed system for a fragment of IPL that we show to be already PSPACE-
complete, by a refinement of Statman’s translation. We further show that the natural encoding
of proof search for this system as QBFs composes with the refined translation to, indeed,
preserve quantifier complexity, as we wanted. This has further consequences on the proof theory
of IPL, due to known analogous results for QCPL, and we discuss this further in Subsection 4.1
and Section 5.

Acknowledgments

I would like to thank David Baelde and Roy Dyckhoff for several enlightening discussions on
various aspects of this work.

2 Proof systems as algorithms: an overview

In this section we will survey how proof systems can be used to obtain nondeterministic time
and space bounds for logics, and even co-nondeterministic bounds, and give various examples.
All the observations and results in this section are well-known and commonly used, or folklore.
We write them here to set the context of this work and also, as a minor contribution, to serve as
a brief introduction to proving complexity and decidability results for logics via proof systems.

Before we begin, let us make clear the logics and proofs we are considering. We will only
consider logics that are P-hard, to avoid trivial results, and systems that are specified by some
finite set of rules and axioms. Proofs are built up from substitution instances of these rules as
directed acyclic graphs in the usual way. We will speak of ‘lines of a proof’ to refer to the nodes
of these graphs, e.g. formulae, sequents etc. When it is convenient we will assume these graphs
are trees, as is common in proof theory, although most of the results are independent of this
choice. We use the metavariable L to vary over logics (construed as the set of their theorems)
and the metavariable P for proof systems.

2.1 The classical approach: nondeterministic time bounds

In its purest form, a complete proof system is simply a nondeterministic procedure for a logic:
if τ ∈ L and P is complete for L then we can nondeterministically ‘guess’ a P -proof of τ . While
this only implies semi-decidability of L, the classical duality of proof theory and model theory
yields the fundamental decidability result of mathematical logic:

Proposition 1. If L has a complete proof system and the finite model property, it is decidable.

This is, for instance, how it was first proved that full affine linear logic is decidable [15].1

1It was only recently, via automaton-theoretic methods, that its precise complexity was identified as Tower-
complete [16].

More down-to-earth, in computational logic we typically deal with logics which are known to
be decidable, and so a proof system gives a bound to its nondeterministic complexity:

Proposition 2. If each τ ∈ L has a proof of size at most s(|τ |), then L ∈ NTIME(s).

For instance, this allows us to deduce that multiplicative linear logic MLL, generated by the
rules below, is in NP.

` a, a⊥
` Γ, A,B

` Γ, A ∨B
` Γ, A ` ∆, B

` Γ,∆, A⊗B

Clearly, the sum of the number of connectives in the premisses of a rule is strictly less than
in the conclusion, so any proof will have size quadratic in its conclusion. We can also infer,
from the coNP-completeness of classical propositional logic CPL, one direction of the famous
Cook-Reckhow theorem:

Corollary 3 ([8]). If there is proof system for CPL which admits a polynomial-size proof for
each tautology, then coNP = NP.

This observation has given rise to the now substantial field of proof complexity [7].

2.2 Space bounds from proof search

We may also naturally extract space bounds from proof systems. These are naturally nondeter-
ministic bounds, but we can infer deterministic space bounds by appealing to Savitch’s theorem
[25].2

Proposition 4. If each τ ∈ L has a proof with lines of size ≤ w(|τ |) and depth ≤ d(|τ |), then
L ∈ SPACE(wd).

For example, Buss and Iemhoff have proved a O(n2) upper bound to the least depth of an
LJ -proof of an intuitionistic propositional tautology of size n [4],3 yielding a simple proof that
IPL is in PSPACE. However, perhaps the most interesting way to bound proof search is by
consideration of the entire ‘space’ of proofs, not just the shortest paths.

Definition 5 (Proof search space). The immediate substructure relation between lines of a
proof is defined as follows: S � S′ if there is a rule instance with conclusion S′ and some
premiss S. The proof search space is the (directed) graph of �. The proof search space of a
line S is the search space restricted to elements that reach S.

Notice that the proof search space may be cyclic.

Proposition 6. If the search space of a system has lines with size bounded by some function
w, then its logic is in SPACE(exp(w)).

Proof sketch. Proceed by loop-checking. There are only exponentially many lines of size ≤ w
so a loop must be found after this many steps. The algorithm needs only store the current
branch in memory, hence the exp(w) space bound.

2 In fact, it is not hard to see that this ‘determinisation’ of can often be conducted in-line in the proof search
procedure.

3Incidentally, O(n2) is the best possible bound, as Buss and Iemhoff observed: there are propositional
intuitionistic theorems which require quadratic depth to prove in LJ .

In fact, for many analytic systems, one can arrive at an improved bound:

Proposition 7. If a sequent system satisfies the subformula property and admits contraction
and weakening then its logic is in PSPACE.

Proof sketch. Again proceed by loop-checking, but store all subformulae encountered during
proof search in the current sequent, by contraction. Validity is preserved by weakening. Read
bottom-up, sequents now accumulate subformulas, of which there are linearly many, and so a
loop is always found in linear time.

From this it is immediate that IPL and the modal logics K and S4 are in PSPACE, by
the cut-elimination results for LJ , GK and GS4 respectively [23]. In fact, this is essentially
how Heuerding, Seyfried and Zimmerman arrived at their proof of PSPACE-membership for
various fragments of intuitionistic and modal logic [13].

2.3 Invertibility and co-nondeterminism

While classical proof theory is concerned with nondeterministic time and space bounds, the
modern evolution of structural proof theory has allowed the extraction of more fine-grained
bounds. A particularly important instance of this is the extraction of co-nondeterministic time
bounds, via systems of invertible rules.

Since cyclic proof search spaces naturally induce algorithms of bounded space complexity, let
us now focus on search spaces that are acyclic. In particular this means that we are considering
systems without contraction.

Definition 8. A rule is (weakly) invertible if the validity of its conclusion implies the validity
of each of its premisses, i.e. its inverse is admissible.

Proposition 9. If a system of invertible rules has a search space with depth bounded by a
function d and lines with size bounded by a function w, its logic is in coNTIME(wd).

For example, consider the following G3c sytem which is sound and complete for CPL [21]:

` Γ, a, ā

` Γ, A,B

` Γ, A ∨B
` Γ, A ` Γ, B

` Γ, A ∧B
(1)

Each rule instance has fewer connectives in each premiss than in its conclusion, and so the
search space has both lines and depth bounded by the size of the conclusion. Consequently we
arrive at a direct proof-theoretic proof that CPL ∈ coNP.

