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Abstract

In this lecture we explore resolution strategies, i.e. restrictions of the
resolution proof system. From a theoretical viewpoint, the main question
one asks about a strategy is whether it is still refutationally complete, at
least for a logical fragment of interest. Imposing strategies on resolution
is crucial for many practical uses of resolution. We discuss below several
interesting strategies, with di�erent proofs of completeness and di�erent
applications.

We recall in section 1 the de�nition of resolution proof systems from
the previous course. Section 2 also recalls Herbrand’s theorem and gives
an alternative formulation of it. In section 3, we go over the proof of com-
pleteness of resolution using semantic trees, and we adapt it to show the
completeness of ordered resolution in section 4. Section 5 introduces Horn
clauses and several resolution strategies that are refutationally complete
for Horn clauses, and discusses their application.

∗Modi�cations made since the original version of the document are indicated in margins with
their corresponding revision.
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1 De�nitions and notations
In this document we assume some signature F and set of predicate symbols P .
We recall next the rules of resolution.

De�nition 1.1 (Literal). A literal (noted L) is either an atom (noted A) or the
negation of an atom. We say that the literal is positive when it is an atom, neg-
ative otherwise. Given a literal L, we de�ne the opposite literal L by A = ¬A
and ¬A = A.

De�nition 1.2 (Clause). A clause (noted C) is a universally quanti�ed disjunc-
tion of literals, i.e. a formula of the form ∀~x.

∨
1≤i≤n Li where the Li are literals.

We further require that clauses are closed, i.e. all their variables are bound by the
universal quanti�ers. We say that a clause is ground when it features no variable
at all, i.e. it is a disjunction of closed literals without any universal quanti�cation.

We identify clauses modulo the associativity and commutativity of disjunc-
tion. The empty disjunction is ⊥. Clauses are often written with their universal
quanti�ers implicit, as in the following de�nition.

De�nition 1.3 (Resolution, R). The resolution proof system R is given by the
following two rules, respectively called resolution and factorisation:

C ∨ L L′ ∨ C ′
(C ∨ C ′)σ σ = mgu(L,L′) C ∨ L ∨ L′

(C ∨ L)σ σ = mgu(L,L′)

We write E `R C when the clause C can be derived from the clauses of E using
the rules of R, in an arbitrary number of steps.

De�nition 1.4 (Ground resolution, R0). We de�ne the variant R0 of R by the
following three rules:

C ∨ L L ∨ C ′
C ∨ C ′

C ∨ L ∨ L
C ∨ L

C
Cσ

System R0 is convenient to work with in theory (e.g. in completeness argu-
ments) but not appropriate for automated reasoning. Intuitively, system R is a
“lazy” version of R0 where the substitution rule is replaced by the automated
discovery of interesting substitutions thanks to the use of uni�cation. Formally,
we immediately have that E `R C implies E `R0 C . The converse is not true:
R does not allow all the substitutions performed in R0, but it can do enough in
the following sense.
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Lemma 1.5 (Lifting). If E `R0 C then there exists C ′ and θ such that E `R C ′

and C ′θ = C .

The refutational completeness ofR immediately follows from the refutational
completeness of R0 and the lifting lemma, because the empty clause has no free
variable to substitute.
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2 Herbrand theorems
We have seen the following result, which can be proved by analyzing rule per-
mutabilities in cut-free LK1 derivations.

Theorem 2.1 (Herbrand’s theorem). Let φ1, . . . , φn be quanti�er-free formulas
such that ` ∃ ~x1. φ1, . . . ,∃ ~xn. φn is derivable in LK1. Then, for each i ∈ [1;n],
there exist substitutions (θij)1≤j∈[1;ki] such that

` φ1θ
1
1, . . . , φ1θ

1
ki
, . . . , φnθ

n
1 , . . . , φnθ

n
kn

is also derivable.

