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Historically, intuitionism is a current in the philosophy of mathematics, formulated by
Brouwer starting in 1905 and later. Roughly, Brouwer’s idea is that mathematics is a con-
struction of the mind, which contrasts with the view that mathematics is about deriving
objective truth. The key notion here is that of construction, which did not have a formal
meaning in Brouwer’s philosophy, but lead him to reject various non-constructive reason-
ing principles such as the law of excluded middle φ∨¬φ or reductio ad absurdum ¬¬φ⇒ φ.

Intuitionistic logic is the logic behind intuitionistic mathematics. It can be precisely
de�ned in various ways. For instance, in the propositional case, it is obtained from classical
propositional logic, presented through the natural deduction system NK0, by replacing the
reductio ad absurdum rule (Abs) by the ex-falso quod libet rule (⊥E in �g. 1). The resulting
proof system is called NJ0, and intuitionistic logic is the set of theorems that it allows to
derive.

In these lectures we will consider intuitionistic propositional logic, �rst given by NJ0.
We will introduce Kripke semantics and show that the proof system is sound and complete
with respect to this semantics of formulas. We will also discuss how intuitionistic logic
takes a particularly important role in computer science, where constructive proofs become
programs.

1 The proof system NJ0

The formulas of intuitionistic propositional logic are the same as those of classical propo-
sitional logic: we write F0 for the set of propositional formulas, built on top of a set P of
propositional constants, denoted by the letters P , Q, etc.

A sequent Γ ` φ is built from a formula φ and a multiset of formulas Γ. It should be read
as “the conjunction of all formulas in Γ implies φ”. The union of multisets Γ and ∆, where
multiplicities add up, is simply noted with a comma, i.e. Γ,∆.
De�nition 1.1. The rules of intuitionistic natural deduction NJ0 are given in �g. 1. We
write Γ `NJ φ when the sequent Γ ` φ admits a derivation in NJ0.

Apart from the axiom rule (ax), the rules consist of introduction and elimination prin-
ciples for all logical connectives. Introduction rules, noted ?I where ? is a logical connective
or constant, indicate how one might derive formulas of the form ?(φ1, . . . , φn). Elimination
rules, noted ?E, indicate what one might deduce from such formulas.

Note that the rules for negation can be derived from the rules for implication if one reads
¬φ as φ ⇒ ⊥. Rule ¬E is sometimes presented with conclusion Γ ` ψ for an arbitrary ψ:
this stronger variant can be obtained by using⊥E together with the simpler variant present
in �g. 1.

The weakening rule is sometimes present in natural deduction systems. Here we made
the choice to not take it as primitive, but we can show that it is admissible in the following
sense.
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Γ, φ ` φ ax Γ ` ⊥
Γ ` φ ⊥E Γ ` > >I

Γ ` φ1 Γ ` φ2
Γ ` φ1 ∧ φ2

∧I
Γ ` φ1 ∧ φ2

Γ ` φi
∧E

Γ ` φi
Γ ` φ1 ∨ φ2

∨I
Γ ` φ1 ∨ φ2 Γ, φ1 ` ψ Γ, φ2 ` ψ

Γ ` ψ
∨E

Γ, φ ` ψ
Γ ` φ⇒ ψ

⇒I
Γ ` φ⇒ ψ Γ ` φ

Γ ` ψ
⇒E

Γ, φ ` ⊥
Γ ` ¬φ

¬I
Γ ` ¬φ Γ ` φ

Γ ` ⊥
¬E

Figure 1: Inference rules for NJ0

Lemma 1.2 (Weakening). If Γ `NJ φ, then Γ,∆ `NJ φ.

Proof. The proof is by induction on the derivation, essentially showing that each rule still
applies when the left-hand side is enriched with ∆.

The weakening lemma can be seen as an admissible rule, which we will sometimes use
under the following notation:

Γ ` φ
Γ,∆ ` φ

2 Kripke semantics
In classical logic, interpretations are sets of propositional constants: each interpretation
indicates which atomic statements are satis�ed; from there a general notion of satisfaction
is derived. The analogue notion in intuitionistic logic is that of Kripke structure, which was
invented around 1960 by Kripke and Joyal for modal logics, i.e. logics that do not talk about
permanent truth but truth relative to time, location, observer, etc. It is thus surprising that
Kripke semantics is the right one for intuitionistic logic, the logic of constructive reasoning.

Kripke semantics is sometimes called “possible world semantics” as it considers a no-
tion of truth which is relative to a world. As one moves from one world to another, more
propositions may become true — for general modal logic constants may also become false,
but that is excluded when considering intuitionistic logic.

