
Formal Proofs of Security Protocols
David Baelde, ENS Paris-Saclay
October 23, 2019 (work in progress)

1

Contents

1 Model 3
1.1 Terms . 3

1.1.1 Equational theory . 4
1.1.2 Rewrite rules . 4
1.1.3 Renaming . 5

1.2 Processes . 6
1.2.1 Internal reduction . 7
1.2.2 Labelled transitions . 8

2 Verifying secrecy for bounded executions 12
2.1 Deciding deduction . 12
2.2 Symbolic execution . 13
2.3 Solving deducibility constraint systems . 16

3 Verifying secrecy for unbounded executions 18

4 Equivalences 19
4.1 Static equivalence . 19
4.2 May testing . 20
4.3 Trace equivalence . 21
4.4 Observational equivalence and bisimulation . 23
4.5 Concluding remarks . 25

5 Computational security 26

We present in chapter 1 a symbolic model of security protocols, and illustrate how it can be used,
e.g. to model secrecy. Secrecy verification is developped in more detail in chapters 2 and 3 respectively
for bounded and unbounded executions: in the former case we obtain a decidability result by using
deducibility constraints; in the la�er we describe the semi-decision procedure that Proverif uses in the
unbounded case, using a Horn-clause abstraction of protocols. We go back to the semantics of our
processes in chapter 4 to define and study various behavioral equivalences, and show how they are
useful to model more advanced security properties : strong secrecy, anonymity, unlinkability, etc. We
will only briefly describe how equivalences may be verified, in particular in Proverif. Finally, chapter 5
introduces a much more recent approach which allows to use symbolic techniques to obtain security
proofs in the computational model.

2

Chapter 1

Model

Before anything else, we must define a formal model for security protocols. As is
common, we shall use a variant of the (applied) π-calculus. More specifically, the
calculus defined below is very close to the one used in Proverif.

The first step is to define a term language to represent messages and compu-
tations over them (section 1.1). Then, a process calculus will be used to represent
protocols (section 1.2).

1.1 Terms
Terms are formal representations of messages and computations over them. We start
by assuming several disjoint and countable sets of basic objects:

• a set X of variables, which will be denoted by x, y, z; Names will be used to
represent the secrets of honest
participants: nonces, keys,
identities, etc. The a�acker
will not know them a priori.
Function symbols will
represent specific terms, terms
constructions or computations
over terms. Variables, as usual,
will be used as placeholders
for unknown terms.

• a set N of names, which will be denoted by n, m, k.

Then, we assume a signature Σ, that is a set of function symbols together with an
arity arΣ : Σ → N. Given a set of basic terms B, the set T (B) of terms generated
from B using Σ is defined as the least set containing B and closed by application of
function symbols respecting their arities. Terms will be denoted by s, t, u, v.

Example 1. One possible signature is Σ = { senc, sdec, pair, proj1, proj2, ok }.
The symbols senc and sdec, of arity 2, represent symmetric encryption and decryption.
Pairing is modeled using pair of arity 2 and projection functions proj1 and proj2, both
of arity 1. Finally, the symbol ok is of arity 0, i.e. it is a constant.

With this signature we havepair(ok,ok) ∈ T (∅), senc(pair(ok,ok), k) ∈ T (N)
and sdec(ok, x) ∈ T (X). However, senc(ok) and ok(ok) are not terms.

When using this signature, we will o�en write 〈s, t〉 rather than pair(s, t), and
{m}k for senc(m, k).

Given a term t, we define fv(t) as the set of variables that occur in t. Similarly,
fn(t) is the set of names occurring in t. A term is said to be closed when it contains no
variable. A substitution is a finite domain map from X to T (B) for some B. Substi-
tutions will be denoted by θ or σ, their domain will be noted dom(·). The application
of a substitution θ to a term t is defined as usual and noted tθ. In particular, when
dom(θ) ∩ fv(t) = ∅, tθ = t.

We will introduce two mechanisms for giving a meaning to function symbols.
First, we will introduce equations to model when two terms should be considered
equal, i.e. when they represent computations that yield the same result. For exam-
ple, we may equate proj1(pair(s, t)) and s. Second, we provide our term algebra

3

with a means to describe computations that may fail. For example, we may have
that sdec(senc(s, k), k) reduces to s but sdec(ok, k) fails, indicating an encryption
scheme where it is possible to distinguish random messages from actual ciphertexts.

Equations and reductions will be separate mechanisms, each one taking place on
a specific kind of function symbol. Before introducing them, we thus assume that our
signature is split between constructor and destructor symbols, i.e. Σ = Σc] Σd. In
the following we write Tc(B) for terms built fromB using only constructor symbols,
i.e., elements of Σc. Elements of Tc(N) are called messages.

1.1.1 Equational theory
Our equational theory is going to be generated from equations between terms Equations should not be able

to distinguish specific names,
because names represent
values that are generated at
random.

that
may contain variables but no names. We thus assume a set of equationsE ⊆ Tc(X)2;
we will use an infix notation for it, writing s E t rather than (s, t) ∈ E. We then
define the binary relation =E over Tc(N ∪X) as the least equivalence relation that
contains E and is closed under substitution and context closure. In other words, we
impose that: � For practical applications,

equations are o�en oriented
into rewrite rules, and good
properties (e.g. confluence,
termination) are required to
obtain e.g. computable
equality and unification
modulo E.

• for all s E t, we have s =E t;

• for all s =E t and for any substitution θ : X → Tc(N ∪X), we have sθ =E tθ;

• for all f ∈ Σ with ar(f) = n,
for all s1, . . . , sn and t1, . . . , tn such that si =E ti for all i ∈ [1;n],
we have f(s1, . . . , sn) =E f(t1, . . . , tn).

Example 2. With the signature of example 1, and assuming that Σ = Σc, consider E
made of three equations:

sdec(senc(x, y), y) E x, and proji(pair(x1, x2)) E xi for i ∈ {1, 2}.

We then have proj1(sdec(senc(pair(ok, n), k), k)) =E ok but ok 6=E pair(ok, n).

Exercise 1. Let u and v be terms such that u =E v, and let x be a variable. Show
that t{x 7→ u} =E t{x 7→ v} for any term t. Conclude that the substitution principle
holds: for any terms s, t, u, v and variable x, s =E t and u =E v imply s{x 7→ u} =E

t{x 7→ v}.

1.1.2 Rewrite rules
We assume, for each destructor symbol f ∈ Σd of arity n, a set of reduction rules of
the form f(u1, . . . , un) → u where u, u1, . . . , un ∈ Tc(X). From this we define a
computation relation ⇓ ⊆ T (N)× Tc(N) between terms and messages as the least
relation satisfying the following conditions: � As for the equational theory,

specific applications of our
model may call for extra
assumptions. For instance,
one may impose that the
computation relation is
deterministic (up to =E) or
computable.

• for all n ∈ N , n ⇓ n;

• for all f ∈ Σc with ar(f) = n,
for all t1, . . . , tn and u1, . . . , un such that ti ⇓ ui for all i ∈ [1;n],
f(t1, . . . , tn) ⇓ f(u1, . . . , un);

• for all f ∈ Σd with reduction rule f(u1, . . . , un)→ u,
for all t1, . . . , tn and θ : X → Tc(N) such that ti ⇓ uiθ for each i ∈ [1;n],
f(t1, . . . , tn) ⇓ uθ;

• for all t, u and v such that t ⇓ u and u =E v, t ⇓ v.

We write t 6⇓ when there is no message u such that t ⇓ u.

4

Example 3. Consider again Σ from example 1 but assuming now that Σd = {proj1,proj2}.
Assume that E contains only the equation sdec(senc(x, y), y) E x, and take the re-
duction rules

proj1(pair(x, y))→ x and proj2(pair(x, y))→ y.

As an analogue of what we obtained in the previous example, we have

proj1(sdec(senc(pair(ok, n), k), k)) ⇓ ok.

Observe that the fourth item of the definition of ⇓ is crucial to obtain this computation,
as it is needed to have sdec(senc(pair(ok, n), k), k) ⇓ pair(ok, n). We also have
pair(ok, n) 6⇓ ok: in fact, pair(ok, n) ⇓ u i� u =E pair(ok, n). Finally, there are
terms that cannot be computed, e.g. proj1(ok) 6⇓ and proj1(〈ok,proj1(ok)〉) 6⇓.