Due to the symmetries of sequent calculus, the theorem can be equivalently
stated with universal quanti�cations on the left hand-side of sequents.

Exercise 2.2. Show that this result does not hold if the formulas φi are allowed
to contain quanti�ers.

In order to introduce another “Herbrand theorem”, we need to de�ne Her-
brand structures. This notion only makes sense under the assumption that the
set of closed terms built from F is non-empty.

Exercise 2.3. Characterize the signatures F such that T (F , ∅) 6= ∅. Why is this
a mild assumption when one is considering the satis�ability problem?

De�nition 2.4. A Herbrand structure is an F ,P-structure whose domain is the
F-algebra T (F , ∅). In other words, it interprets terms by closed terms1. A Her-
brand model can simply be represented as a set of closed atoms, i.e. a subset of
H de�ned as follows:

H def
=
{
P (t1, . . . , tn) | P ∈ P of arity n, and ti ∈ T (F , ∅) for all i

}
More precisely, the setH ⊆ H is seen as the structure S of domain T (F , ∅) with,
for all P ∈ P of arity n, PS = {(t1, . . . , tn) | P (t1, . . . , tn) ∈ H}.

Example 2.5. Assume F = {0, s}. We are usually considering the axioms of
elementary arithmetic with function symbols for addition and multiplication, but

1 Recall that T (F , ∅) stands for the F-agebra A of domain T (F , ∅) with, for all f ∈ F of
arity n, fA(t1, . . . , tn) = f(t1, . . . , tn).
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we can also do so without changing much by using addition and multiplication
as (ternary) predicate symbols. For instance, the axioms for addition become

∀x. add(0, x, x) and ∀x, y. add(x, y, z)⇒ add(s(x), y, s(z)).

Recall that elementary arithmetic admits a standard model of domain N but also
non-standard ones featuring copies of Z or points at in�nity, where e.g. addition
may not be commutative.

• The canonical model, of domain N, is not a Herbrand structure. However,
it is isomorphic to a Herbrand structure of domain T (F , ∅) = {sk(0) | k ∈
N}.

• Non-standard models of arithmetic (featuring copies of Z or points at in-
�nity) are not isomorphic to any Herbrand structure over F .

A Herbrand model wrt. some set S of formulas is simply a Herbrand structure
that satis�es all formulas of S.

Theorem 2.6 (Herbrand’s theorem for satis�ability). Let E be a set of purely
universal formulas, i.e. of the form ∀~x. φ with φ quanti�er-free. Then E has a
model i� it has a Herbrand model.

Exercise 2.7. Prove that theorem 2.6 does not hold if formulas φ are allowed to
contain quanti�ers.

Exercise 2.8. Prove theorem 2.6 by building a Herbrand model from an arbitrary
model S of E.

We propose a proof that relies on sequent calculus, to better relate the two
Herbrand theorems.

Proof. We show the non-trivial direction: assumingE admits no Herbrand model,
we need to establish that it admits no model at all, i.e. that it is unsatis�able.

Consider the setEg of ground instances ofE (i.e. the set of closed and quanti-
�er-free formulas obtained by instantiating universal quanti�ers with arbitrary
closed terms): rev. 1

Eg def
= {φθ | ∀~x. φ ∈ E and φθ is closed}
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Like E, the set Eg has no Herbrand model: indeed, for every Herbrand struc-
ture there exists a formula ∀~x. φ of E such that S 6|= ∀~x. φ, so there exists a
substitution2 such that S, θ 6|= φ, or equivalently S 6|= φθ.

Now, Eg can be seen as a set of propositional formulas over the set of propo-
sitional variables Pg := {P (t1, . . . , tn) | P ∈ P, ti ∈ T (F , ∅)}. If Eg had a
propositional model, it would immediately yield a Herbrand model. Thus Eg is
propositionally unsatis�able and, by completeness of LK0, we have a derivation
of F ` ⊥ for a �nite F ⊆ Eg. A fortiori, we have a derivation of F g ` ⊥ for a
�nite F ⊆ E. From there we immediately obtain a derivation of F ` ⊥.