This result also means that no terminating system of invertible rules can be optimal, in
the sense of search complexity, for a logic that does not have a decision problem complete for
some co-nondeterministic time class, unless, say, the exponential-time hypothesis fails [14]. Of
course, this does not mean that it is not interesting for proof theorists to find terminating
systems of invertible rules for logics, since this is often a tradeoff worth making. For instance,
Brünnler and Lange did manage to find a system of invertible rules for LTL, which is PSPACE-
complete [3]. Unsurprisingly, the depth of proof search there is exponential and so yields only
a coNEXP bound, but for many practical applications and theoretical investigations this can
be a useful property. A more simple example is the system for QCPL, also PSPACE-complete,
that extends the G3c system in (1) above by the following invertible rules:

` Γ, A(a)

` Γ,∀x.A(x)

` Γ, A(0), A(1)

` Γ,∃x.A

The source of complexity here lies in the ∃-rule, which means that the proof search space has
exponential depth and lines of exponential size, yielding again a coNEXP procedure.

As noted by Dyckhoff in [9], it is an open problem whether, in the same vein, a terminating
system of invertible rules exists for IPL. One of the motivations behind the work we present in
Section 4 is to make some progress on this via more fine-grained translations between QCPL
and IPL, admitting the possibility of mimicking directly the proof-theoretic behaviour of the
calculus above in an appropriate system for IPL.

3 Bridging the time-space gap: the role of focussing

As we have seen, non-invertible and invertible rules play a somewhat dual role in proof systems,
exemplified by the nondeterministic and co-nondeterministic bounds they induce. In recent
years proof theorists have turned their efforts towards understanding the interactions between
the two phenomena, giving rise to the notion of a focussed proof system, where such rules are
separated into ‘synchronous’ and ‘asynchronous phases [1, 17]. Such analysis naturally yields
complexity bounds in alternating time hierarchies, which live in between a matching time and
space class, thus bridging the gap between the bounds covered in the previous section.

We will now present a general high-level methodology for extracting such bounds from
focussed systems, before continuing to a concrete case study in the next section.

3.1 A recap on alternating time hierarchies

In this section we will briefly and informally recap alternating time hierarchies in computational
complexity. A full and formal exposition can be found in usual textbooks, e.g. [24]. We will
assume basic familiarity with deterministic and nondeterministic Turing machines and their
time and space complexities.

A co-nondeterministic algorithm for a language L is simply a nondeterministic algorithm for
the complement language L̄. A machine with an oracle L is a Turing machine equipped with
the ability to query whether a string is in L in constant time. For a class of Turing machines
C we write CL for the same class with access to oracles from L. All notions of time and space
complexity remain the same.

Definition 10. Let F be a class of functions N→ N. The F -hierarchy is defined as follows:

• ΣF
0 = ΠF

0 = TIME(F).

• ΣF
i+1 = NTIME(F)ΣF

i .

• ΠF
i+1 = coNTIME(F)ΣF

i .

We write FH to denote the union of all the classes above, for i ∈ N. When F = poly, the class
of polynomials, we simply write PH for polyH and write Σp

i and Πp
i for its levels.

As usual, we can see these more intuitively from the viewpoint of alternating Turing machines
with a bounded number of alternations.

Proposition 11 (Essentially from [5]). We have the following characterisations:

1. ΣF
i is the set of languages recognised by a predicate ∃~x1.∀~x2 . . . Q~xi.A, for A ∈ TIME(F).

2. ΠF
i is the set of languages recognised by a predicate ∀~x1.∃~x2 . . . Q~xi.A, for A ∈ TIME(F).

We typically consider such expressions over a formal language that is complete for
TIME(F), with quantifiers ranging over its elements. In the most common case, the poly-
nomial hierarchy, we rely on the well-known correspondence between quantifier alternation in
QBFs and the levels of PH.

3.2 Alternating time bounds from focussed systems

From the point of view of complexity (amongst other reasons), the most important aspect of
focussed systems is the ‘focussing theorem’, which allows us to organise the proof search space a
way that significantly reduces the alternation between invertible and non-invertible rules. It says
that, during bottom-up proof search, once a non-invertible rule has been applied, simplifying a
certain principal formula, we may without loss of completeness continue simplifying its auxiliary
formula until it no longer admits a non-invertible simplification. It is this optimisation that
makes it pertinent at all to use focussed systems in order to extract alternating time bounds.
Clearly such a strong property is not uniformly available for all proof systems, and so certain
design features must be present. In this section we will assume some familiarity with focussing,
although the next section presents a variation of a focussed system with no such prerequisite.
The discussion here is, like the previous section, somewhat informal.

We will consider an arbitrary focussed system F which, for the purpose of this work, we
will assume satisfies the following further properties, which are more-or-less standard:

1. F has explicit decide and release rules which, in bottom-up proof search, mark the begin-
ning of synchronous and asynchronous phases respectively.

2. The ‘contraction’ rules of F (i.e. any rule which, bottom-up, increases the size of a line)
are restricted to synchronous formulae (e.g. within a decide rule).

3. Non-invertible branching rules are context-splitting, i.e. the sum of the sizes of premisses
of a rule instance is bound by the size of its conclusion.

We insist on 3 so that, during a synchronous phase, we can remain within a nondeterministic
computation for proof search, simply splitting the work into two parallel threads, not requiring
us to introduce an extraneous universal quantifier.

Encoding proof search as an alternating predicate The simplest way to extract an
alternating time bound is to consider the synthetic version of a focussed system, where there is
just a single synchronous rule and a single asynchronous rule. For this we need to distinguish
‘synchronous’ and ‘asynchronous’ versions of the substructure relation from Definition 5.

Recall that a structure (i.e. a line of a focussed proof) is positive if all its formulae are
synchronous, i.e. only non-invertible rules apply in bottom-up proof search, for which we will
use the metavariable P . Otherwise it is negative and we will use the metavariable N .

Definition 12 (Restricted substructure relations). The synchronous immediate substructure
relation �

s
is the restriction of � to focussed lines. The asynchronous immediate substructure

relation �
a

is the restriction of � to unfocussed lines.

We will employ usual annotations of these arrows from rewriting theory, in particular using
an overset ∗ for reflexive transitive closure, and an overset = for reflexive closure.