Depending on the problem that is considered, it may be more practical to con-
sider only equations and reduction rules. Sometimes, e.g. in Proverif, both are avail-
able. In such cases, there is o�en a choice between equations and reductions, as il-
lustrated in the previous examples for pairing. This choice may involve performance
issues but it also a�ects the adequacy of the modelling of cryptographic primitives.

� Note that computation failures
can o�en be detected through
equations: for instance, under
the equational theory of
example 2, if t is a message,
〈proj1(t),proj2(t)〉 =E t

holds i� t is of the form
〈t1, t2〉, i.e. i� proj1(t)

computes successfully.

The key di�erence to keep in mind is that, when t is a term featuring destructors,
it is sometimes impossible to obtain a message u such that t ⇓ u: this failure to
compute (or failure to eliminate destructors) will lead to di�erent behaviours of the
protocol (and a�acker). We will see below examples where it makes a di�erence.

Example 4. Asymmetric encryption is generally be�er represented as a destructor,
using binary encryption and decryption symbols as well as a unary public-key symbol
pk, and the following reduction rule:

adec(aenc(x,pk(y)), y)→ x

Example 5. Equality tests can be obtained by taking a destructor eq equipped with a
single reduction: eq(x, x)→ x. Indeed, one has eq(s, t) ⇓ u i� s ⇓ u and t ⇓ u.

Example 6. In several se�ings, it is required that destructors are deterministic up-to
the equational theory, so that t ⇓ u and t ⇓ v i� u =E v. This is not forced in our
definition. For instance, we can define a typical non-deterministic binary destructor
choose by the following two reductions:

choose(x, y) → x

choose(x, y) → y

Example 7. More expressive computations can be expressed by ordering the reduction
rules associated to a destructor, and requiring that a rule may only be used if the previous
ones do not apply. For instance, we may equip a destructor eqb with the following list
of rules:

eqb(x, x) → true
eqb(x, y) → false

Consider two di�erent names n and m, and assume that true 6=E false. When taking
the ordering into account we have eqb(n, n) ⇓ b i� b =E true. Without the ordering,
this is not true since the second rule applies, and thus eqb(n, n) ⇓ false.

1.1.3 Renaming
A renaming is a total application from names to names. Renamings will be noted in
the same way as substitutions, implicitly assuming that they behave as the identity
where they are not explicitly defined. Their application is also defined analogously.
For example, if θ = {n 7→ m,m 7→ n, p 7→ n} and t = pair(m, p), then tθ =
pair(n, n). As shown in that example, a renaming may not be bijective.

5

Exercise 2. Assume that s =E t for some s, t ∈ T (N). Show that sσ =E tσ for any
renaming σ.

Exercise 3. Consider the variant of computations where reductions rules are ordered.
Is it true that t ⇓ u implies tσ ⇓ uσ for any renaming σ? If not, propose an extra
assumption under which the claim holds.

1.2 Processes
Protocols will be modelled using a process algebra in the style of the applied pi-
calculus, which itself elaborates on Milner’s pi-calculus. Although our presentation
di�ers from its specific description, our calculus is compatible with that of Proverif,
the main di�erence being that we do not treat private channels.

We assume a countably infinite set C of channels, whose elements will be de-
noted by c, d, etc. Processes are generated from the following grammar:

P,Q ::= 0 | (P | Q) | !P
| in(c, x).P | out(c, u).P | new n.P
| let x = t in P else Q

where c ∈ C, x ∈ X , n ∈ N , u ∈ Tc(N ∪ X) is a constructor term and t ∈ T (N ∪
X) is an arbitrary term. Before providing a formal semantics for this language, we
describe intuitively what each construct should mean:

• 0 is the process that does nothing.

• (P | Q) is the parallel composition of processes P and Q.

• !P is the replication of P , which can be thought of as an infinite parallel com-
position (P | P | P | . . .).

• in(c, x).P is a process that waits for an input on channel c and then behaves
as P with x bound to the received message.

• out(c, u).P outputs a message u on c and then behaves as P .

• new n.P creates a new (previously unused) name m and then behaves as P
with n replaced by m.

• let x = t in P else Q a�empts to evaluate t: upon success, it binds x to the
resulting message and continues with P ; otherwise, it continues with Q.

This syntax is close but not identical to that of Proverif. We refer the reader to the
user manual of the tool for the concrete Proverif syntax.

We will consider terms up to associativity and commutativity of parallel compo-
sition, and up to the identification of P | 0 and P . This means, for instance, that
(P | Q) | (R | 0) andQ | (P | R) are the same process, which we would write more
simply (and unambiguously) as P | Q | R.

Notations. We will usually omit the null process, writing e.g. out(c, u) instead of
out(c, u).0 or (let x = t in P) instead of (let x = t in P else Q). When u, v ∈
T (N ∪ X) we write (if u = v then P else Q) for (let _ = eq(u, v) in P else Q),
assuming that eq is defined as in example 5.

6

Handling binders. We write fv(P) for the set of free variables of P , i.e. the set
of variables that are not bound by an input or a let construct. Similarly, we write
fn(P) for the set of free names of P , i.e. the set of names that are not bound by
a new construct. A process P is closed if fv(P) = ∅ and we will only consider
the execution of processes under this condition: this means that when out(c, u) is
emi�ed, fv(u) = ∅, hence u is a message; similarly, when executing let x = t, we
have t ∈ T (N), i.e. it is well-defined to ask whether there exists u such that t ⇓ u.

The constructs in, let andnew being binders, they induce a notion ofα-renaming.
We will implicitly consider terms up to it. As is standard with higher-order terms,
we also assume that substitution is capture avoiding — and hence compatible with
α-renaming. For example, this means that, for any m 6∈ fn(P),(

new n. out(c, senc(x, n)).P
)
{x 7→ n}

=
(
new m. out(c, senc(x,m)).P{n 7→ m}

)
{x 7→ n}

=
(
new m. out(c, senc(n,m)).P{n 7→ m}{x 7→ n}

)
.

1.2.1 Internal reduction
We first endow processes with an operational semantics that expresses how a closed
process may execute.

Definition 1 (Internal reduction). The binary relation P Q is given by the follow-
ing rules:

• in(c, x).P | out(c, u).Q | R P{x 7→ u} | Q | R

• (let x = t in P else Q) | R P{x 7→ u} | R when t ⇓ u

• (let x = t in P else Q) | R Q | R when t 6⇓

• new n.P | R P{n 7→ m} | R when m 6∈ fn(new n.P,R)

• !P | R !P | P | R

Remark 1. The following rules are admissible for the syntactic sugar defined above,
when u and v are constructor terms – in practice we will use it when Σd = ∅:

if u = v then P else Q | R P | R when u =E v

if u = v then P else Q | R Q | R when u 6=E v

The choice of fresh names in the reductions is somewhat arbitrary, as expressed
in the following property, where the bijectivity condition is needed (even without
ordered reduction rules, cf. exercise 3) due to the presence of else branches.

Proposition 1. If P Q then Pσ Qσ for any bijective renaming σ.

This result will o�en be used in the case where there is an “undesirable” name
n ∈ fn(P) \ fn(Q). Then we can swap n with any other name m 6∈ fn(P) ∪ fn(Q),
using proposition 1 with the permutation {n↔ m}, which gives us

P{n 7→ m} = P{n↔ m} Q{n↔ m} = Q.

Example 8. Using the non-determinitic destructor of example 6, we can encode non-
deterministic choice in processes1:

P +Q
def
= let x = choose(true, false) in if x = true then P else Q

We then have P +Q 2 P and P +Q 2 Q.
1 Private channels allow another simple encoding of this common operator. Even without non-

deterministic destructors and private channels, more complex encodings of non-deterministic choice of
processes are possible.

7

We use this notion of computation — which correctly reflects (some) real-world
computations — to give a first formal security definition.

Definition 2 (Secrecy). We say that a process P does not ensure the secrecy of a
message s when there A is the adversary, or a�acker.

By interacting in a malicious
way with P , it a�empts to
obtain s and emit it on c.

exist closed processes A and Q, a channel c and a term s′ such
that:

• terms in A belong to Tpub(N) and fn(P, s) ∩ fn(A) = ∅,

• s =E s
′ and

• P | A ∗ out(c, s′) | Q and names chosen in this reduction when reducing
new constructs are never taken in the initial “secret set” fn(P, s).