We �nally show that the �rst Herbrand theorem is a consequence of the sec-
ond. The direct proof of theorem 2.1 using rule permutations is however more
informative (it tells us something about the size and structure or the resulting
derivation) and also more versatile (rule permutations can be used in many sit-
uations).

Proof of theorem 2.1, assuming theorem 2.6. Assume ∀ ~x1.φ1, . . . ,∀ ~xn.φn ` ⊥ is
derivable. By soundness of LK1, this means that E := {∀~xi.φi | 1 ≤ i ≤ n} is
unsatis�able. We cannot immediately conclude that the set of ground instances
Eg is unsatis�able: it could be that some structure S falsi�es some ∀x.φ only be-
cause of some instantiation of x that is not the interpretation of any closed term.
However, we have that Eg admits no Herbrand model. It is thus unsatis�able by
theorem 2.6. By completeness of LK1 we thus have a derivation of F ` ⊥ for a
�nite F ⊆ Eg, which allows us to conclude: F is a �nite set of instantiations of
E.

2 Semantic assignments are simply closed substitutions when working with Herbrand struc-
tures.
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3 Semantic trees
We assume that F and P are countable, and consider an arbitrary enumeration
of closed atoms, i.e. some (Ai)i∈N such that H = {Ai | i ∈ N}.

De�nition 3.1 (Partial interpretation). A partial interpretation of size n is a set
of literal I = {Li}0≤i<n with Li ∈ {Ai,¬Ai} for all 0 ≤ i < n. We say that
a partial interpretation I falsi�es a clause ∀~x.C , written I 6|= ∀~x.C , when there
exists a ground instance Cθ such that, for each literal L of Cθ, we have L ∈ I .

Intuitively, a partial interpretation is a Herbrand structure where a truth
value has been assigned to only a subset of atoms: A ∈ I means that A is sat-
is�ed in I , ¬A ∈ I means that A is not satis�ed in I , but it is also possible that
neither A nor ¬A belongs to I , which means that the status of A is still unde-
cided in the partial interpretation. We will not use a notion of satisfaction for
partial interpretations (i.e. I |= C) because, as soon as a clause features univer-
sally quanti�ed variables, we would have to consider all possible instantiations
for these variables, and would thus need to know the status of in�nitely many
atoms in I , which is not possible as I is �nite.

Partial interpretations can be ordered by inclusion, which yields an in�nite
directed tree, with the empty interpretation at its root and a path from I to I ′ i�
I ⊆ I ′. We make this formal in the next de�nition, where the depth of a node in
a tree is the distance between the root and that node — in particular, the depth
of the root is 0.

De�nition 3.2 (Semantic tree). A semantic tree is a possibly in�nite tree where
each node of depth n is labeled by a partial interpretation of size n. Moreover, a
node of depth n with label I that is not a leaf must have exactly two child nodes
respectively labeled I ∪ {Ai} and I ∪ {¬Ai}.

De�nition 3.3 (Tree of a set of clauses, T (E)). Given a set of clauses E, the
semantic tree of E, noted T (E), is the unique semantic tree such that, for every
node N ∈ T (E) and I such that I is the label of N , N is a leaf i� there exists a
clause C ∈ E such that I 6|= C .

