
MPRI 2.30, part I

Formal Proofs of Cryptographic Protocols

November 27, 2019

You have three hours. All documents are allowed, but electronic devices are forbidden.

1 Revisiting trace and may testing equivalences

In this exercise, we consider a fragment of the applied pi-calculus of the lecture notes, given by
the following grammar:

P, P ′ ::= 0 | in(c, x).P | out(c, u).P | let x = t in P else P ′

In other words, we do not consider name creation, replication, and even parallel composition. As
before, u denotes a constructor term, while t may feature destructors.

Semantics The definition of internal reduction is unchanged, except for the fact that several
cases become useless. The labelled transition system has the standard rules for input, output, let,
plus the following new rule:

(P,Φ)
store(w,t)−−−−−−→ (P,Φ] {w 7→ u}) if w ∈ W \ dom(Φ), t ∈ T (dom(Φ) ∪N \ bn(Φ)) and tΦ ⇓ u

Since a process cannot create new private names, the bound names of a frame (i.e. bn(Φ)) is
never modified. We will thus assume in the rest of this exercise that all frames have the same
bound names. This amounts to have a static distinction between public and private names, where
only public names may appear in recipes: we thus have a set of public names Npub such that, for
all Φ, Npub = N \ bn(Φ). A recipe is simply a term of T (W ∪Npub).

The only transitions labelled τ correspond to the evaluation of let constructs. The label
store(w, t) is considered observable.

Trace equivalence We define as before A tr⇒ B when tr contains no τ action and A
tr′−→ B for

some tr′ obtained from tr by inserting τ actions. We finally define trace equivalence as before:
A ≈ B iff Tr′(A) = Tr′(B) where

Tr′(P,Φ)
def
= {(tr,Φ′′) : (P,Φ) tr⇒ (P ′,Φ′) and Φ′ ∼ Φ′′}.

May testing We consider a simplified notion of may testing, relying on a restricted syntax for
tests1. We first define a grammar for test contexts C (with a hole noted []) and terminal tests D
(where stands for a dummy variable that cannot be used elsewhere):

C ::= in(c, w).C | out(c, w).C | let w = t in C else 0 | []
D ::= out(T, w) | let = t in D else 0 | let = t in 0 else D

As before, T is the special channel used to signal success. We then define tests as those processes
that can be written C[D] for some test context C and terminal test D, that do not feature private
names, but may feature free variables in W. Note that tests only use variables in W, and that

1This is actually without loss of generality, but we won’t show it here.

1

outputs in tests are restricted to variables. We may also assume that a test never features two
bindings for the same variable w.

We say that a process Q succeeds when Q ∗ out(T, u) for some u, and we define:

T(P,Φ) = {T : T is a test with fv(T) ⊆ dom(Φ) and (TΦ |P) succeeds}

Finally, A and B are may testing equivalent when T(A) = T(B).

Question 1. We say that a frame Φ satifies a terminal test D, noted Φ |= D, when DΦ succeeds.
Show that, for all frames Φ and Ψ such that Φ ∼ Ψ, we have Φ |= D iff Ψ |= D.

Question 2. Define a translation tr() from test contexts to traces such that, for all test context

C and terminal test D, we have C[D] ∈ T(A) iff there exists A′ such that A
tr(C)⇒ A′ and Φ(A′) |= D.

Justify the two directions of this equivalence.

Question 3. Conclude that trace equivalence implies may testing equivalence2.

For the rest of the exercise, we assume that we have a destructor implementing equality checking
(i.e. eq(x, x)→ x) so that Φ ∼ Ψ is equivalent to the following condition alone:

∀R ∈ T (W ∪Npub), RΦ ⇓ iff RΨ ⇓

Question 4. Let Φ be a frame and (Ψi)i∈[1;n] be a finite collection of frames such that, for all
i ∈ [1;n], Φ 6∼ Ψi. Show that there exists D such that Φ |= D but, for all i ∈ [1;n], Ψi 6|= D.

Question 5. A configuration A is image finite if, for all observable traces tr, the set {Φ(B) :
A tr⇒ B} is finite up to static equivalence. Show that, for all image finite configurations A and B
such that T(A) = T(B), one has A ≈ B. Hint: proceed by contradiction.

2 Bana-Comon logic: EUF and LAK

Consider a keyed hash function H(,). We say that the it satisfies existential unforgeability (EUF)
when, for any attacker A, the probability Pr[EUF(A) = 1] is negligible in η, where the experiment
EUF is defined as follows:

EUF(A)
def
= k

R← {0, 1}η O(x)
def
= Q ← Q∪ {x}

Q ← ∅ return H(x, k)
m, s← AO
if m 6∈ Q ∧ s = H(m, k) then return 1

Here, O is an oracle allowing the attacker to compute hashes using the (private) key k that is
randomly sampled at the beginning of the experiment. The experiment succeeds if the attacker
manages to compute the hash s of a message m without having called O(m).

We consider the language of the Bana-Comon logic. We write t
.
= t′ for EQ(t, t′). We write

t
.
∧ t′ for

(
if t then (if t′ then true else false) else false

)
, and similarly for t

.
∨ t′ and

.¬ t.

Question 1. Show that the following rule is unsound:

t[b] ∼ t′ a ∼ b
t[a] ∼ t′

2In the lecture notes, we have shown that this is not the case if non-deterministic computations are allowed:
this problem disappears here, not due to abusive simplifications but mainly due to the store actions.