Otherwise, we say that P ensures the secrecy of s.

The condition on free names expresses that the a�acker does not know the initial
secrets of the protocol. Without it, secrecy would never hold!

Exercise 4. For each of the following processes, indicate when the secrecy of n is
ensured, and exhibit an adversary otherwise:

• P1 = new k.out(c, senc(n, k)).out(c, k)

• P2 = in(c, x).out(c, senc(n, x))

• P3 = out(c, senc(n, k)).in(c, x).if x = n then out(c, k)

• P4 = in(c, x).let y = adec(x, k) in out(c, k) else out(c, aenc(n,pk(k)))

• P5 = !P4

Exercise 5. Show that the condition of definition 2 on the choice of fresh names in
the reduction is necessary, by providing an undesirable example that would count as
a breach of secrecy without the condition. Similarly, show the importance of fn(s) ∩
fn(A) = ∅, i.e. show that the definition would not adequately model secrecy if fn(P)
were used instead of fn(P, s) in both places. Conversely, you may finally show that
removing the condition s =E s

′ would yield an equivalent definition.

1.2.2 Labelled transitions
In order to analyze the possible interactions of a process with its environment, it is
o�en more convenient to work with labelled transition semantics, as defined next.
In the context of security protocols, it will allow us to characterize secrecy without
quantifying over all possible adversaries.

We assume another set W of special variables called handles and denoted by
w. Handles being variables, they are excluded from closed processes. In the la-
belled transition system, some terms will represent how the adversary may perform
a computation involving messages he obtained from the protocol: these terms, called
recipes, will belong to Tpub(W ∪N) and will be denoted by R, M , N .

Definition 3 (Frame). A frame ~n.σ is given by a list of names ~n and a finite mapping
σ : W → Tc(N). Frames are denoted by Φ or Ψ. If Φ = ~n.σ is a frame we write
bn(Φ) for ~n; dom(Φ) for dom(σ); Φ ∪ {w 7→ u} for ~n.(σ ∪ {w 7→ u}); and m.Φ for
(m,~n).σ.

Definition 4 (Configuration). A configuration is a pair (P,Φ) where P is a closed
process and Φ is a frame. Configurations are denoted byK . WhenK is a configuration,
Φ(K) denotes its frame.

8

(out(c, u).P | Q,Φ)
out(c,w)−−−−−→ (P | Q,Φ ∪ {w 7→ u}) when w 6∈ dom(Φ)

(in(c, x).P | Q,Φ)
in(c,R)−−−−→ (P{x 7→ u} | Q,Φ)

when R ∈ Tpub(N ∪ dom(Φ)), R] bn(Φ) and RΦ ⇓ u

(let x = t in P else Q | R,Φ) τ−→ (P{x 7→ u},Φ) when t ⇓ u

(let x = t in P else Q | R,Φ) τ−→ (Q,Φ) when t 6⇓

(new n.P | Q,Φ) τ−→ (P{n 7→ m} | Q,m.Φ) if m] (new n.P,Q,Φ, bn(Φ))

(!P | Q,Φ) τ−→ (!P | P | Q,Φ)

Figure 1.1: Labelled transitions between configurations

We introduce a convenient notation for avoiding heavy freshness conditions on
names. Given two objects (terms, processes, frames or sequences of such objects)
we write x] y when no name occurs free in both x and y, i.e. fn(x)∩ fn(y) = ∅. For
instance, when R is a recipe, R] (P,Φ) means that R ∈ Tpub(W ∪N \ fn(P,Φ)).

Definition 5 (Labelled transitions). The labelled transition relation K α−→ K ′, given
by the rules of fig. 1.1, is a relation between two configurations and an action α that
may be either In an input, the recipe explains

how the environment computes
the input message from the
current frame. In an output, w
is the handle to which the
output message will be
associated in the updated
frame.

• the silent action τ , or

• the input action in(c,R) for some c ∈ C and R ∈ Tpub(N ∪W), or

• the output action out(c, w) for some c ∈ C and w ∈ W .

We define the labelled reflexive transitive closure of α−→ as follows: K0
tr−→ Kn when

tr = α1 . . . αn and Ki
αi−→ Ki+1 for all i ∈ [1;n].

As for the internal reduction, the choices of fresh names in labelled transitions
is irrelevant. Formally, we have the following analogue of proposition 1.

Proposition 2. If K α−→ K ′ and σ is a bijection on names, then Kσ ασ−−→ K ′σ.

The main novelty with the labelled transition system is that, when K = (P,Φ)
performs a labelled transition, communication is not taking place between sub-
processes of P . Instead, the transition represents a possible interaction with an hy-
pothetical environment (or a�acker, in our context) whose knowledge is represented
by Φ. This idea is pushed to the extreme here, and sub-processes of P are not even
allowed to communicate. The intuitive justification is that, since the a�acker can
eavesdrop and inject messages, he can in particular mediate internal communica-
tions, and we might as well assume that he mediates them all. Formally, adding the
internal communication rule would not change proposition 3 below.

We now formulate the analogue of secrecy in the framework of frames and la-
belled transitions, before establishing that it captures the same idea.

Definition 6 (Φ ` u). A frame Φ allows to deduce a message s, wri�en Φ ` s, if
there exists a recipe R such that R] bn(Φ) and RΦ ⇓ s.

Proposition 3 (Secrecy). A process P does not ensure the secrecy of s i� there exist
tr, P ′, Φ′ such that (P, fn(P, s).∅) tr−→ (P ′,Φ′) and Φ′ ` s.

9

Proof. We first prove that, if there exists an execution (P,Φ) tr−→ (P ′,Φ′) and a
recipeR] bn(Φ′) such thatRΦ′ ⇓ s, then there exists a processA containing terms
in Tpub(dom(Φ)∪N \bn(Φ)) such that P | AΦ ∗ out(_, s) | . . . with a reduction
that does not pick fresh names in bn(Φ).

We proceed by induction on tr, essentially translating (tr, R) into an a�acker
A. If tr = ε we have R] bn(Φ) and RΦ ⇓ s. We conclude with A := let x =
R in out(c, x) since AΦ out(c, s).

Assume now that tr = α.tr′. We have (P,Φ) α−→ (P1,Φ1) tr′−→ (P ′,Φ′) and we
proceed by case analysis on the first transition.

• If α = out(c, w), P is of the form out(c, v).Q | R, P1 = Q | R and Φ1 =
Φ ∪ {w 7→ v} for some w 6∈ dom(Φ). By induction hypothesis on tr′ we
have an adversary A1 against P1 such that A1] bn(Φ1). We conclude with
A := in(c, w).A1: we check that A] bn(Φ) = bn(Φ1); that terms of A
are in Tpub(N ∪ dom(Φ)), because dom(Φ) = dom(Φ1) \ {w}; and that the
expected reduction is possible, because the input of A and the output of P ,
both on channel c, can be used in a communication rule so that P | AΦ
P1 | A1Φ{w 7→ v} = P1 | A1Φ1.

• If α = in(c,R) we have R] bn(Φ), RΦ ⇓ u and

(P,Φ) = (in(c, x).Q | R,Φ) α−→ (Q{x 7→ u} | R,Φ) = (P1,Φ1).

We obtain by induction hypothesis an adversary A1 against P1. The a�acker
A := let x = R in out(c, x).A1 (for some x 6∈ fv(A1)) allows us to con-
clude. We easily check that it executes well, and that it contains the same free
variables as A1. It also satifies A] bn(Φ) since R] bn(Φ).

• If the first transition is a name creation, P is of the form new n.Q | R and
P1 = Q{n 7→ m} | R for some m] (P,Φ, bn(Φ)). By induction hypothesis
we obtain an adversary A1 against P1, satisfying A1] bn(Φ1) and hence
A1] bn(Φ) since Φ1 = m.Φ. Since m 6∈ fn(A1), we can reduce P | A1Φ
P1 | A1Φ1, which allows us to conclude with A := A1.

• The other cases, i.e. let evaluations and replication, are similar.