De�nition 2.1 (Kripke structure). A Kripke structure is given by:

• a setW of worlds;

• an order ≤ on worlds, often called accessibility relation;

• a monotonic mapping α :W → 2P .

The monotonicity condition means that α(w) ⊆ α(w′) whenever w ≤ w′.

When K is a Kripke structure, we shall denote its set of worlds byW(K).
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De�nition 2.2 (Satisfaction). Given a Kripke structureK, a worldw ∈ W(K) and a formula
φ ∈ F0(P), the satisfaction relation is de�ned by induction on φ:

• K, w |= P i� P ∈ α(w), for P ∈ P ;

• K, w |= > always holds;

• K, w |= ⊥ never holds;

• K, w |= φ ∧ ψ i� K, w |= φ and K, w |= ψ;

• K, w |= φ ∨ ψ i� K, w |= φ or K, w |= ψ;

• K, w |= φ⇒ ψ i� for all w′ ≥ w, K, w′ |= φ implies K, w′ |= ψ;

• K, w |= ¬ψ i� for all w′ ≥ w, K, w′ 6|= φ.

We say that a set of formulas E is satis�ed by w ∈ W(K) when K, w |= φ for all φ ∈ E.
When K is obvious, we simply omit it and write w |= φ or w |= φ.

De�nition 2.3 (Validity, logical consequence). Let φ, ψ be formulas. We de�ne validity
(|= φ) and logical consequence (φ |= ψ) as follows:

• |= φ when for all K and all w ∈ W(K), w |= φ.

• φ |= ψ when K, w |= ψ for all K and w ∈ W(K) such that K, w |= φ.

When E is a set of formulas, E |= φ means that K, w |= φ for all K and w ∈ W(K) such
that w |= E.

Remark 2.4. Note that ¬φ is logically equivalent to φ⇒ ⊥.

Example 2.5. Consider the validity of a few interesting formulas:

• ¬¬φ⇒ φ and φ⇒ ¬¬φ;

• de Morgan laws;

•
(
(φ ∧ φ′) ∨ ψ

)
⇒
(
(φ ∨ ψ) ∧ (φ′ ∨ ψ)

)
and the converse;

• (φ⇒ ψ) ∨ (ψ ⇒ φ);

• φ ∨ ¬φ.

Proposition 2.6 (Satisfaction is monotonic). w |= φ and w ≤ w′ implies w′ |= φ.

Proof. By (structural) induction on φ. This is obvious for logical constants (their satisfac-
tion does not depend on the world being considered) and propositional variables (because
α is assumed to be monotonic). It follows immediately from induction hypotheses for dis-
junction and conjunction formulas. We consider the case of implication: assuming w ≤ w′
and w |= φ ⇒ ψ, let us show that w′ |= φ ⇒ ψ. We have to show that w′′ |= ψ for all
w′′ ≥ w′ such that w′′ |= φ. By transitivity of the accessibility relation, we have w′′ ≥ w.
By w |= φ ⇒ ψ and w′′ |= φ, we conclude w′′ |= ψ. The case of negation is similar, as
expected given remark 2.4.

Proposition 2.7. Intuitionistically valid formulas are also classically valid.

Proof. It su�ces to observe that any classical interpretation I ⊆ P can be seen as Kripke
structureKI with a single world w0 such that α(w0) = I , in such a way that I |= φ (in the
classical sense) is equivalent to KI , w0 |= φ (in the intuitionistic sense).
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3 Soundness
A sequent Γ ` φ is said to be valid when Γ |= φ, i.e., φ is a logical consequence of Γ seen as
a set of formulas.

Theorem 3.1 (Soundness). Γ `NJ φ implies Γ |= φ.

Proof. Straightforward (structural) induction on φ: for each rule of NJ0 we can show that,
if the premises are valid, the conclusion is also valid.

Corollary 3.2. The sequent φ ∨ ¬φ is not derivable in NJ0.

4 Completeness
We shall now establish completeness: any sequent that is valid with respect to Kripke se-
mantics can be derived in NJ0. To do so, we introduce the universal Kripke structure in
which satisfaction is closely related to derivability.

We shall work under the assumption that the set of propositional variables P is count-
ably in�nite. This implies that there exists a bijection r : F0 → N.

De�nition 4.1 (Saturated). Given a (possibly in�nite) setE of formulas, we writeE `NJ φ
when there is a �nite set Γ ⊆ E such that Γ `NJ φ. A set of formulas E is saturated if, for
any φ such that E `NJ φ, we have φ ∈ E.

Proposition 4.2. Given a set E, the set E∗ = { φ : E `NJ φ } is saturated.