Definition 13 (Provability predicate). The Πk provability predicate for a line S is defined as,

∀P1
∗
�
a
S. ∃ ~N2

∗
�
s
~P1 . . . Q~Sk

∗
�
x
~Sk−1. init(Sk)

where:

• Q is ∀ or ∃, x is a or s, and ~Sk−1 and ~Sk are ~Pk−1 and ~Nk or ~Nk−1 and ~Pk, as appropriate;

• init(S) is the predicate “S is a correct initial line of F”.

The Σk provability predicate is defined similarly, beginning with an existential quantifier
instead of a universal.

Now let us recall the usual notions of depth for a focussed system.

Definition 14 (Decide and release depth). The decide depth of a line S, written dd(S) is the
maximum number of decide rule instances in a path of its search space. The release depth,
rd(S), is defined analogously.

Of course, dd and rd only ever differ by at most 1, but it is useful to have both notions
rather than explicitly dealing with each situation. We can now state the correctness of the
provability predicate.

Proposition 15. We have the following:

1. The Πk provability predicate accepts provable lines N such that dd(S) + rd(S) < k.

2. The Σk provability predicate accepts provable lines P such that dd(S) + rd(S) ≤ k.

Proof sketch. Follows from the completeness of the focussed system F .

Finally we can use this to obtain bounds on the complexity of the provability predicates
from bounds on the size of lines in F .

Theorem 16. Suppose the lines of F have size bounded by a function w. Then the Πk (or Σk)

provability predicate can be computed in Π
exp(w)
k (or Σ

exp(w)
k , respectively).

If F is furthermore contraction-free, i.e. line size decreases bottom-up, then the Πk (or Σk)
provability predicate can be computed in Πp

k (or Σp
k, respectively).

Proof sketch. Each expression ∀~Pi
∗
�
a
~Ni+1 is equivalent to an expression ∀~S1 �

a
~Ni+1. ∀~S2

=
�
a

~S1 . . . ∀~Pi
=
�
a
Sn, where n = w(|S|), each Si

j varies over sequents of size ≤ w(|S|), and each

tuple ~Si has length wi. This relies on the conventions 2 and 3, and we can similarly ‘expand’
existential quantifiers in this way. Finally every atomic predicate (�

a
, �

s
, = and init) can

easily be checked in time polyomial in w(|S|).
If F is contraction-free then the proof is the same except we need only insist that the tuples

~Si have length w, which we can assume to be linear by contraction-freeness.

In fact, notice that the use of dd and rd is somewhat non-optimal, in the sense that, for
example, the Πk provability predicate accepts also those lines S which simply have some proof
whose decide depth and release depth have sum ≤ k. However, the advantage of using the
decide and release depths of the entire search space of S is that we can efficiently calculate
such values, as exemplified in [22]. Consequently, we can use the theorem above to arrive at an
encoding of formulae from a logic L into a quantified language that can express the provability
predicates of a focussed system for L. In particular we have the following:

Corollary 17 (Encoding as QBF). If F is contraction-free then the provability predicates for
F induce a polynomial-time encoding of its logic into QCPL.

3.3 Scope for improvement? The reason to over-focus

Until now we have more-or-less formalised well-known intuitions about the algorithmics of proof
search in focussed systems from a complexity-theoretic point of view. However it is at this point
that we remark upon a particular shortcoming of the framework: the synchronous-asynchronous
dichotomy in focussing makes no allowance for deterministic computation. This corresponds
to invertible non-branching rules and does not contribute to alternation complexity in proof
search, whether in an asynchronous or synchronous phase.

Here is an example of the issue we are highlighting. Consider the following encoding in IPL
of a SAT instance A over variables ~x,

A0 := A
Ai+1 := (Ai ⊃ ai) ⊃ ((xi ⊃ ai) ∨ (¬xi ⊃ ai))

where the variables ai are fresh. (Notice that A ∈ SAT if and only if An+1 ∈ IPL.4)
Let us consider a proof in the usual focussed system LJF for IPL, using the notation of [19],

of An+1, built up inductively:5

IH

±xn ⇑ · ` An ⇑ ·
Rr

±xn ` An ⇓ · ⇓ an ` an
±xn ⇓ An ⊃ an ` an

Dl

An ⊃ an,±xn ⇑ · ` · ⇑ an
Sl,Sr

An ⊃ an ⇑ ±xn ` an ⇑ ·
An ⊃ an ⇑ · ` (±xn ⊃ an) ⇑ ·

Rr

An ⊃ an ` (±xn ⊃ an) ⇓
An ⊃ an ` (xn ⊃ an) ∨ (¬xn ⊃ an) ⇓

Dr

An ⊃ an ⇑ · ` · ⇑ (xn ⊃ an) ∨ (¬xn ⊃ an)
Sl,Sr

· ⇑ An ⊃ an ` (xn ⊃ an) ∨ (¬xn ⊃ an) ⇑ ·
· ⇑ · ` (An ⊃ an) ⊃ ((xn ⊃ an) ∨ (¬xn ⊃ an) ⇑ ·

Notice that the only proofs have the format above and their decide and release depth increase
linearly with the number of variables in A. By the results in the previous section this yields
only a Σp

2k bound for formulae over k variables, far from the optimal bound of NP = Σp
1.

On closer inspection, observe that the only reason that so many phase alternations occur
is the application of right-implication between release and decide steps, which is invertible and
non-branching. Consequently, we can actually encode the proof search procedure using only
existential quantifiers, in the spirit of the previous subsection, and so the dynamics of proof
search ‘morally’ represent an NP procedure.

In the next section we will propose a stricter form of focussing where we explicitly admit
‘deterministic’ rules in synchronous phases, without releasing the focus. In this way the results
of this section will be applied to avoid the apparent blowup in the complexity bound induced
by the focussed proofs above.

4This is simply a special case of the refined Statman translation we show later on.
5Notice that there are just as many proofs as there are satisfying assignments.

4 Case study: a fragment of IPL

We will now consider a concrete case study, using a variation of focussing to delineate tautologies
of IPL according to the polynomial hierarchy, under the results from the previous section.

Let us from now on write �i for intuitionistic entailment and �c for classical entailment.

4.1 PSPACE-hardness of IPL and some motivations

Statman proved the PSPACE-hardness of IPL in [26] by encoding QCPL, known to be
PSPACE-complete, into it. The fundamental observation is that,

�c ∀x.A ⇐⇒ �i (x ∨ ¬x) ⊃ A′
�c ∃x.A ⇐⇒ �i (x ⊃ A′) ∨ (¬x ⊃ A′) (2)

where A′ is obtained by the inductive hypothesis.6 The problem with this is that the ∃ case
includes two copies of A′, and so the size of the encoding grows exponentially with the number
of ∃ quantifiers. One way around this is to instead map QBFs to intuitionistic circuits, which
can share the copy of A′ between the two disjuncts, yielding polynomial-size circuits.7 From
here one can simply use Tseitin extension variables to encode the local conditions of the circuit
as a formula, and this is what Statman does in his translation.