For the other direction, we need to find an inductive characterization of secrecy
(definition 2). The problem is the notion of adversary: the condition A] P is not
preserved through the reductions of P | A. Frames get us closer to a solution:
in general, when considering a process P and a current frame Φ, it would seem
reasonable to consider adversaries of the form AΦ where A] P and all terms in A
belong to Tpub(N ∪W). But this form of adversaries is not stable by reduction of
let constructs, so we need to introduce a slightly more complex notion.

In the proof below, we call adversary a closed process in which some (sub)terms
may be decorated by a recipe, which is noted uR. We say that an adversary A is
a Φ-adversary when, for all decorated subterms uR occurring in it, we have R ∈
Tpub(dom(Φ) ∪ N \ bn(Φ)) and RΦ ⇓ u. In particular, a Φ-adversary

where all decorated terms are
of the form Φ(w)w is simply a
process of the form AΦ.

Subterms that are not decorated are
required to belong to Tpub(N \ bn(Φ)). Given a term t with possibly decorated
subterms, R(t) is obtained from t by replacing any uR by R. By extension, if A is
an adversary, R(A) is obtained by replacing each uR by R — note that the resulting
object might not be a well-formed process, e.g. since destructors may occur in output
terms. For adversaries, freshness conditions are always wrt. R(A), i.e. A] bn(Φ)
means R(A)] bn(Φ). Intuitively, we do not consider the computed terms but only
the recipes that have been used to obtain them.

One can check that the existence of an adversary in the sense of definition 2 is
equivalent to the existence of a Φ-adversary for Φ = fn(P, s).∅. Thus, it su�ices to
establish that

10

• if there exists a Φ-adversary A such that P | A ∗ out(_, s′) | . . . for some
s′ =E s with a reduction that does not pick fresh names in bn(Φ),

• then there exists a trace (P,Φ) tr−→ (P ′,Φ′) such that Φ′ ` s.

We proceed by induction on (the length of) the execution of P | A.

• If the reduction sequence is empty then out(c, s′) is an immediate parallel
sub-process of P | A: if it belongs to P we conclude with tr = out(c, w) for
some fresh w since Φ ∪ {w 7→ s′} ` s by taking R = w; if it belongs to A If t occurs in a Φ-adversary

and t ⇓ u, then R(t)Φ ⇓ u.
we

have R(s′)Φ ⇓ s with R(s′)] bn(Φ), hence Φ ` s so we can conclude with
tr = ε.

• If the first reduction step is internal to A, i.e. P | A P | A′ with A A′,
we conclude by induction hypothesis on the rest of the reduction involvingA′,
keeping tr unchanged. If the reduction is a name creation, we have assumed
that the chosen name satisfiesm 6∈ bn(Φ), henceA′] bn(Φ). If the reduction
is the computation of some let x = t, we also need to check that A′ is still a
Φ-adversary: a�er computing t ⇓ u, we actually replace x by uR(t) to justify
the subterm u – indeed, we have R(t)Φ ⇓ u.

• Assume now that the first step is a communication occurring inside P , ex-
changing u on channel c. We have

(P,Φ)
out(c,w).in(c,w)−−−−−−−−−−→ (P ′,Φ ∪ {w 7→ u})

which allows us to conclude by induction hypothesis with A, which is also a
(Φ ∪ {w 7→ u})-adversary against P ′.

• For other reductions internal to P we conclude by induction hypothesis with
tr = τ.tr′. If P creates a name m, we need A to be a (m.Φ)-adversary but
we do have A] bn(m.Φ) by the freshness condition on m in the internal
reduction semantics, and because A] bn(Φ).

• Assume that, in the first reduction step, a message u is sent byA and received
by P on some channel c. Since A] bn(Φ) we have R(u)] bn(Φ) and thus

(P,Φ)
in(c,R(u))−−−−−−→ (P ′{x 7→ u},Φ).

We conclude by induction hypothesis using P ′{x 7→ u} and A′: one easily
checks that A′ is still a Φ-adversary, in particular A′] bn(Φ).

• Consider finally the case where P sends some message u to A. Then

(P,Φ)
out(c,w)−−−−−→ (P ′,Φ ∪ {w 7→ u})

and we conclude by induction hypothesis using P ′ and A′{x 7→ uw}.

Exercise 6. For each processP of exercise 4, exhibit (if it exists) an execution (P, ∅) tr−→
(Q,Φ) and a recipe R] bn(Φ) such that RΦ ⇓ n.

11

Chapter 2

Verifying secrecy for
bounded executions

In this section we will present an important approach to verify secrecy, based on (for-
ward) symbolic execution and constraint solving. This approach is only applicable
when process executions are bounded, and has been superseded by other methods
for secrecy and other reachability properties, but it remains interesting for its preci-
sion, for the applicability of its main concepts for checking equivalence, and for its
general interest in program verification.

The rest of the section follows the main steps of the method. First, the process
under study is executed symbolically (section 2.2) to obtain a finite number of reach-
able symbolic states, each such state coming with a set of deducibility constraints.
Then, secrecy is checked in each symbolic state by means of a constraint solving
procedure (section 2.3). Before covering these symbolic problems, we will need to
consider the simpler deduction problem (section 2.1).

In the rest of this section we will assume that the signature contains symbols for
representing pairing and asymmetric encryption, both modelled using destructors.
In other words we have Σc = {pair, aenc} and Σd = {proj1,proj2, adec}, no
equation, and the following reduction rules:

proji(pair(x1, x2))→ xi adec(aenc(x,pk(y)), y)→ x

2.1 Deciding deduction
In the concrete semantics of fig. 1.1 we have been using recipes to witness how
an a�acker might derive a given message. However, when checking reachability
properties such as secrecy, we only care about which terms are derivable and not
how they are derived. Another way to say this is that, when checking for secrecy
for a given configuration, we only need to consider a single recipe for a given input
message. It is important, because a given message always admits infinitely many
recipes, and we would like to be able to restrict to a finite set of small recipes.

One way to forget recipes is to consider an intruder deduction system, such as
the one of fig. 2.1 for the primitives considered here. The first rule is called the axiom
rule, then there is, for each constructor f ∈ Σc = {aenc,pair}, a composition rule
that allow to deduce new messages with toplevel symbol f and a decomposition rule
that allow to deduce subterms of messages with toplevel symbol f .

Proposition 4. Let Φ be a frame. We have Φ ` u (in the sense of definition 6) i�
Φ ` R : u is derivable (in the sense of fig. 2.1).

When one is concerned only with the deducibility of u from Φ, i.e. when the
specific recipe is irrelevant, the derivation system of fig. 2.1 can be simplified to

12

Φ(w) = u

Φ ` w : u

n ∈ N \ bn(Φ)

Φ ` n : n
Φ ` R : u

Φ ` pk(R) : pk(u)

Φ ` R1 : u1 Φ ` R2 : u2

Φ ` pair(R1, R2) : pair(u1, u2)

Φ ` R : pair(u1, u2)

Φ ` proji(R) : ui

Φ ` R1 : u Φ ` R2 : v

Φ ` aenc(R1, R2) : aenc(u, v)

Φ ` R1 : aenc(u,pk(v)) Φ ` R2 : v

Φ ` adec(R1, R2) : u

Figure 2.1: Decorated deduction rules.

omit recipes. Instead of deriving judgments of the form Φ ` R : u, judgments are
simply of the form Φ ` u and each rule is then adapted in the straightforward way.
For example, the first two rules become:

u ∈ T
Φ ` u

n ∈ N \ bn(Φ)

Φ ` n

This does not change the deducible messages, and in fact it is easy to reconstruct
the missing recipes to get back, from a derivation in this new style, a derivation in
the original system.

Also observe that Φ never changes during the course of a derivation, hence it can
sometimes be omi�ed if it is clear from the context.

Proposition 5. The problem of deciding Φ ` u given Φ and u is in PTIME.

Proof sketch. If there is a derivation of Φ ` u, then there is a derivation in which no
two points of a branch derive the same message. In derivations without such repe-
titions, a composition rule cannot be used to deduce the le� premise of a judgment.
Indeed, this can only in only two ways, shown next, and each involves a repetition
(in the case of pairs, the le� premise of the decomposition rule is its only premise):

Φ ` v1 Φ ` v2

Φ ` pair(v1, v2)

Φ ` vi

Φ ` v Φ ` pk(w)

Φ ` aenc(v,pk(w)) Φ ` w
Φ ` v

To conclude, it su�ices to observe that, when only decompositions and axioms may
be used to derive the le� premise of a decomposition, all statements Φ ` v are
such that v is either a subterm of v (the conclusion) or of Φ. More specifically,
we would show by induction on a derivation Π of Φ ` v that: if Π ends with an
axiom or decomposition then all of its internal judgments are of the form Φ ` u
with u a subterm of Φ; otherwise (when Π ends with a composition rule) its internal
judgments are of the form Φ ` u where u is a subterm of either Φ or v.