Example 3.4. Assume F contains a constant symbol a and a unary function
symbol f . Assume P contains two unary predicate symbols P and Q. Consider
the following set of clauses:

E = { ∀x.P (x), ∀x.¬P (f(x)) ∨ ¬Q(a), Q(a) ∨ ¬P (f(a)) }
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If the enumeration of closed atoms is P (a), Q(a), P (f(a)), P (f(f(a))) . . . then
T (E) is the following tree, where we do not display the part of partial interpre-
tations that is inherited from parent nodes:

∅

¬P (a) P (a)

¬Q(a)

¬P (f(a)) P (f(a))

Q(a)

¬P (f(a)) P (f(a))

Leaves labeled ¬P (_) falsify ∀x.P (x). The leftmost leaf labeled P (f(a)) fal-
si�es Q(a) ∨ ¬P (f(a)), and the rightmost one falsi�es ∀x.¬P (f(x)) ∨ ¬Q(x).
The nodes labeled Q(a) or ¬Q(a) do not falsify any clause, because they do not
give an interpretation for any P (f(_)) literal yet.

The clause ¬Q(a) can be obtained by resolution from the �rst two clauses.
In general, adding resolution consequences to a set of clauses does not change
its satis�ability; here it obviously remains unsatis�able. The semantic tree of the
extended set of clauses is shorter: the node labeled Q(a) becomes a leaf.

Proposition 3.5. Let E be a set of clauses. If T (E) contains an in�nite branch,
then the set of positive literals along that branch forms a Herbrand model of E.
If T (E) is �nite, then E is unsatis�able.

Proof. Assume T (E) has a in�nite branch. Its positive labels de�ne a Herbrand
structure H ⊆ H. Assume, by contradiction, that there is some clause (∀~x. C) ∈
E such that H 6|= ∀~x.C . Then there exists a substitution θ such that H 6|= Cθ.
There is a node N with label I in our in�nite branch such that all literals of
Cθ are determined in the partial interpretation I . Moreover, H 6|= Cθ implies
I 6|= Cθ by de�nition of H and because I is in our branch. This contradicts the
fact that the branch is in�nite.

Conversely, any Herbrand model H of E yields an in�nite branch: it is the Rev. 7
branch containing all the partial interpretations that agree with H , i.e. all inter-
pretations I such that for all closed literals L we have L ∈ I i� H |= I . Indeed,
this branch cannot contradict any instance of a clause of E.

Finally, if T (E) is �nite then it does not have any in�nite branch, thusE does
not have a Herbrand model, and by theorem 2.6 it is unsatis�able.

Theorem 3.6 (Refutational completeness of R0). The system R0 is complete.
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Proof. Let E be a set of clauses that is unsatis�able. Let E∗ := {C | E `R0 C}
be the set of clauses obtained from E by applying the rules of R0. Since E∗
is unsatis�able, T (E∗) is �nite. Assume by contradiction that this tree is not
reduced to its root, and consider an internal node N of maximal depth, which
must thus have two leaves as children.

Note that, if a node N of T (E∗) falsi�es some clause C ∈ E∗ then it also
satis�es a ground clause, because E∗ is closed under the substitution rule of R0.

Let n be the depth of N and I its label. Its two children N⊥ and N> are
respectively labeled I⊥ = I ∪ {An} and I> = I ∪ {¬An}. There is a ground
clause C⊥ ∈ E∗ that is falsi�ed by N⊥ but not by N , it must thus be of the form
C ′⊥∨¬An∨. . .∨¬An. Similarly, there exists a ground clauseC> ∈ E∗ of the form
C ′> ∨ An ∨ . . . ∨ An. Because E∗ is closed under resolution and factorisation, it
must thus also containC ′⊥∨C ′>. We have I 6|= C ′⊥ because I⊥ 6|= C ′⊥ and because
this clause only contains literals over {Ai}i<n, which have the same value in I
and I⊥. Similarly, I 6|= C ′> and thus I 6|= C ′⊥ ∨ C ′>, so our node N should be a
leaf of T (E): contradiction.

The refutational completeness of R follows from the previous result and the
lifting lemma (lemma 1.5). Alternatively, the above proof can be adapted to use
R instead of R0 to obtain a direct proof of refutational completeness for R.