Definition 18 (Statman’s translation). For a closed prenex QBF A = Qnxn.Q1x1.A0, let
Ai be the subformula Qixi. . . . Q1x1.A0. Define AX

i by induction on i as follows,

AX
0 := a0 ≡ ¬¬A0

AX
i+1 :=

{
ai+1 ≡ ((xi+1 ∨ ¬xi+1) ⊃ ai) if Qi+1 is ∀
ai+1 ≡ ((xi+1 ⊃ ai) ∨ (¬xi+1 ⊃ ai)) if Qi+1 is ∃

where each ai is fresh. Finally, define A∗ as
n∧

i=0

AX
0 ⊃ an.

Theorem 19 (Statman). �c A if and only if �i A
∗.

While this indeed yields a proof of the PSPACE-hardness of IPL, there are many issues
and questions which naturally arise.

Delineating the polynomial hierarchy in IPL There are many encodings from IPL back
into QCPL, the most immediate of which arises by simply encoding the Kripke relational se-
mantics of IPL. Other encodings can be obtained by encoding the topological semantics or game
semantics [2], and of course by encoding proof search too. However, as far as we know, there
is no ‘natural’ translation that acts as an ‘inverse’ of the Statman translation in the sense that
quantifier complexity is preserved by the composition of the two translations. More precisely
we ask the following:

Question 20. Are there ‘natural’ encodings t1 : QCPL→ IPL and t2 : IPL→ QCPL, such that:

• �c A if and only if �i t1(A).

• �i A if and only if �c t2(A).

6We ignore the base case here for simplicity.
7In fact, it is not hard to see that these circuits have type-level 1, meaning that the class of type 1 intuitionistic

circuits is already PSPACE-complete.

• t2 ◦ t1 preserves quantifier complexity.

The purpose of this section is to identify a well-behaved variant of Statman’s translation
and a corresponding proof system with which we can resolve the above question via a suitable
encoding of proof search.

Invertible rules for IPL? Dyckhoff asks in [9] whether there exists a (terminating) system
of invertible rules sound and complete for IPL. This is also noted as an open problem by Buss
and Iemhoff in [4]. As we have already mentioned, such a system cannot exhibit optimal proof
search complexity, but it is of natural proof theoretic interest.

In fact a positive answer to Question 20 above would partially resolve this open problem:
since we already have a terminating system of invertible rules for QCPL, cf. Section 1, we can
just consider the translations of those rules under t1. Invertibility and termination follows by
correctness of the encoding, and the resulting system will be complete for the image of t1.

To obtain a system complete for all of IPL we must also appeal to t2: for each formula
A of IPL we may construct a rule whose conclusion is A and whose premisses are the t1-
image of the premisses of a QCPL rule whose conclusion is t2(A). If we only consider the
‘synthetic’ rules, decomposing an entire block of existentials quantifiers or universal quantifiers
at once, the system is terminating by the fact that t2 ◦ t1 preserves quantifier complexity and
the corresponding termination argument for the QCPL-calculus. The existence of such a system
for an expressive fragment8 PTPL of IPL is a direct consequence of the results in this section.
While this is not an ideal formulation of a proof system, since the number of premisses for a
rule is unbounded, the discovery of a ‘natural’ such t2 could provide useful intuitions towards
finding a bona fide system of terminating invertible rules for IPL.

4.2 A refined translation and the positive Tseitin fragment

One problem with resolving Question 20 above is with Statman’s translation itself: it is somehow
too insensitive to the structure of proofs induced by the translation. At the same time, usual
proof systems do not handle well Tseitin variables, which act as abbreviations: while these are
essentially deterministic pieces of information, a proof system would naturally see at least one
direction of the equivalence as a nondeterministic choice.

However notice that, in (2), A′ only ever occurs in positive context, and so we only need
one direction of the Tseitin equivalences, of the form A ⊃ a and not a ⊃ A. We use this to
construct a refined version of the translation that allows us to have better control over the proof
theory of formulae in its image.

Definition 21. We mutually define the following classes of formulae:

L ::= x | ⊥ | R ⊃ a | L ∧ L | L ∨ L

R ::= x | ⊥ | L ⊃ R | R ∧R | R ∨R

An R-formula is called a positive Tseitin formula. The positive Tseitin fragment of IPL, denoted
PTPL, is the set of intuitionistically valid positive Tseitin formulae.

One particularly appealing property of positive Tseitin formulae is the following result:

Proposition 22. An L-formula is either a disjunction or a Harrop formula.

8In particular it is PSPACE-complete.

This means that, in bottom-up proof search, once all disjunctions on the left have been
decomposed, we can always make some choice of disjunct on the right. This also gives us access
to a simple contraction-free and cut-free system for PTPL, as we will see soon.

Remark 23. Note that L-formulae are not, in general, hereditary Harrop, for essentially any
formulation of hereditary Harrop formulae, cf. [18].

As already observed by Švejdar in [27], the double negation in the base case of Statman’s
translation is unnecessary for closed QBFs, although it does have some effect on the structure
of proofs. From a proof-search-as-computation point of view, it might be more natural to use
the Kolmogorov double-negation translation, which places ¬¬ in front of every subformula,
since intuitionistic proofs of the resulting formulae can directly simulate classical proofs [10].
However we do not address this issue here, being beyond the scope of this work, and we will
simply include a rule for ‘evaluation’. We make some comments on this in the next section.

Definition 24 (Refined translation). We define the following translation from prenex QBFs
to (unquantified) propositional formulae,

〈A0〉 := A0

〈∀x.A〉 := (x ∨ ¬x) ⊃ 〈A〉
〈∃x.A〉 := (〈A〉 ⊃ a) ⊃ ((x ⊃ a) ∨ (¬x ⊃ a))

where A0 is quantifier-free, A is in prenex normal form and a is fresh.

Theorem 25. If A is a closed prenex QBF, then A ∈ QCPL if and only if 〈A〉 ∈ PTPL.

Before proving this we will need some intermediate results.

Lemma 26. We have the following:

1. �i A(>) ⊃ (x ⊃ A(x)).

2. �i A(⊥) ⊃ (¬x ⊃ A(x)).