2

Question 2. Let h be a binary function symbol and k a name, which will be used as a key for
h. Let m and s be two terms in which k only appears as second argument of h. Let E = {m′ :
h(m′, k) is a subterm of m or s}. Consider the following inference rule3:

if
.
∨m′∈E m

.
= m′ then false else s

.
= h(m, k) ∼ false

Show that the conclusion formula is satisfied in all computational interpretations where the inter-
pretation of h satisfies EUF. In other words, the rule is sound wrt. this class of models.

In order to derive equivalences, we will consider the previous rule, together with the following
ones, which are also sound:

t ∼ t
t[b] ∼ t′ a

.
= b ∼ true

t[a] ∼ t′
if b then t′ else e ∼ true if t′ then t else true ∼ true

if b then t else e ∼ true

t ∼ t′
.¬ t ∼ .¬ t′ t

.
= t ∼ true π1(〈t, t′〉) .

= t ∼ true π2(〈t, t′〉) .
= t′ ∼ true

u ≡ v
uθ

.
= vθ ∼ true

In the last rule u ≡ v means that u and v are logically equivalent expressions built from (boolean)
variables and conditionals if then else . For example, that rule allows to derive all statements
of the form

(
if b then c else d

) .
=

(
if not(b) then d else not(not(c))

)
∼ true.

Finally, equivalences t ∼ t′ and equalities t
.
= t′ may be considered implicitly modulo symmetry.

Consider the following frames, resulting from an execution of the LAK protocol:

Φ1
def
= nR

Φ2
def
= Φ1, 〈nT , h(〈g1(Φ1), nT 〉, k)〉

We then consider the following boolean terms:

ta
def
= π2(g2(Φ2))

.
= h(〈nR, π1(g2(Φ2))〉, k)

th
def
= g1(Φ1)

.
= nR

.
∧ π1(g2(Φ2))

.
= nT

tc
def
= 〈g1(Φ1), nT 〉

.
= 〈nR, π1(g2(Φ2))〉

The first term corresponds to the acceptance test that the reader would evaluate when receiving
g2(Φ2) after having sent nR. The second term expresses that the interaction is honest enough,
and more precisely that the tag and reader agree on their respective nonces.

Question 3. Derive if ta then tc else true ∼ true using the above rules.

Question 4. Conclude that there exists a derivation of the following equivalence, which intu-
itively expresses that if the reader accepts an interaction, then the interaction is honest:

if ta then th else true ∼ true

Question 5. We modify our frames to reason about an execution involving more reader messages,
with a subterm m that will be defined below:

Φ1
def
= nR, nR′

Φ2
def
= Φ1, 〈nT , h(〈g1(Φ1), nT 〉, k)〉

Φ3
def
= Φ2, h(〈m,nR〉, k)

3If E is empty, the disjunction
.
∨m′∈E m

.
= m′ is simply false.

3

(a) We want Φ3 to model the situation where the first reader has accepted its input, and re-
sponded with its second output. Give the term m corresponding to that situation, relying
on g2(Φ2) to model the reader’s input.

We define t1a as ta above, except for the modification of Φ1 which now features two nonces.
We similarly adapt th into t1h. It is easy to see that we still have if t1a then t1h else true ∼ true.

(b) Now the second reader may receive a message g3(Φ3). Give the boolean term t2a correspond-
ing to the acceptance condition of the second reader.

(c) Let t2h
def
= g1(Φ1)

.
= n′R

.
∧ π1(g3(Φ3))

.
= nT . Does if t1a

.
∧ t2a then t2h else true ∼ true hold?

No formal derivation is required, but an argument using the EUF assumption should be
provided.

3 Constraint solving and resolution for a naive protocol

Consider the following protocol, where a and b are respective secrets of agents A and B, keys pk(a)
and pk(b) are public, and n is a nonce generated by A:

A→ B : 〈pk(a), aenc(n, pk(b))〉
B → A : 〈pk(b), aenc(n, pk(a))〉

The naive idea is that A sends a first message containing a component that identifies the sender,
and one that transmits n securely to the intended recipient B. Upon receipt of a message of the
form 〈x, aenc(y, pk(b))〉, B obtains n and sends back the last message to x as an acknowledgment.
Obviously, there is an attack: an outsider can learn n.

Question 1. We want to model this protocol using the applied pi-calculus. We model pairs and
asymmetric encryption using destructors. Give two processes A(ska, pkb) and B(skb) modelling
the two roles of the protocol, where A only uses channel cA and B only uses cB . Process A should
have n as a free name.

Question 2. Let P
def
=

(
A(a, pk(b)) |B(b)

)
and Φ

def
= (n, a, b).{wa 7→ pk(a), wb 7→ pk(b)}. Give

the symbolic configuration corresponding to the execution of each of the following traces, starting
with the configuration (P,Φ, ∅):

tr1
def
= out(cA, w).in(cB , x) tr2

def
= tr1.out(cB , w

′)

You should make the most general choices (e.g. in the symbolic evaluation steps) so that the result-
ing symbolic configuration accounts for all concrete configurations, in the sense of the completeness
result of the symbolic semantics.

Question 3. Let (,Ψ, C) be the last configuration obtained above. Show that the constraint
system C ∧Ψ `? n can be simplified into a solved constraint system. Conclude that n is not secret.

Question 4. Give the clauses that Proverif would generate for P and the theory of pairs and
asymmetric encryption.

Question 5. We consider resolution with selection, with the selection strategy where any hy-
pothesis that is not of the form att(x) is selected. Show how this rule can be used to derive, from
the previous clauses, a solved clause with conclusion att(n). The hypotheses of a clause may be
treated as a set of atoms, e.g. multiple hypotheses can be merged.

4