Another variant of the proof consists in considering the tree T (E) instead of
T (E∗). That tree is not necessarily reduced to its root. However it is still �nite
and one can show, by induction over the height3 of its nodes, that for every node
N labeled I there exists a clause C ∈ E∗ that is falsi�ed by I . Underlying that
constructive proof we have an algorithm deriving the empty clause (for the root
node) from the clauses that are falsi�ed at the leaves of T (E).

4 Ordered resolution
The proof of theorem 3.6 relies on an arbitrary enumeration (Ai)i∈N of the atoms
of H. This actually yields a proof of completeness for a resolution strategy based
on an ordering derived from this enumeration.

De�ne A ≤ A′ when A appears before A′ in the enumeration. This total
order is lifted to a quasi-order4 on closed literals by ignoring negations: L ≤ L′

when A ≤ A′ for the atoms A and A′ respectively contained in L and L′.
3 The height of a node is the height of the subtree rooted at that node.
4 Antisymmetry is lost, we only have re�exivity and transitivity.
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We abusively say that a closed literalL is maximal in a ground clauseC when
there is no literal L′ in C such that L < L′. Note that we do not require that L rev. 2
actually belongs to C5.

Example 4.1. Assume A < A′ < A′′. The literal ¬A′ is maximal in A and
A ∨ ¬A′ but not in A ∨ A′′.

We now de�ne a restriction of resolution based on this ordering of literals.

De�nition 4.2 (Ground ordered resolution, OR0). The system OR0 is given by
the following three rules, featuring the same substitution rule as R0 but factori-
sation and resolution rules that are constrained to apply on maximal literals of
ground clauses:

C
Cσ

C ∨ L ∨ L
C ∨ L L maximal in C

C ∨ L L ∨ C ′
C ∨ C ′ L maximal in C, and L maximal in C ′

Theorem 4.3. System OR0 is refutationally complete.

Proof. The argument for proving theorem 3.6 works here, since the factorisations
and resolutions performed in the argument apply to maximal literals.

To make this useful in practice, we need to lift the constraints of OR0 to the
resolution rule with uni�cation of R.

De�nition 4.4 (A ≺ A′, L ≺ L′). Assume a relation ≺ on atoms with free
variables such that:

• for any closed atoms A and A′, A ≺ A′ implies A < A′;

• for any atoms A and A′, A ≺ A′ implies Aθ ≺ A′θ for any substitution θ.

This relation is lifted to literals as before by ignoring negations. We say that a
literalL is maximal inC when this clause contains no literalL′ such thatL ≺ L′.

De�nition 4.5 (Ordered resolution, OR). The system of ordered resolution,
noted OR, is given by the two rules of R, i.e.

C ∨ L L′ ∨ C ′
(C ∨ C ′)σ σ = mgu(L,L′) C ∨ L ∨ L′

(C ∨ L)σ σ = mgu(L,L′)

with the following constraints:
5 It would be more appropriate to say that L is an upper bound of C , but that terminology

would not carry nicely to the next steps of our development.

10



• for resolution: L is maximal in C and L′ is maximal in C ′;

• for factorisation: L and L′ are maximal in C .

Example 4.6. Assume a constant symbol a and two unary predicate symbols P
and Q. Consider the relation ≺ de�ned by:

• P (a) ≺ P (t) for all t 6= a;

• Q(a) ≺ P (t) for all t.

This relation satis�es the second condition of de�nition 4.4. It also satis�es the
�rst one e.g. if the enumeration starts with Q(a) immediately followed by P (a).

Lemma 4.7 (Lifting for ordered resolution). If E `OR0 C then there exists C ′
and θ such that E `OR C

′ and C ′θ = C .

Proof. We show that we can simulate inOR the application of an arbitrary num-
ber of substitution steps followed by either resolution or factorisation of OR0.
Since an arbitrary number (possibly zero) number of substitution steps can be
combined in one, we can consider wlog. a situation with a single substitution
step on each premise of the resolution or factorisation rule of OR0.