3. If �i x ⊃ A(x) then �i A(>).

4. If �i ¬x ⊃ A(x) then �i A(⊥).

Proof sketch. For 1, we show that the sequent,

Γ, x, A(>) ` A(x)

is provable in an intuitionistic system by induction on the structure of A, whence the result
follows by setting Γ empty and application of implication-right.9 2 is proved similarly.

For 3, we simply substitute > for x to achieve > ⊃ A(>), whence A(>) follows. 4 follows
similarly after substitution of ⊥ for x.

Proposition 27 (Positive Tseitin extension). Let B(x) be a formula where x occurs positively
and let A be a formula not containing a variable a. �i B(A) if and only if �i (A ⊃ a) ⊃ B(a).

Proof. The left-right direction is essentially the correctness of deep inference under positive
contexts, whereas the right-left direction follows by substituting A for a.

9This is most easily proved in the Vorob’ev-Hudelmaier-Dyckhoff calculus, sometimes known as G4ip [9].

Corollary 28. �i 〈∃x.A〉 if and only if �i (x ⊃ 〈A〉) ∨ (¬x ⊃ 〈A〉).

Proof. By inspection of the definition of 〈·〉, Tseitin variables only ever occur positively.

We are now ready to prove the correctness of our translation.

Proof of Theorem 25. Recall that ¬A is shorthand for A ⊃ ⊥, whence the fact that 〈A〉 is
positive Tseitin follows by inspection. Now let us show that A ∈ QCPL ⇐⇒ 〈A〉 ∈ IPL by
induction on the structure of A. If A is quantifier-free then it must be a logical combination of
constants by closedness, and so 〈A〉 = A ∈ IPL ⇐⇒ A ∈ QCPL by conservativity of CPL over
IPL for variable-free formulae.

Now, suppose A is ∀x.B:

�c ∀x.B(x) ⇐⇒ �c B(>) and �c B(⊥)
⇐⇒ �i 〈B(>)〉 and �i 〈B(⊥)〉 by inductive hypothesis
⇐⇒ �i x ⊃ 〈B(x)〉 and �i ¬x ⊃ B(x) by Lemma 26
⇐⇒ �i (x ∨ ¬x) ⊃ 〈B(x)〉 by distributivity

Otherwise, A is ∃x.B(x):

�c ∃x.B(x) ⇐⇒ �c B(>) or �c B(⊥) since A is closed
⇐⇒ �i 〈B(>)〉 or �i 〈B(⊥)〉 by inductive hypothesis
⇐⇒ �i x ⊃ 〈B(x)〉 or �i ¬x ⊃ 〈B(x)〉 by Lemma 26
⇐⇒ �i (x ⊃ 〈B(x)〉) ∨ (¬x ⊃ 〈B(x)〉) by the disjunction property
⇐⇒ �i 〈∃x.B(x)〉 by Corollary 28

Corollary 29. PTPL is already PSPACE-complete.

We will now present a proof system for PTPL. Before doing so, we recall an important result
from Statman’s paper.

Lemma 30 (Evaluation). Let l(x) be either x or ¬x for each variable x, and let A be a
quantifier-free formula with variables amongst ~x. Then l(~x) �c A if and only if l(~x) �i A.

Proof. The right-left direction is clear so we prove the left-right direction. Notice that l(~x)
induces a complete (classical) model determining formulae over ~x (including A). Suppose
l(~x) �c A and proceed by structural induction on A.

If A is a variable a then we must have that l(~x) contains a, whence l(~x) �i A.
If A is a disjunction A1 ∨A2 then we must have that l(~x) �c Ai for some i ∈ {1, 2}, whence

l(~x) �i Ai by the inductive hypothesis and so l(~x) �i A.
If A is a conjunction A1 ∧A2 then we must have that l(~x) �c Ai for each i ∈ {1, 2}, whence

l(~x) �i Ai by the inductive hypothesis and so l(~x) �i A.
If A is an implication A1 ⊃ A2 then we must have that l(~x) �c ¬A1 or l(~x) �c A2, so

l(~x), A1 �i or l(~x) �i A2. In either case we have that l(~x) �i A, by thinning and the deduction
theorem.

Definition 31 (Proof system). We define the system LPT as follows:

⊥-l
Γ,⊥ ` A

l(~a) �c A(~a)
eval

Γ, l(~a) ` A(~a)

Γ, A ` C Γ, B ` C
∨-l

Γ, A ∨B ` C
Γ ` A

⊃-l
Γ, A ⊃ a ` a

Γ, A,B ` C
∧-l

Γ, A ∧B ` C

Γ ` A Γ ` B
∧-r

Γ ` A ∧B
Γ, A ` B

⊃-r
Γ ` A ⊃ B

Γ ` Ai
∨-r i ∈ {1, 2}

Γ ` A1 ∨A2

By inspection of these rules, we immediately have the following:

Proposition 32. Any LPT -derivation with a positive Tseitin conclusion contains only L-
formulae on the left and R-formulae on the right.

This result, together with Proposition 22, allows us to easily conclude the completeness of
LPT with respect to PTPL.

Theorem 33. LPT is sound and complete for PTPL.

Proof. Soundness is clear from inspection of the rules. For completness, we give a bottom-up
proof search algorithm for some PTPL tautology. First, apply the invertible rules ⊥-l, eval , ∧-l,
∧-r, ∨-l and ⊃ -r as long as possible. Now formulae must be of the form A ⊃ a on the left and
disjunctions on the right, by Proposition 32. Since the former is always a Harrop formulae, we
can apply ∨-r. We continue to decompose the right hand side until it is atomic, say b, at which
point there must be some implication B ⊃ b on the left for which we can make an application
of ⊃ -l, by the completeness of the usual calculus LJ . Thus we can always apply some rule
and this procedure must terminate since, bottom-up, lines strictly decrease in size. In the base
case, when sequents are atomic, there is always an appropriate application of eval .

4.3 An ‘over-focussed’ system for PTPL

Usually, focussed systems classify formulae as either ‘negative’ or ‘positive’. In light of our
comments in the previous section, we will be slightly more fine-grained in our classification,
also distinguishing ‘deterministic’ formulae.

Remark 34. Notice that there is a peculiar phenomenon in LPT that the conjunction rules
are both invertible. From the point of view of focussing, this is because we have actually used
two different versions of conjunction, positive (∧+) on the left and negative (∧−) on the right.
However, notice that LPT respects the polarity of a conjunction symbol in a formula (in the
sense of even or odd depth to the left of implications), and so the distinction is already present
at the level of formulae: L-formulae are composed by ∧+, while R-formulae are composed by
∧−. We will typically omit such annotation when it is clear from context. For similar reasons
(and by the same argument), we will always assume that atoms are negative on the left of a
sequent and positive on the right.

