
Symbolic Verification of Cryptographic Protocols

Unbounded Process Verification with Proverif

David Baelde

LSV, ENS Paris-Saclay

2019–2020

David Baelde (ENS Saclay) Protocol Equivalences 2019–2020 1 / 10

Introduction

Proverif
Protocol verifier developped by Bruno Blanchet at Inria Paris since 2000

Analysis in formal model: secrecy, correspondences, equivalences, etc.
Based on applied pi-calculus, Horn-clause abstraction and resolution
The method is approximate but supports unbounded processes

Highly successful, works for most protocols including industrial ones:
certified email, secure filesystem, Signal messenging, TLS draft,
avionic protocols, etc.

These lectures
Theory and practice of Proverif
Secrecy, correspondences, equivalences

David Baelde (ENS Saclay) Protocol Equivalences 2019–2020 2 / 10

Terms

As usual in the formal model, messages are represented by terms
built using constructor symbols from f ∈ Σc

quotiented by an equational theory E;
notation: M ∈M = T (Σc ,N).

Additionally, computations are also modeled explicitly
terms may also feature destructor symbols g ∈ Σd ;
semantics given by reduction rules g(M1, . . . ,Mn)→ M;
yields partial computation relation ⇓ over T (Σ,N)×M.

Intuition:
use constructors for total functions,
destructors when failure is possible/observable.

David Baelde (ENS Saclay) Protocol Equivalences 2019–2020 3 / 10

Example primitives

Symmetric encryption
type key.
fun enc(bitstring,key):bitstring.
reduc forall m:bitstring, k:key;

dec(enc(m,k),k) = m.

Block cipher
type key.
fun enc(bitstring,key):bitstring.
fun dec(bitstring,key):bitstring.
equation forall m:bitstring, k:key; dec(enc(m,k),k) = m.
equation forall m:bitstring, k:key; enc(dec(m,k),k) = m.

Exercise: how would you model signatures?

David Baelde (ENS Saclay) Protocol Equivalences 2019–2020 4 / 10

Processes

Similar to the one(s) seen before, with a few key differences:
variables are typed (more on that later);
private channels, phases, tables, events, etc.

Concrete syntax
P,Q ::= 0 | (P|Q) | !P | new n:t;P

| in(c,x:t);P | out(c,u);P
| if u = v then P else Q
| let x = g(u1,..,uN) in P else Q

where u, v stand for constructor terms.

More details in reference manual:
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

David Baelde (ENS Saclay) Protocol Equivalences 2019–2020 5 / 10

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

First examples

File structure
Declarations: types, constructors, destructors, public and private
data, processes. . .
Queries, for now only secrecy: query attacker(s).
System specification: the process/scenario to be analyzed.

Demo: hello.pv (basic file structure and use).

Demo: types.pv (on the role of types).

David Baelde (ENS Saclay) Protocol Equivalences 2019–2020 6 / 10

Correspondences

Roughly, express that if X happens then Y must have happened.
If B thinks he’s completed the protocol with A, then A thinks he’s
completed the protocol with B.

Events
Add events to the syntax of protocols:

(* Declaration *)
event evName(type1,..,typeN).
(* Use inside processes *)
P ::= ... | event evName(u1,..,uN); P

Semantics extended as follows:

(event E . P |Q,Φ) τ−→ (P |Q,Φ)

David Baelde (ENS Saclay) Protocol Equivalences 2019–2020 7 / 10

Queries

Definition
The query
query x1:t1, .., xN:tK;
event(E(u1,..,uN)) ==> event(E’(v1,..,vM))

holds if for all traces of the system
if the trace ends with an event rule for an event of the form E (ui)i ,
there is a prior execution of the rule for an event of the form E ′(vj)j .

Note that variables of ui are universally quantified
while those only ocurring in vj are existentially quantified.

Example
query na:bitstring, nb:bitstring;

event(endR(pka,pkb,na,nb)) ==> event(endI(pka,pkb,na,nb)).

David Baelde (ENS Saclay) Protocol Equivalences 2019–2020 8 / 10

Exercise: NSPK

Model the Needham-Schroeder public key protocol from the first lecture
by completing the nspk.pv file.

In that file, declare a system that allows for the man-in-the-middle attack,
and ask Proverif to check the secrecy of nb. It should find the attack.

Finally, fix the protocol as proposed during the first lecture, check that
secrecy holds. You may then try to check authentication using
correspondences.

David Baelde (ENS Saclay) Protocol Equivalences 2019–2020 9 / 10

Exercise: injectivity

Proverif also allows to check injective correspondences:
query x1:t1, .., xN:tK;
inj-event(E(u1,..,uN)) ==> inj-event(E’(v1,..,vM))

holds if for all traces of the system there is an injective φ such that
if an event of the form E (ui)i is emitted at step τ ,
an event of the form E ′(vj)j is emitted at step φ(τ) < τ .

Exercise:
1 Check that NSL satisfies mutual authentication in its injective form,

which is the proper form.
2 Give a protocol that satisfies mutual authentication only in its

non-injective form.

David Baelde (ENS Saclay) Protocol Equivalences 2019–2020 10 / 10

	Semantics