Consider an OR0 derivation of the following form, where Lθ = L′θ′, and Lθ
is maximal in Cθ, and L′θ′ is maximal in C ′θ′:

C ∨ L
Cθ ∨ Lθ

L′ ∨ C ′
L′θ′ ∨ C ′θ′

Cθ ∨ C ′θ′

Because L and L′ are uni�able, they have a most general uni�er σ. We have
that L is maximal in C : if there was some L′ in C such that L ≺ L′, then we
would have L′θ in C ′θ such that Lθ ≺ L′θ and thus Lθ < L′θ, contradicting the
maximality of Lθ in Cθ. Similarly, L′ is maximal in C ′. We can thus form the
following derivation in OR, resulting in a more general clause than before:

C ∨ L L′ ∨ C ′
Cσ ∨ C ′σ

For factorisation, we consider a derivation as follows, where Lθ = L′θ and
this literal is maximal in Cθ:

C ∨ L ∨ L′
Cθ ∨ Lθ ∨ L′θ
Cθ ∨ Lθ
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Since L and L′ have a common instance, they have a most general uni�er σ. We
verify that both L and L′ are maximal in C : if there were some L′′ in C such that
L ≺ L′′ we would have Lθ < L′′θ, contradicting the maximality of Lθ in Cθ.
We can thus form the following derivation in OR:

C ∨ L ∨ L′
Cσ ∨ Lσ

As expected, this lemma allows to lift the refutational completeness of ORO

into that of OR.
Theorem 4.8. Ordered resolution (OR) is refutationally complete.

In the above presentation, we have started from an arbitrary enumeration
of closed atoms, to obtain an ordering < on closed atoms and literals, and we
have de�ned ordered resolution based on some an ordering ≺ that needs to be
compatible with< and substitution. We can further re�ne our analysis to obtain
a more convenient strategy: as we shall see, it su�ces to consider a relation ≺
that is compatible with substitution and which yields a strict partial order on
closed atoms.

It is not obvious how one can reconstruct a total order < (and hence an enu-
meration) from the partial order induced by ≺ on closed atoms. For instance,
one can simply take the relation de�ned by P (t) ≺ Q(t′) for any t and t’. But
we cannot enumerate all closed terms (using indices in N) by putting all closed
atoms P (t) before closed atoms Q(t′). . . unless there are �nitely many terms.

The last remark is the key to make things work. Consider an unsatis�able
set of clauses E. By compacity and Herbrand’s theorem, there exists a �nite
subset of Eg that is still unsatis�able. This �nite subset induces a �nite set of
terms that is su�cient for our argument: If we consider an enumeration of the
�nitely many closed atoms obtained using these terms, we can still obtain a �nite
semantic tree for E, and obtain from it a refutation using resolution. Moreover,
this refutation will satisfy the constraints of ordered resolution as long as the
enumeration is compatible with the partial order induced by ≺ on the �nitely
many closed atoms, which can be obtained by taking any topological sorting of
these atoms.
Exercise 4.9. Consider the order de�ned by P (a) ≺ Q(_) ≺ P (f(_)) and the
set of clauses

P (x) ∨ P (f(x)) ∨ ¬Q(f(x)), Q(f(a)), ¬P (x) ∨ P (a), ¬P (a)
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Identify maximal literals in each clause, then give a derivation of⊥ using ordered
resolution.

Exercise 4.10. Consider the following set of clauses:

P (a) ∨ ¬Q(f(x)), P (f 3(x)) ∨ ¬P (f(x)), Q(a) ∨ P (f(x))),

Show that it is satis�able without exhibiting a model: it su�ces to give an order
≺ for which the rules of ordered resolution do not apply to the clauses, hence ⊥
is obviously not derivable.
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5 Horn clauses
We introduce the class of Horn clauses. It has many practical applications, the
most famous one being Prolog, the �rst logic programming language. Several
resolution strategies that are in general incomplete turn out to be complete for
Horn clauses.