Definition 35 (Classification). A positive formula is a ∧+ or ∨ formula (or a positive atom).
A negative formula is a ∧− or ⊃ formula (or a negative atom). A deterministic formula is a
∧+ or ⊃ formula (or an atom). We will use the following metavariables:

M : negative and not deterministic ∧−
N : negative ∧−,⊃
O : deterministic ∧+,⊃
P : positive ∧+,∨
Q : positive and not deterministic ∨

Co-nondeterministic phase

Γ ⇑ ⊥,∆ ` ⇑ P
l(~a) �c P (~a)

eval⇑
Γ, l(~a) ⇑ · ` ⇑ P (~a)

Γ ⇑ A,∆ ` C ⇑ Γ ⇑ B,∆ ` C ⇑
Γ ⇑ A ∨B,∆ ` C ⇑

Γ ⇑ A,B,∆ ` C ⇑
Γ ⇑ A ∧+ B,∆ ` C ⇑

Γ, N ⇑ ∆ ` C ⇑
Sl

Γ ⇑ N,∆ ` C ⇑
Γ ⇑ · ` A ⇑ Γ ⇑ · ` B ⇑

Γ ⇑ · ` A ∧− B ⇑
Γ ⇑ A ` B ⇑

Γ ⇑ · ` A ⊃ B ⇑
Γ ⇑ · ` ⇑ P

Sr

Γ ⇑ · ` P ⇑

Nondeterministic phase

Γ; ⇓ N ` P
Dl

Γ, N ⇑ · ` ⇑ P
Γ; ` P 6a ⇓

Dr

Γ ⇑ · ` ⇑ P 6a
Γ; ∆ ` A ⇓

Γ; ∆ ⇓ A ⊃ a ` a
Γ; ∆ ` Ai ⇓

i ∈ {1, 2}
Γ; ∆ ` A1 ∨A2 ⇓

where Dl and Dr apply only if the conclusion is not an instance of eval ⇑, and P 6a is not atomic.

Γ; ∆, Ai ⇓ Aj ` B {i, j} = {1, 2}
Γ; ∆ ⇓ A1 ∧+ A2 ` B

Γ; ∆ ⇓ A ` B
Γ; ∆ ` A ⊃ B ⇓

Γ; ∆, A ` B ⇓
Γ; ∆ ` A ⊃ B ⇓

Γ;A,B,∆ L ` R
Γ;A ∧+ B,∆ L ` R

Γ, N ; ∆ L ` R
sNl

Γ;N,∆ L ` R
Γ; ∆, B ⇓ A ` C

Γ; ∆ ⇓ A ` B ⊃ C

where either L is ⇓ C and R is D or L is empty and R is D ⇓.

Γ; ∆, Q ⇓ · ` A
sQl

Γ; ∆ ⇓ Q ` A
Γ, a; ∆ ⇓ · ` A

sal
Γ; ∆ ⇓ a ` A

Γ; ⇓ N ` P
dl

Γ, N ; ⇓ · ` P
Γ; ⇓ N ` a

da
l

Γ, N ; ` a ⇓
Γ; ` P ⇓

dr

Γ; ⇓ · ` P

Γ; ∆ ⇓ ⊥ ` R
l(~a) �c M

a(~a)
eval⇓

Γ, l(~a); ∆ `Ma(~a) ⇓
Γ ⇑ ~Q `Ma ⇑

Rl

Γ; ~Q `Ma ⇓
Γ ⇑ ~Q ` R ⇑

Rr

Γ; ~Q ⇓ · ` R

where Ma is either M or an atom and R is either M or, as long as ~Q is nonempty, P . Further-
more, the rules Rl and Rr apply only if the conclusion is not an instance of eval ⇓.

Figure 1: Rules of the system LPTF .

The reason for making such distinctions is that we will admit deterministic computations
in both the negative and positive phases, allowing the decomposition of positive deterministic
formulae on the left and negative deterministic formulae on the right. Referring to the previous
section, the corresponding such rules are invertible and non-branching. Since this is more re-
strictive than usual focussing, we will call this an ‘over-focussed’ system, and refer to the phases
as ‘co-nondeterministic’ and ‘nondeterministic’ rather than ‘asynchronous’ and ‘synchronous’,
respectively, which this is more compatible with our complexity-theoretic point of view.

Definition 36 (Focussed system). We define the system LPTF by the rules in Figure 1. A
proof of a formula A is simply a LPTF -proof of · ⇑ · ` A ⇑ or ; ` A ⇓.

It is worth taking a moment to explain the format of lines and the dynamics of proof search

in this system. There are three kinds of sequent in this system:

Γ ⇑ ∆ ` Λ1 ⇑ Λ2 (3)

Γ; ∆ ⇓ A ` B (4)

Γ; ∆ ` A ⇓ (5)

where Γ and ∆ are multisets of formulae and |Λ1tΛ2| = 1. (3) is called an unfocussed sequent,
whereas (4) and (5) are focussed, left and right respectively. In both the latter cases the ‘focus’
of the sequent is A, whereas ∆ consists of the ‘residues’.

Bottom-up proof search operates as follows. First, a co-nondeterministic phase is conducted
exactly analogous to an asynchronous phase in, say, LJF , until we reach a positive sequent.
Then we enter a non-deterministic phase after ‘deciding’ on a focus. This is similar to a
synchronous phase in LJF , except that if we reach a deterministic formula we must keep
decomposing one of its auxiliary formulae. Other auxiliary formulae are temporarily stored as
residues and are reduced until they become positive, when they are stored for real, or negative
and non-deterministic. The phase is complete once only some invertible branching rules apply to
the focus and the remaining residues, when we release and enter again the co-nondeterministic
phase. If there is no such rule, i.e. there are no remaining residues and the focus is atomic, then
we must ‘redecide’ a formula without releasing and remain in the nondeterministic phase.

Theorem 37. LPTF is sound and complete for PTPL.

Proof sketch. By usual rule permutation arguments. The general idea is that we can permute
non-branching bipoles upwards in a proof until an auxiliary formula becomes principal again.
The prototypical proof manipulation has the following format,

A0
0, A1, B0

∃
A0, A1, B0

A1
0, A1, B1

∃
A0, A1, B1

∀
A0, A1, B

∃
A0, A1, B

′
det

A,B′
∃
A′, B′

7→

A0
0, A1, B0

∃
A0, A1, B0

det
A,B0

∃
A′, B0

A1
0, A1, B1

∃
A0, A1, B1

det
A,B1

∃
A′, B1

∀
A′, B

∃
A′, B′

where non-invertible rules are marked ∃, invertible branching rules are marked ∀ and invertible
non-branching rules are marked det. What corresponds to usual bipoles of a focussed proof
appear in the same colour connected component.