2.2 Symbolic execution
Our goal here is to design a symbolic LTS that allows to finitely (and precisely) de-
scribe the possible transitions of the LTS of fig. 1.1. Compared to that LTS, to which
we will refer as the concrete LTS, the symbolic LTS will allow free variables in its
configurations. These free variables will stand for unknown messages; they will thus
only be instantiated by constructor terms. To control the possible instantiations of
these free variables, symbolic configurations will also feature constraints.

In order to symbolically describe (un)successful computations, we define in figs. 2.2
and 2.3 the relations t ⇓ϕ x and t ⇓ϕ⊥ where t ∈ T (N ∪X), x ∈ X and ϕ is a con-
junction of equalities between terms of Tc(N ∪ X). Intuitively, t ⇓ϕ x means that

13

y ⇓x=y x n ⇓x=n x

t1 ⇓ϕ1 x1 t2 ⇓ϕ2 x2

f(t1, t2) ⇓ϕ1∧ϕ2∧x=f(x1,x2) x
f ∈ {pair, aenc}

t ⇓ϕ y
proji(t) ⇓ϕ∧y=pair(x1,x2)∧x=xi x

t1 ⇓ϕ1 x1 t2 ⇓ϕ2 x2

adec(t1, t2) ⇓ϕ1∧ϕ2∧x1=aenc(x,pk(x2)) x

Figure 2.2: Symbolic computation success rules

t1 ⇓ϕ⊥
f(t1, t2) ⇓ϕ⊥

f ∈ {pair, aenc}
t2 ⇓ϕ⊥

f(t1, t2) ⇓ϕ⊥
f ∈ {pair, aenc}

proji(t) ⇓t=aenc(x1,x2)⊥ proji(t) ⇓t=n⊥

adec(t, k) ⇓t=pair(x1,x2)⊥ adec(t, k) ⇓t=n⊥

Figure 2.3: Symbolic computation failure rules

under the condition ϕ, the computation t will succeed and result in x, whose value
will be constrained by ϕ. Similarly, t ⇓ϕ⊥ means that under ϕ the computation t
will fail. The rules of figs. 2.2 and 2.3 are meant to be sound but also complete with
respect to these intuitions.

In order to express formally these soundness and completeness statements, we
define Sol(ϕ) as the set of all θ : fv(ϕ) → Tc(N) such that ϕθ is a conjunction of
identities; we also write θ v θ′ when dom(θ) ⊆ dom(θ′) and θ′|dom(θ) = θ.

Proposition 6. Let t ∈ T (N ∪ X) and x ∈ X .

• For every t ⇓ϕ x and θ ∈ Sol(ϕ), tθ ⇓ θ(x).

• For every θ : fv(t) → Tc(N) and u such that tθ ⇓ u, there exists ϕ such that
t ⇓ϕ x, θ v θ′ ∈ Sol(ϕ) and u = θ′(x).

Proposition 7. Let t ∈ T (N ∪ X).

• For every t ⇓ϕ⊥ and θ ∈ Sol(ϕ), tθ 6⇓.

• For every θ : fv(t)→ Tc(N) such that tθ 6⇓, there exists ϕ such that t ⇓ϕ x and
θ v θ′ ∈ Sol(ϕ).

Example 9. We can derive adec(proj1(x), y) ⇓ϕ z with

ϕ := x = x ∧ x = pair(x1, x2) ∧ x1 = x1 ∧ y = y ∧ x1 = aenc(z,pk(y)).

This constraint is equivalent to x = pair(aenc(z,pk(y)), x2).

Example 10. We can derive proj1(pair(x1,proj1(x2))) ⇓ϕ y where ϕ is

x2 = pair(x′2, x
′′
2) ∧ x′ = pair(x1, x

′
2) ∧ x′ = pair(y, y′)

up to the removal of identities over variables, which is equivalent to the condition

x2 = pair(x′2, x
′′
2) ∧ x1 = y.

Note that the constraint imposes that x2 is a pair, even though it is ignored in the result.

14

Note that our rules do not impose any freshness condition on the result vari-
ables. This is not necessary for soundness. However, choosing fresh result variables
is useful in the completeness arguments. For instance, when building a derivation
witnessing the fact that tθ ⇓ u in the case where t = pair(t1, t2), it su�ices to
choose fresh variables x1 and x2, obtain by induction hypotheses t1 ⇓ϕ1 x1 and
t2 ⇓ϕ2 x2 as well as θ′1 and θ′2, combine the two derivations to obtain a derivation
of t ⇓ϕ x for a new fresh variable x with ϕ := ϕ1 ∧ ϕ2 ∧ x = pair(x1, x2), and
conclude θ v θ′ ∈ Sol(ϕ) with θ′ := θ′1 ∪ θ′2 ∪ {x 7→ pair(θ′1(x1), θ′2(x2))}. This
last step requires that θ′1 and θ′2 agree on their common domain, which we obtain by
assuming wlog. that fv(ϕ1) \ fv(ϕ)] fv(ϕ2) \ (ϕ), i.e. freshly introduced variables
of each sub-branch are disjoint.

In practice, when trying to enumerate, for a given t, a complete set of t ⇓ϕ x, it
is su�icient to look for derivations that correspond to the (fresh) choices of variables
made in the completeness argument. And, in fact, there is only one such derivation.
For instance, for t := pair(x, y) it is su�icient to produce t ⇓ϕ x′ with ϕ := x =
x1 ∧ y = x2 ∧ x′ = pair(x1, x2).

In the case of computation failures t ⇓ϕ⊥, there is also a choice of name n in two
destructor rules: for example, proj1(x) ⇓x=n⊥, proj1(x) ⇓x=m⊥, etc.; similarly,
proj1(n) ⇓n=n⊥, proj1(n) ⇓n=m⊥, etc. This infinite choice can also be avoided in
practice, but we won’t detail how.

We are now ready to define the symbolic semantics. It is given in fig. 2.4 in
the form of a labelled transition system over symbolic configurations that feature a
constraint system.

K =
(
in(c, x).P | Q,Φ, C

) in(c,x)−−−−→
(
P | Q,Φ, C ∧ Φ `? x

)
x 6∈ fv(K)(

out(c, u).P | Q,Φ, C
) out(c,w)−−−−−→

(
P | Q,Φ ∪ {w 7→ u}, C

)
w 6∈ dom(Φ)(

let x = t in P else Q | R,Φ, C
)

τ−→
(
P | R,Φ, C)θ t ⇓ϕ x, θ ∈ Sol(ϕ) It actually su�ices to take a

most general unifier θ of ϕ.
There is also no need to
consider all possible ϕ,
assuming variables are chosen
su�iciently fresh.

(
let x = t in P else Q | R,Φ, C

)
τ−→
(
Q | R,Φ, C)θ t ⇓ϕ⊥, θ ∈ Sol(ϕ)

K =
(
new n.P | Q,Φ, C

)
τ−→
(
P | Q,n.Φ, C

)
n] K(

!P | Q,Φ, C
)

τ−→
(
P | !P | Q,Φ, C

)
Figure 2.4: Symbolic labelled transitions.

Definition 7. A deducibility constraint system is a finite set of deducibility con-
straints of the form T `? u where T is a set of constructor terms and u is a constructor
term. A system is viewed as a conjunction of constraints, thus the empty system is writ-
ten⊥ and the conjunction symbol is used to denote the union of constraint systems. We
assume two conditions on a deducibility constraint system T1 `? u1 ∧ . . . ∧ Tn `? un:

• Monotonicity: T1 ⊆ . . . ⊆ Tn.

• Origination: fv(Ti+1) ⊆ fv(u1, . . . , ui) for all 1 ≤ i < n.

Definition 8. LetC be a constraint system. We say that θ ∈ Sol(C) when θ : fv(C)→
Tc(N) and, for each constraint T `? u of C , Tθ ` uθ.