De�nition 5.1. A Horn clause is a clause featuring at most one positive literal.
It is de�nite when it features exactly one positive literal.

Example 5.2. The clause ∀x.P (x) ∨Q(s(x)) is not a Horn clause. The clauses

∀x.P (x), A ∨ ¬A and ∀x. ¬P (x) ∨ P (s(x))

are de�nite Horn clauses. The empty clause, and∀x1, x2.¬R(x1, x2)∨¬R(x2, x1)
are Horn clauses but are not de�nite.

Horn clauses are better understood as implications. Accordingly, we will
often write a clause ∀~x. ¬A1 ∨ . . .¬An ∨ A as ∀~x. A1 ∧ . . . ∧ An ⇒ A.

We will consider several resolution strategies in this section — examples will
be given by the end of the section.

De�nition 5.3 (Unit resolution, UR). Restrict the resolution rule so that one
clause is unitary, i.e. is restricted to a literal.

De�nition 5.4 (Negative resolution, NR). Restrict the resolution rule so that
one clause is negative, i.e. contains only negative literals.

De�nition 5.5 (Input strategy, IR). Fix an initial set of clauses E, and restrict
the resolution rule to have one of its premises in E.

De�nition 5.6 (Selection strategy, SR). Fix an arbitrary function f which, given
a clause, returns one of its literals, called the selected literal of that clause. Re-
strict the resolution rule so that the literals on which resolution is performed are
selected in their respective clauses.

Although we will not prove it, it is the case that all of the above strategies
are refutationally complete for Horn clauses. Negative resolution is even refuta-
tionally complete in general.

Exercise 5.7. Show that the unit and input strategies are refutationally incom- rev. 3
plete in general. We shall see that the selection strategy generalizes the unit
strategy, it is thus also refutationally incomplete in general.
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5.1 Herbrand models of Horn clauses
To study the Herbrand models of a set of Horn clauses, it is useful to start by
focusing on de�nite clauses and to consider the following operator.
De�nition 5.8. Let C be a set of de�nite Horn clauses. We de�ne FC : 2H →
2H as follows: FX(H) = {Aθ ∈ H | there exists (∀~x.

∧
1≤i≤nAi ⇒ A) ∈

C and Aiθ ∈ H for all 1 ≤ i ≤ n}.
This operator yields a characterization of Herbrand models which helps to

uncover some of their properties.
Proposition 5.9. Let C be a set of de�nite Horn clauses. A Herbrand structure
H ⊆ H is a model of C i� FC(H) ⊆ H .
Proof. Immediate by de�nition of FC .
Proposition 5.10. The set of Herbrand models of C is closed under arbitrary
intersections, and admits a least element wrt. set inclusion.
Proof. A set H ⊆ H is a model of C i� FC(H) ⊆ H . Let H1 and H2 be two Her-
brand models of C . By monotonicity of FC we have FC(H1 ∩H2) ⊆ FC(H1) ⊂
H1 and similarly with H2, thus FC(H1∩H2) ⊆ H1∩H2, i.e. H1∩H2 is a model.

This reasoning for binary intersection generalizes to arbitrary intersections.
Thus the intersection of all Herbrand models of C is still a model of C . It is also
included in all models of C by construction.
Exercise 5.11. What is the greatest model of a set of de�nite Horn clauses ?
Exercise 5.12. Give a set of (non-Horn) clauses which admits models that are
not closed under intersection, and do not admit a least model. Then give a set
which admits a least model but whose models are not closed under intersection.