Remark 38. After a deterministic step during a nondeterministic phase we cannot, in general,
remain focussed on both auxiliary formulae, in the sense of multifocussing, since there may
be a strict order of dependency between the auxiliary formulae. This is exemplified by the
LJF -derivation in Figure 2, again using the notation of [19]. Here the marked ∧+ rule has
two auxiliary formulae, of which a ∨ b must be decomposed first since (a ⊃ d) ∧− (b ⊃ d) is
decomposed differently depending on which branch is taken, coloured in red in the derivation.
In an over-focussed system, such a proof would therefore have to remain focussed on a ∨ b in
the premiss of the marked ∧+ step.

a ` a ⇓ a ⇓ d ` d
a ⇓ a ⊃ d ` d

a ⇓ (a ⊃ d) ∧− (b ⊃ d) ` d
Dl

a, (a ⊃ d) ∧− (b ⊃ d) ⇑ · ` ⇑ d
2Sl

⇑ a, (a ⊃ d) ∧− (b ⊃ d) ` ⇑ d

b ` b ⇓ b ⇓ d ` d
b ⇓ b ⊃ d ` d

b ⇓ (a ⊃ d) ∧− (b ⊃ d) ` d
Dl

b, (a ⊃ d) ∧− (b ⊃ d) ⇑ · ` ⇑ d
2Sl

⇑ b, (a ⊃ d) ∧− (b ⊃ d) ` ⇑ d
⇑ (a ∨ b), (a ⊃ d) ∧− (b ⊃ d) ` ⇑ d

∧+

⇑ (a ∨ b) ∧+ ((a ⊃ d) ∧− (b ⊃ d)) ` ⇑ d
Rl

⇓ (a ∨ b) ∧+ ((a ⊃ d) ∧− (b ⊃ d)) ` d
⇓ ((a ∨ b) ∧+ ((a ⊃ d) ∧− (b ⊃ d))) ∧− c ` d

Figure 2: An example of dependency between auxiliary formulae of a deterministic step in LJF .

4.4 Compatibility of proof search with the refined translation

We will now pick up from the complexity analysis of Section 3, specialising to our over-focussed
sytem LPTF . Our notions of decide depth (dd) and release depth (rd) remain the same,
counting only Dl or Dr and Rl or Rr steps respectively, and can still be calculated in polynomial
time from a formula by a ‘worst case’ analysis, similar to that in [22]. Most importantly, the
appropriate versions of Proposition 15 and Theorem 16 remain valid for LPTF . Consequently,
we obtain from LPTF an encoding of PTPL back into QCPL.

Definition 39. For a positive Tseitin formula A, let dAe denote the sequent obtained from A
after maximally applying the deterministic rules ∧-l and ⊃ -r, bottom-up. Now we define,

[A] :=

{
the Σdd(A)+rd(A) provability predicate for dAe if dAe is positive

the Π1+dd(A)+rd(A) provability predicate for dAe otherwise

with respect to the system LPTF .

In light of Theorem 16 and Corollary 17, we have the following:

Proposition 40. [·] induces an encoding from PTPL to QCPL, with quantifier complexity in
the image matching that of the corresponding provability predicate.

By examining the dynamics of proof search, let us explicitly calculate the decide and release
depths of formulae in the image of our refined translation.

Lemma 41. We have the following:

1. dd(~a ⇑ · ` 〈∀x.A〉 ⇑) = dd(~a, x ⇑ · ` 〈A〉 ⇑).

2. dd(~a ⇑ · ` 〈∃x.A〉 ⇑) = 1 + dd(~a; ` 〈∃x.A〉 ⇓).

3. dd(~a; ` 〈∃x.A〉 ⇓) = dd(~a, x; ` 〈A〉 ⇓).

4. dd(~a; ` 〈∀x.A〉 ⇓) = dd(~a ⇑ · ` 〈∀x.A〉 ⇑).

and:

5. rd(~a ⇑ · ` 〈∀x.A〉 ⇑) = rd(~a, x ⇑ · ` 〈A〉 ⇑).

6. rd(~a ⇑ · ` 〈∃x.A〉 ⇑) = rd(~a; ` 〈∃x.A〉 ⇓).

7. rd(~a; ` 〈∃x.A〉 ⇓) = rd(~a, x; ` 〈A〉 ⇓).

8. rd(~a; ` 〈∀x.A〉 ⇓) = 1 + rd(~a ⇑ · ` 〈∀x.A〉 ⇑).

Finally, we can use these calculations to show that our encoding of proof search for LPTF
in QCPL is well-calibrated with our refined Statman translation from QCPL to PTPL, in the
sense of Subsection 4.1.

Let us write Πq
i (or Σq

i) to denote the class of prenex QBFs with i alternations of quantifiers
beginning with a universal (or existential, respectively).

Theorem 42. If A ∈ Πq
i (or Σq

i) is valid then 〈A〉 is accepted by the Πi (or Σi, respectively)
provability predicate. In particular, 〈A〉 ∈ Πp

i (or Σp
i , respectively).

Proof sketch. Applying Lemma 41 above inductively, we have that dd(· ⇑ · ` 〈A〉 ⇑) = b i2c and

that rd(· ⇑ · ` 〈A〉 ⇑) = b i2c − 1. The result then follows by Proposition 40 and Theorem 16.
The case for Σq

i is similar, on consideration of the sequent ; ` 〈A〉 ⇓.

Thus we conclude our partial resolution to Question 20:

Corollary 43. Construing [·] as an encoding PTPL → QCPL under Proposition 40, we have
that [·] ◦ 〈·〉 : QCPL→ PTPL→ QCPL preserves quantifier complexity.

5 Conclusions, further work and remarks

In this work we have surveyed various methods for obtaining complexity bounds from proof
systems, highlighting in particular how variants of focussed systems can be used to extract
alternating time bounds for fragments of a logic. With this in mind, we have motivated the
notion of ‘over-focussing’, in order to more faithfully represent the stages of nondeterministic
and co-nondeterministic computation in proof search.