Definition 9. A symbolic configuration is a tuple (P,Φ, C) where P is a process with
free variables, Φ = ~n.σ is a frame whose messages may contain free variables, and C
is a constraint system.

15

WhenK is a symbolic configuration (P,Φ, C), we simply writeSol(K) for Sol(C).
Given a concrete configuration K = (P,Φ), we define dKe as the symbolic config-
uration (P,Φ,>). Conversely, if K ′ = (P,Φ, C) is a symbolic configuration and
θ ∈ Sol(K ′), we define bK ′cθ as the concrete configuration (Pθ,Φθ).

Proposition 8 (Soundness and completeness). Let K1 be a (concrete) configuration.

• If dK1e tr′−→ K ′2 and θ ∈ Sol(K ′2), then K1
tr−→ bK ′2cθ for some tr.

• If K1
tr−→ K2 then there exists K ′2 and θ ∈ Sol(K ′2) such that dK1e tr′−→ K ′2 and

K2 = bK ′2cθ.

Moreover, tr and tr′ only di�er in input actions: when x occurs in an input of tr′, a
recipe that allows to derive θ(x) occurs in the corresponding position of tr.

Example 11. Consider the process P := in(c, x).let y = adec(x, k) in out(c, y)
and the initial knowledge Φ := {w 7→ pk(k)}. Then we have

(P,Φ,>)
in(c,x)−−−−→ (P ′,Φ,Φ `? x)
τ−→ (out(c, y),Φ,Φ `? aenc(y,pk(k)))

out(c,w′)−−−−−−→ (0,Φ ∪ {w′ 7→ y},Φ `? aenc(y,pk(k))).

2.3 Solving deducibility constraint systems
We refer the reader to chapter 3 of the legacy lecture notes1 for this part. There are
a few superficial di�erences:

• The legacy notes consider symmetric encryption, but this can simply be ig-
nored. (I avoided it because I prefer to consider it as being given via construc-
tors and equations, and I did not want to develop the symbolic semantics with
the induced extra complexity.)

• The legacy lecture notes feature a deduction system with judgments of the
form u rather than Φ ` u. This is a simple change of viewpoint: instead
of deriving Φ ` u one seeks to derive u with a derivation featuring open
(unjustified) leaves labelled with terms in img(Φ).

• Instead of considering a reduction adec(aenc(x,pk(y)), y) → x, the legacy
lecture notes work with adec(aenc(x, y), sk(y)) → x where sk is a private
function symbol. As a result of this di�erence, we need one more rule (cf. my
slides) in the constraint solving procedure. We also need a slightly modified
second lemma: see my slides for the modified statement, and try to update
the proof as an exercise.

• The legacy notes feature a deduction system without a name rule. Without
such a rule, proposition 4 does not hold anymore. However, the modifica-
tion can justified as follows: when considering a constraint system expressing
some reachability or secrecy goal, we only care about the existence of solu-
tions; if there is a solution featuring a�acker-generated names, there is also
one where these names are all replaced by the same arbitrary term (which
exists since the first frame is assumed to be non-empty), and that solution is
accounted for in the deduction system without the name rule.

• The symbolic semantics that we have described only deal with asymmetric
encryption and pairs, but does not have the eq destructor (cf. example 5)

1 http://www.lsv.fr/~baelde/secu/poly.pdf

16

http://www.lsv.fr/~baelde/secu/poly.pdf

which allows to encode basic conditionals! Adding them would force us to
consider disequality constraints in addition to equalities and deduction con-
straints. This can be done, but is out of the scope of our lectures. Note that
this also complexifies slightly the above discussion regarding names.

17

Chapter 3

Verifying secrecy for
unbounded executions

The slides for this part are available online. The reference is the corresponding chap-
ter in the old lecture notes.

18

http://www.lsv.fr/~baelde/secu/poly.pdf

Chapter 4

Equivalences

In this section we will define several equivalences on processes. The goal is to model
indistinguishability by an outside observer, which in turn can be used to formally
define several security properties. This style of modelling has become popular in par-
ticular for privacy-type properties, that o�en cannot be expresses as properties of
traces (unlike secrecy or correspondence properties). As we shall see, several equiv-
alences may be considered, which may be more or less realistic, and more or less
di�icult to verify.

4.1 Static equivalence
We start by defining an observational equivalence on frames. Intuitively, two frames
are statically equivalent when an a�acker will always obtain the same results when
computing on one frame or the other.

Definition 10. Static equivalence is the least symmetric relation on frames such that
two frames Φ and Ψ are statically equivalent, wri�en Φ ∼ Ψ whenever all of the fol-
lowing conditions hold:

• dom(Φ) = dom(Ψ);

• for all R ∈ T (dom(Φ) ∪N \ bn(Φ,Ψ)), We consider recipes that
correspond to computations
performed by the a�acker, who
does not have access to the
secret/fresh names of either
frame.

if there exists u such that RΦ ⇓ u then there exists v such that RΨ ⇓ v;

• for all M,N ∈ T (dom(Φ) ∪N \ bn(Φ,Ψ)),
if there exists u and v such that MΦ ⇓ u, NΦ ⇓ v and u =E v,
then there exists u′ and v′ such that MΨ ⇓ u′, NΨ ⇓ v′ and u′ =E v

′.

We may abbreviate the second condition as “RΦ⇓ i� RΨ⇓” and the third as
”MΦ⇓ =E NΦ⇓ i� MΨ⇓ =E NΨ⇓” — recall that static equivalence is symmetric.

Example 12. Regardless of the available cryptographic primitives we have:

• (n,m).{w 7→ n} ∼ (n,m).{w 7→ m};

• (n,m).{w 7→ n,w′ 7→ n} 6∼ (n,m).{w 7→ m,w′ 7→ n};

• n.{w 7→ n} 6∼ n.{w 7→ m}.

Example 13. Assuming that asymmetric encryption is modelled using the reduction
adec(aenc(x,pk(y)), y)→ x alone, we have:

• (k, n).{w 7→ aenc(m,pk(k))} ∼ (k, n).{w 7→ n};

19

• (k, n).{w0 7→ pk(k), w 7→ aenc(m,pk(k))} 6∼
(k, n).{w0 7→ pk(k), w 7→ n};

• (k, n,m).{w 7→ aenc(m,pk(k)), w′ 7→ k} 6∼ (k, n,m).{w 7→ n,w′ 7→ k};

• (k, n,m).{w 7→ aenc(m,pk(k)), w′ 7→ aenc(n,pk(k)), w0 7→ pk(k)} 6∼
(k, n,m).{w 7→ aenc(m,pk(k)), w′ 7→ aenc(m,pk(k)), w0 7→ pk(k)}.

As seen in the accompanying slides, static equivalence can be used to formally
define o�line guessing a�acks.

4.2 May testing
We define a first equivalence on processes, that takes into account the possible ex-
ecutions of the process, relying on internal reduction.

Definition 11. A test is a process with no free name and in which a special channel
T may occur. A process P may pass a test T , wri�en P |= T if

P | T ∗ out(T, u) | Q for some u and Q.

We define T(P) := {T | P |= T}.

We say that the process may pass the test because there is one execution where
the success output is reached. Alternatively, one might say that the process must
pass the test when, for all (su�iciently complete or fair) traces, the success output is
reached.

Definition 12. Processes P and Q are may-testing equivalent when T(P) = T(Q).

May-testing equivalence can be related to static equivalence; the proof of the
following proposition relies on the same ingredients as proposition 3.

Proposition 9. If (P, ∅) tr−→ (P ′,Φ) and (Q, ∅) tr−→ (Q′,Ψ) with Φ 6∼ Ψ, then P and
Q are not may-testing equivalent.

May-testing equivalence requires more than static equivalence for the reachable
frames: it also imposes that the same actions are feasible for both processes. For in-
stance, if P can perform an output on c and notQ, then the test in(c, x).out(T,ok)
belongs to T(P) \ T(Q).

May testing is arguably the most natural notion of indistinguishability, where
the distinguisher is a process. If it fails, then there is a test (a distinguisher, or at-
tacker) that can reach the success output when put in parallel with one process but
not the other: the distinguisher can tell, in such a case, with whom he is interacting.