It can further be shown that the least model of a positive set of Horn clauses
is the least �xed point of FC , which can be obtained as the limit of its iterations.
Exercise 5.13. Give a model of C = {A⇒ B} that is not a �xed point of FC .
Proposition 5.14. Let C be a set of de�nite Horn clauses and D be a set of
negative Horn clauses. The set C ∪ D is unsatis�able i� the least Herbrand
model of D falsi�es a clause of D.
Proof. Any Herbrand modelH ofC that is also a model ofD is a model ofC∪D.
Moreover, ifH is a model ofD andH ′ ⊆ H , thenH ′ is still a model ofD. Hence,
C ∪D admits a Herbrand model i� it the least Herbrand model of H is a model
of D.
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5.2 Completeness of unit resolution
The previous results yield a proof of refutational completeness for unit resolu-
tion, a resolution strategy which closely mimicks FC .

Proposition 5.15. Let C be a set of de�nite Horn clauses, and let H be its least
Herbrand model. For any A ∈ H we have H |= A i� C `UR A.

Proof. By the soundness of resolution, C `UR A implies H |= A. We need to
show the converse direction, which can be rephrased as H ⊆ S with S := {A |
C `UR A}. To conclude, it su�ces to observe that FC(S) ⊆ S.

Theorem 5.16. Unit resolution is refutationally complete for Horn clauses.

Proof. Consider an unsatis�able set of Horn clauses C ∪D partitioned into def-
inite and negative clauses. By proposition 5.14 and proposition 5.10 there is a
clause ¬A1∨ . . .∨¬An in D and a substitution σ such that A1σ, . . . , Anσ all be-
long to the least Herbrand model of C . By proposition 5.15 we have C `UR Aiσ
for each i, and thus C,D `UR ⊥.

5.3 Discussion and applications
Unit resolution is a form of forward proof search, starting from the atoms ini-
tially known to derive more atoms that are consequences of Horn clauses. The
derived atoms may eventually be used to contradict a negative Horn clause. This
structure is shown on the following example, using the de�nite Horn clauses
⇒ A,⇒ B and B ⇒ C and the negative Horn clause A ∧ C ⇒ ⊥:

⇒ A

⇒ B B ⇒ C
⇒ C A ∧ C ⇒ ⊥

A⇒ ⊥
⊥

In general, performing unit resolution yields to the in�nite enumeration of all
true closed atoms, which is infeasilble or at least very expensive.

In contrast, negative resolution is a form of backward proof search: one �rst
resolves a negative clause against a de�nite clause, obtaining a new negative
clause, which can be resolved against another de�nite clause, etc. We show next
how to obtain a refutation using negative resolution with the clauses from the
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previous example:

⇒ A
⇒ B

B ⇒ C A ∧ C ⇒ ⊥
A ∧B ⇒ ⊥

A⇒ ⊥
⊥

In logic programming, one sees a set of de�nite clauses as a program, and a
single negative clause as a query. Searching for a refutation of all these clauses
is the execution of the logic program, whose result is the resulting substitution.
Negative resolution is used to obtain a simple, predictable execution strategy:
at each step a part of the query (negative clause) is replaced by new subgoals,
until none remains. For example, with the Horn clauses that specify addition in
elementary arithmetic (see example 2.5) and the query ¬add(x, s(0), s(s(s(0))))
the execution is successful and returns the substitution x 7→ s(s(0)).

The resolution strategy allows to tune the direction of reasoning (either for-
ward or backward) di�erently for each clause. Consider for instances the follow-
ing clauses, where the selected literal is underlined:

⇒ P (g(a)), P (x)⇒ P (f(x)), P (g(x))⇒ P (x), P (f(a)) ∧ P (a)⇒ ⊥

On this example, unit resolution can derive all unit clauses P (f i(g(a))) and
P (f i(a)). Negative resolution can generate all negative clauses P (gi(f(a))) ∧
P (a) ⇒ ⊥. However, resolution with selection can only generate P (a) and
P (a) ∧ P (a)⇒ ⊥, and then P (a)⇒ ⊥, and �nally ⊥.

Exercise 5.17. Show that both negative resolution and unit resolution are par-
ticular cases of resolution with selection, by exhibiting an appropriate selection
function in each case.
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