We considered as a case study an adequately expressive fragment PTPL of intuitionistic
propositional logic and gave a sound and complete over-focussed system for it. We showed
that the natural bounds extracted from this system are tight with respect to a refinement of
Statman’s translation from QCPL, which has various consequences for the proof theory of IPL,
cf. Subsection 4.1.

We conclude this paper with various remarks, further results, and ideas for further work.

5.1 On the evaluation rule

We used a nonstandard version of the identity rule that allowed us to deterministically evaluate a
formula in the presence of a complete assignment. This was to avoid any extraneous alternation
complexity generated by a proof of such a sequent, but we point out that this deterministic
computation can be implemented by explicit invertible non-branching rules, inspired by the
Vorob’ev-Hudelmaier-Dyckhoff rules for left-implication [9], as follows:

Γ, a, b ⊃ c ` D
Γ, a, (a ∧ b) ⊃ c ` D

Γ, A ⊃ a,B ⊃ b, (a ∧ b) ⊃ c ` D
Γ, (A ∧B) ⊃ c ` D

Γ, A ⊃ c,B ⊃ c ` D
Γ, (A ∨B) ⊃ c ` D

We do not develop this further as it is beyond the scope of this work, but it should be routine
to give an over-focussed system for a version of LPT with these rules instead of eval .

5.2 Lazy polarisation

The fact that deterministic rules do not contribute to the overall alternation complexity of
proof search is a special case of the fact that any predicate written as a ΣF

i or ΠF
i prenex with

ΣF
1 ∩ ΠF

1 matrix remains in ΣF
i or ΠF

i respectively. In terms of proof theory this is realised
by connectives that can be polarised either positively or negatively, for example atoms and
∧ in this work. This suggests that, in general, bounds on proof search could be improved
by admitting special rules that polarise connectives during proof search, rather than doing so
in advance. This would be particularly useful if it is more efficient for a subformula to be
decomposed during an asynchronous phase in one branch and a synchronous phase in another
branch, although we cannot think of an explicit example where such a phenomenon occurs.

5.3 Towards a system of invertible rules for IPL

As we already mentioned, our quantifier-complexity preserving pair of encodings QCPL →
PTPL → QCPL allows us to infer the existence of a terminating ‘macro-system’ of invertible
rules for PTPL, partially addressing a question of Dyckhoff [9]. It would be interesting to
see if analysis of this macro-system could yield the necessary insights to construct a bona fide
terminating system of invertible rules for IPL. However for this it seems likely that we would
need to have a richer encoding from all of IPL, not just PTPL, to QCPL, that similarly behaves
well with respect to the (refined) Statman translation. In future work we intend to investigate
this possibility via an over-focussed version of the contraction-free system G4ip for IPL [9].

We repeat the point that just the existence of an encoding of t1 : QCPL→ IPL, e.g. Statman’s
translation or the refined version in this work, already yields a terminating system of invertible
rules for the image of t1, by direct translation of such a system for QCPL, cf. Section 1.

References

[1] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput.,
2(3):297–347, 1992.

[2] Nick Bezhanishvili and Dick de Jongh. Intuitionistic logic.

[3] Kai Brünnler and Martin Lange. Cut-free sequent systems for temporal logic. The Journal of
Logic and Algebraic Programming, 76(2):216–225, 2008.

[4] Samuel R Buss and Rosalie Iemhoff. The depth of intuitionistic cut free proofs, 2003.

[5] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, January 1981.

[6] Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. A multi-focused proof system isomorphic to
expansion proofs. Journal of Logic and Computation, page exu030, 2014.

[7] Stephen Cook and Phuong Nguyen. Foundations of proof complexity: Bounded arithmetic and
propositional translations. 2006.

[8] Stephen A Cook and Robert A Reckhow. The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic, 44(01):36–50, 1979.

[9] Roy Dyckhoff. Intuitionistic decision procedures since gentzen. In Advances in Proof Theory, pages
245–267. Springer, 2016.

[10] Gilda Ferreira and Paulo Oliva. On various negative translations. arXiv preprint arXiv:1101.5442,
2011.

[11] Stéphane Graham-Lengrand. Polarities & focussing: a journey from realisability to automated
reasoning. CoRR, abs/1412.6781, 2014.

[12] Alexander Hertel and Alasdair Urquhart. Proof complexity of intuitionistic propositional logic.
2006.

[13] Alain Heuerding, Michael Seyfried, and Heinrich Zimmermann. Efficient loop-check for backward
proof search in some non-classical propositional logics. In International Workshop on Theorem
Proving with Analytic Tableaux and Related Methods, pages 210–225. Springer, 1996.

[14] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In Computational Complexity,
1999. Proceedings. Fourteenth Annual IEEE Conference on, pages 237–240. IEEE, 1999.

[15] Alexey P. Kopylov. Decidability of linear affine logic. Information and Computation, 164(1):173–
198, 2001.

[16] Ranko Lazić and Sylvain Schmitz. Nonelementary complexities for branching vass, mell, and
extensions. ACM Transactions on Computational Logic (TOCL), 16(3):20, 2015.

[17] Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic, and classical
logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

[18] Dale Miller. Logic programming based on higher-order hereditary harrop formulas. 1988.

[19] Dale Miller. Focused LJ. Encyclopaedia of Proof Systems, 2015.

[20] Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge University
Press, 2012.

[21] Sara Negri and Jan von Plato. Structural proof theory. Cambridge University Press, 2001.

[22] Vivek Nigam. Investigating the use of lemmas.

[23] Hiroakira Ono et al. Proof-theoretic methods in nonclassical logican introduction.

[24] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[25] Walter J Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of computer and system sciences, 4(2):177–192, 1970.

[26] Richard Statman. Intuitionistic propositional logic is polynomial-space complete. Theor. Comput.
Sci., 9:67–72, 1979.

[27] Vitezslav Svejdar. On the polynomial-space completeness of intuitionistic propositional logic.
Arch. Math. Log., 42(7):711–716, 2003.

	Introduction
	Proof systems as algorithms: an overview
	The classical approach: nondeterministic time bounds
	Space bounds from proof search
	Invertibility and co-nondeterminism

	Bridging the time-space gap: the role of focussing
	A recap on alternating time hierarchies
	Alternating time bounds from focussed systems
	Scope for improvement? The reason to over-focus

	Case study: a fragment of IPL
	PSPACE-hardness of IPL and some motivations
	A refined translation and the positive Tseitin fragment
	An `over-focussed' system for PTPL
	Compatibility of proof search with the refined translation

	Conclusions, further work and remarks
	On the evaluation rule
	Lazy polarisation
	Towards a system of invertible rules for IPL