However, as o�en, modelling indistinguishability through may testing implies
some subtle choices. First, our process algebra is synchronous: outputs have a con-
tinuation, thus a process can observe when its output has been received; such ob-
servables might not be desirable, if the protocol and a�acker are played on an asyn-
chronous network. Second, some reasonable a�acks may not be representable by our
simple processes. Consider for example the processes P := out(c,ok).out(c,ok)
andQ := out(c,ok)+out(c,ok).out(c,ok) (using non-deterministic choice as en-
coded e.g. in example 8). Both processes may pass the test in(c, x).in(c, y).out(T,ok).
However, in a practical se�ing where process executions are reliable, an a�acker
could observe only with Q a situation where only one output is emi�ed — note that
such an a�acker cannot be represented as a process in our calculus, since there is no
way to tell that an output won’t happen, or hasn’t happened a�er some delay. Such
distinctions would be captured through must testing, and by stronger equivalences
discussed below.

20

4.3 Trace equivalence
Conceptually, trace equivalence replaces the tests of may testing by traces and frames
of the labelled transition system. Basically, two processes are trace equivalent if, for
every execution that one process can perform in the LTS, the other process can per-
form an execution with the same trace (up to τ actions, which are not observable)
and resulting in a frame that is statically equivalent.

Definition 13. We write K tr⇒ K ′ when tr does not contain any τ action and there
exists a trace tr′ obtained from tr by inserting τ actions such that K tr′−→ K ′.

Trace equivalence is then o�en defined from Tr(K) = {(tr,Φ(K ′)) | K tr⇒ K ′}
as the relation K ≈ K ′ which holds when for all (tr,Φ) ∈ Tr(K) there exists
(tr,Ψ) ∈ Tr(K ′) such that Φ ∼ Ψ, and vice versa. We adopt an equivalent but more
concise definition below, via the definition of a meaningful notion of observable Tr′.

Definition 14. When K is a configuration, we define

Tr′(K) = {(tr,Ψ) | K tr⇒ K ′, Φ(K ′) ∼ Ψ}.

We say that K and K ′ are trace equivalent when Tr′(K) = Tr′(K ′).

Note that this definition only makes sense when dom(Φ(K)) = dom(Φ(K ′)).
More surprisingly, it essentially requires bn(Φ(K)) = bn(Φ(K ′)), otherwise trace
equivalence breaks for silly reasons. For instance, supposing that there exists a name
n ∈ bn(Φ(K ′)) \ bn(Φ(K)), K admits traces that use n in recipes, whereas this
would be forbidden for K ′. This condition on bound names should be ensured first
by α-converting one of the two configurations. Anyway, we tend to use trace equiv-
alence on processes, i.e. configurations with empty frames: when P and Q are pro-
cesses, we write P ≈ Q when (P, ∅) ≈ (Q, ∅).

As we shall see, trace equivalence is close to may testing, but the two notions
only coincide under (mild) conditions.

Proposition 10. Assume that computation is deterministic in the following sense: for
all t, u and v such that t ⇓ u, t ⇓ v and u =E v are equivalent. Then trace equivalence
implies may-testing equivalence.

We first show that the determinism assumption is necessary.

Example 14. Consider Σ = {f,g, ch, val} with Σpub = {ch, val}. The unary sym-
bols f and g are private constructors, and the equational theory E is empty. The public
constructors ch (unary) and val (binary) are associated with the following reductions:

ch(x) → f(x) val(x, f(x)) → x
ch(x) → g(x) val(x,g(x)) → x

Consider now two processes:

P := new n. out(c, n).in(c, x).in(c, y).

let _ = val(n, x) in let _ = val(n, y) in if x = y then out(c, n) else 0

Q := new n. out(c, n).in(c, x).in(c, y).

let _ = val(n, x) in let _ = val(n, y) in if x = y then 0 else out(c, n)

It is easy to see that T(P) 6= T(Q). Specifically, the following test passes only with P :

in(c, z).let z′ = ch(z) in out(c, z′).out(c, z′).in(c, _).out(T, _).0

Let us now show that Tr′(P) = Tr′(Q). It is easy to see that these sets coincide
for traces of length up to 4. More precisely, they both contain exactly the prefixes of

21

out(c, w).in(c,R).in(c,R′).τ (for arbitrary w, R and R′) together with any frame
Φ ∼ n.{w 7→ n}. In order to execute one more τ action, we must have RΦ ⇓ f(n) or
RΦ ⇓ g(n): since f and g are private, we must have R = ch(w), regardless of whether
we are considering P or Q. In order to execute a third τ action, we must similarly have
R′ = ch(w). Hence Tr′(P) and Tr′(Q) coincide for traces of length up to six.

The only trace of length seven that could be considered is

out(c, w).in(c, ch(w)).in(c, ch(w)).τ.τ.τ.out(c, w′)

(there is technically a choice in w and w′ but it does not change the argument). This
trace can be executed by P and Q, with resulting frames Φ ∼ n.{w 7→ n,w′ 7→ n}:
crucially, for Q, this is because it is possible to take ch(w)Φ ⇓ f(n) for the first input
ch(w)Φ ⇓ g(n) for the second.

Proof of proposition 10. Under the computation determinism assumption we show
that, when P0 ≈ Q0, any test T0 ∈ T(P) also belongs to T(Q). From P0 | T0 ∗

out(T, _) | _ we obtain a reduction

P0 | T0θ0
∗ P ′0 | T ′0θ′0 P1 | T1θ1

∗ P ′1 | T ′1θ′1 . . . Pn | Tnθn ∗ P ′n | T ′nθ′n

such that:

1. (P, ∅) = (P0,Φ0) α1⇒ (P1,Φ1) . . . αn⇒ (Pn,Φn)

2. for every x ∈ dom(θ′n) there exists Rx such that RxΦn ⇓ θ′n(x)

3. for every i, Tiθi ∗ T ′iθ
′
i and θi v θ′i v θi+1

4. for every i, (Ti, T
′
i)] bn(Φi)

5. T ′n = out(T, _) | _

6. for every i there exists a conjunction of equalities ϕi such that
for all σ, |= ϕiσ i� Tiσ ∗ T ′iσ

Here, |= ϕ means that ϕ consists only of identities modulo the equational theory.
Note that condition 2 is expressed only for θ′n but actually applies to all θi and θ′i by
condition 3.

Conditions 1 and 3 are obtained by decomposing the original reduction into por-
tions where Pi and Tiθi reduce separately followed by one communication between
the two.

• The internal reductions of Tiθi are mapped to Tiθi ∗ T ′iθi. There we ensure
wlog that fresh names are picked outside of bn(Φi). When let constructs
are evaluated, we can construct T ′i satisfying 4: the key case is when Tθi =
let x = tθi in Pθi else Qθi reduces toPθi{x 7→ u}, for which we set T ′ = P
and extend θi with {x 7→ u}, for which there exists a recipe Rx satisfying
condition 2, obtained by replacing in t any variable y by its associated recipe
Ry . Still concerning let evaluations, we extract a formulaϕi that encapsulates
the conditions on Tiθi that are su�icient and necessary for the corresponding
reduction to happen, so that condition 6 above is satisfied. (This is essentially
what we did in the symbolic semantics with the t ⇓ϕ x and t ⇓ϕ⊥ predicates
of figs. 2.2 and 2.3.)

• The internal reductions Pi ∗ P ′i are mapped to τ transitions performed
implicitly before the αi+1 action of (Pi,Φi)

αi+1⇒ (Pi+1,Φi+1).

• When the communication is an output from Pi, we have αi+1 = out(c, u)
for some c and u. We have Φi+1 = Φi ∪ {w 7→ u} for some new handle w.
The process T ′i is of the form in(c, x).Q | R and we set T ′i+1 = Q | R with
θi+1 = θ′i ∪ {x 7→ u}. This extension satisfies condition 2 by taking Rx = w.

22

• When Pi performs an input, T ′i = out(c, u).Q | R and the recipe Ru =
u{x 7→ Rx}x∈fv(u) is such thatRuΦi ⇓ u by condition 2; we thus take αi+1 =
in(c,Ru).

By P ≈ Q we have (α1 . . . αn,Ψn) ∈ Tr(Q) for some frame Ψn such that
Φn ∼ Ψn. Moreover we can choose Ψn wlog to obtain (Ti, T

′
i)] bn(Ψn) for all i.

Consider now ϕ :=
∧
i ϕi∧ϕ′i. We have |= ϕθ′n, hence by static equivalence |= ϕσ′n

for some σ′n such that, for every x ∈ dom(σ′n) = dom(θ′n),RxΨn ⇓ σ′n(x). From σ′n
we derive, for all i, σi = σ′n|dom(θi) and σ′i = σ′n|dom(θ′i)

. By condition 6 we obtain
that, for all i, Tiσ′i

∗ T ′iσ
′
i. The execution (Q, ∅) = (Q0,Ψ0) α1...αn⇒ (Qn,Ψn)

yields Qi ∗ Q′i for all i, with (Q′i,Ψi)
αi+1−−−→ (Qi+1,Ψi+1). We finally check that

Q′i | T ′iσ′i Qi+1 | Ti+1σi+1:

• Ifαi+1 = in(c,Ru) we have an output out(c, u) at toplevel inT ′i , withRuΦi ⇓
uθ′i. Then RuΨi ⇓ uσ′i. Since Q′i perform αi+1 in the LTS, we have Q′i =
in(c, x).Q | R andQi+1 = Q{x 7→ v} | R for some v such thatRuΨn ⇓ v. By
determinism of⇓, we obtain that uσ′i =E v. Since our semantics identify terms
modulo E, we can assume wlog that uσ′i = v, which allows to conclude.

4.4 Observational equivalence and bisimulation
Observational equivalence and bisimulation are two similar notions, the former be-
ing defined in terms of internal reductions, the la�er in terms of labelled transitions.
Both are more constraining (finer) than may testing or trace equivalence, as they
require related processes to mimick each other step by step.

In order to define observational equivalence we define a basic notion of ob-
servable, sometimes called a “barb”. Arbitrarily, we only consider outputs as ob-
servables: we write P ⇓ c when P can output on c a�er internal reductions, i.e.
P ∗ out(c, u).P ′ | P ′′.

Definition 15. The binary relationR over closed processes is an observational bisim-
ulation if it is symmetric and P R Q implies:

• for all c, P ⇓ c implies Q ⇓ c;

• for all P ′, P ∗ P ′ implies Q ∗R P ′; Expanding the composition of
relations, this means that there
exists Q′ such that Q ∗ Q′

and Q′ R P ′.

• for all R, (P | R) R (Q | R).

Observational equivalence is the largest observational bisimulation.

Note that the largest observational bisimulation is well-defined, as the union of
observational bisimulations is still an observational bisimulation.

The first clause requires that related processes exhibit the same observables. The
last one requires that equivalence is preserved when including processes in larger
contexts: this is a nice and strong property that corresponds well to the idea that
we do not want any process to be able to distinguish two equivalent processes (by
interacting in parallel with them). The particularity of observational equivalence
(compared, for instance, with may testing) lies in the second clause which requires
that equivalence is preserved step by step through internal reductions.

Example 15. The processes in(c, x).0 and 0 are not observationally equivalent. As-
sume there is an observational equivalence relating them. Then the third clause forces
us to also relate out(c,ok) | in(c, x).0 and out(c,ok) | 0, that is out(c,ok). Now
the second clause requires to relate 0 and a reduct of out(c,ok), which can only be
out(c,ok) itself. But the first clause forbids us to relate these two processes since only
the first one exhibits an output on c.

23

Example 16. Let us write α for the output prefix out(cα,ok), and similarly for β
and γ. We do not have observational equivalence between α.(β + γ) and α.β + α.γ,
although these processes are may-testing and trace equivalent. This is because of the
second clause: we have α.β + α.γ α.β, and no possible reduction on the other side,
so an observational bisimulation would have to relate α.β and α.(β + γ). But that is
impossible: when put in parallel with in(cα, x).0, the second process can reduce (in two
steps) to γ, exhibiting an output on cγ , which the first process cannot do.

We now turn to the analogue notion using labelled transitions.

Definition 16. The binary relation R over configurations is a bisimulation if it is
symmetric and A R B implies:

• Φ(A) ∼ Φ(B);

• A τ−→ A′ implies B τ−→
∗R A′;

• A α−→ A′ implies B α⇒R A′.

Bisimilarity is the largest bisimulation.

Abadì, Blanchet and Fournet have shown [1] that observational equivalence and
bisimilarity coincide for the original applied pi-calculus, which is mostly a superset
of the language considered here, except for the fact that it does not feature destruc-
tors but only an equational theory over terms.

While verifying observational equivalence is di�icult due to the quantification
over all contexts in its third clause, verifying bisimilarity is much simpler: one can
simply a�empt to construct a bisimulation containing the desired processes, and
add more processes to that relation as needed. Of course, this is still not easy: the
bisimulation relations are rarely finite, and can be tricky to find.

Proposition 11. Bisimilarity implies trace equivalence.

Proof. If A R B and A tr⇒ A′ then B tr⇒ B′ by the second condition on R, with
Φ(A′) ∼ Φ(B′) by the first condition.

Definition 17. A configuration A is determinate when, for all A tr⇒ A′, and for any
observable action α, A′ α−→ A1 and A′ α−→ A2 imply A1 = A2.

Note that determinacy does not mean thatA tr⇒ A1 andA tr⇒ A2 implyA1 = A2

— the hidden τ actions can add many (inessential) variations between A1 and A2.
However it can be shown that A τ∗.α−−−→ A1 and A τ∗.α−−−→ A2 imply A1

τ∗−→ A′ and
A2

τ∗−→ A′, provided the two original traces choose the same names for the same
new constructs.

Proposition 12. Trace equivalence implies bisimilarity for determinate configurations.

This result is incorrect in presence of non-deterministic choice where the choice
is performed through a τ action (and, a fortiori, non-deterministic computations)
since (α + β) + γ ≈ α + (β + γ), and these two processes are determinate, but
(α+ β) is not bisimilar to any reduct of α+ (β + γ).

Proof. Let R be the relation such that A R B i� A ≈ B and both A and B are
determinate. We show thatR is a bisimulation.

The first condition is obvious: A ≈ B implies Φ(A) ∼ Φ(B).
For the second condition, assume A τ−→

∗
A′. In that case, one can show1 that

A′ ≈ A. ThusA′ ≈ B andA′ is still determinate, thus we haveA′ R B′ as required
by choosing B′ := B.

1 The possible τ actions do not change the frame’s contents. Moreover, consider a trace tr of A, we
can anticipate some of its τ actions, and add some more, to obtain a trace tr of A′ resulting in the same
frame. The converse holds because there is no non-deterministic τ .

24

For the last condition, since we have already seen how to mimick τ actions in
the previous paragraph, we can focus on showing that A α−→ A′ implies B α⇒ B′

with A′ ≈ B′. By A ≈ B, there actually exists B′ such that B τ∗.α−−−→ B′. Let
us now show that A′ ≈ B′. Assuming A′ tr⇒ A′′, we have A α.tr⇒ A′′ and thus
B τ∗.α−−−→ B′1

tr⇒ B′′ ∼ A′′. By the remarks above, since B is determinate, we have
B′ ≈ B′1. Hence we also have B′ tr⇒∼ A′′ as expected. The converse argument is
analogue.

4.5 Concluding remarks
We refer the reader to the slides for how security notions such as resistance against
o�line guessing, strong secrecy, anonymity, unlinkability, etc. are encoded as equiv-
alences.

25

Chapter 5

Computational security

In this upcoming chapter we will deal with a symbolic approach [2] that yields proofs
of security against all computational a�ackers.

26

Bibliography

[1] M. Abadi, B. Blanchet, and C. Fournet. The applied pi calculus: Mobile values,
new names, and secure communication. J. ACM, 65(1):1:1–1:41, 2018.

[2] G. Bana and H. Comon-Lundh. A computationally complete symbolic a�acker
for equivalence properties. In ACM Conference on Computer and Communica-
tions Security, pages 609–620. ACM, 2014.

27

	Model
	Terms
	Equational theory
	Rewrite rules
	Renaming

	Processes
	Internal reduction
	Labelled transitions

	Verifying secrecy for bounded executions
	Deciding deduction
	Symbolic execution
	Solving deducibility constraint systems

	Verifying secrecy for unbounded executions
	Equivalences
	Static equivalence
	May testing
	Trace equivalence
	Observational equivalence and bisimulation
	Concluding remarks

	Computational security