Proof. Assume E∗ `NJ φ, i.e. Γ `NJ φ for some �nite Γ ⊆ E∗. We show that φ ∈ E∗ by
induction on the number of formulas of Γ that are not in E. If Γ ⊆ E we have φ ∈ E∗

by de�nition of E∗. Otherwise, we can write Γ = Γ′, ψ with ψ ∈ E∗ \ E and Γ′ has one
less formula in E∗ \ E than Γ. In other words we have a �nite ∆ ⊆ E such that ∆ `NJ ψ.
We can now derive Γ′ ∪∆ ` φ (where we use the usual union of the two sets Γ′ and ∆) as
follows, using the admissible rule of weakening as well as⇒I and⇒E:

Γ′, ψ ` φ
Γ′ ∪∆, ψ ` φ

Γ′ ∪∆ ` ψ ⇒ φ

∆ ` ψ
Γ′ ∪∆ ` ψ

Γ′ ∪∆ ` φ

We can apply our induction hypothesis on Γ′ ∪∆ to conclude that φ ∈ E∗.

De�nition 4.3 (World-set). We say that E is consistent if ⊥ 6∈ E. We say that E has the
disjunction property if for all φ1 ∨ φ2 ∈ E, there is some i ∈ {1, 2} such that φi ∈ E. We
say that Γ is a world-set when it is saturated, consistent and has the disjunction property.

De�nition 4.4 (Universal Kripke structure). The universal structureU is de�ned by:W(U) =
{ wE : E is a world-set }; wE ≤ wE′ i� E ⊆ E′; α(wE) = E ∩ P .

Lemma 4.5. Let E be a set of formulas, and φ a formula such that E 6`NJ φ. There exists
a world-set E′ such that E ⊆ E′ and E′ 6`NJ φ.

Proof. We de�ne an increasing sequence (Ei)i∈N of saturated sets such that for all i, φ 6∈ Ei.
We set E0 = E∗. If En enjoys the disjunction property, then En+1 = En. Otherwise, let
φ1 ∨ φ2 be the formula in En such that φ1 6∈ En and φ2 6∈ En, and such that r(φ1 ∨ φ2) is
minimal among the formulas having that property. It cannot be that both En ∪{φ1} `NJ φ
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andEn∪{φ2} `NJ φ, because by rule∨E (and weakening) that would contradictEn 6`NJ φ.
Let i be such that En ∪ {φi} 6`NJ φ, and let En+1 = (En ∪ {φi})∗.

Let us show that E′ =
⋃
i∈NEi satis�es the expected conditions. The set is saturated:

if for a �nite subset Γ ⊆ E′, we have Γ `NJ ψ, then because Γ is �nite we have Γ ⊆ Ek
for some k, and by saturation of Ek we have ψ ∈ Ek ⊆ E′. The same argument shows that
E′ 6`NJ φ, and thusE′ is consistent: if⊥ could be derived, φwould also be derivable by rule
⊥E. It only remains to show that E′ enjoys the disjunction property. Let φ = φ1 ∨φ2 ∈ E′,
there must be some k such that φ ∈ Ek . By construction, the disjunction property will be
restored for that formula in at least r(φ) steps, thus we have φ1 ∈ Ek+r(φ) or φ2 ∈ Ek+r(φ),
and the disjunction property is satis�ed for φ in E′.

Lemma 4.6. Let E be a world-set and φ a formula. We have U , wE |= φ i� φ ∈ E.

Proof. We proceed by (structural) induction on the formula.

• Case of >. We always have wE |= > and also always have > ∈ E by saturation and
rule >I.

• Case of ⊥. We never have wE |= ⊥, and never have ⊥ ∈ E for a consistent E.

• Case of P . By de�nition, wE |= P i� P ∈ α(wE) = E ∩ P i� P ∈ E.

• Case of φ1 ∧ φ2.

(⇒) FromwE |= φ1∧φ2 we obtainwE |= φ1 andwE |= φ2. By induction hypotheses
we thus have E `NJ φ1 and E `NJ φ2, and we can conclude by rule ∧I and
weakening.

(⇐) By assumption we have E `NJ φ1 ∧ φ2. This allows us to conclude E `NJ φi
for each i ∈ {1, 2}, using rules ∧E, cut and axiom. By induction hypotheses this
yields wE |= φi for each i, which allows us to conclude.

• Case of φ1 ∨ φ2.

(⇒) As in the previous case, but using rule ∨I instead of ∧I.
(⇐) If φ1 ∨ φ2 ∈ E, then by the disjunction property of world-sets we have φi ∈ E

for some i. By induction hypothesis this yieldswE |= φi and thuswE |= φ1∨φ2.

• Case of φ1 ⇒ φ2.

(⇒) By rule⇒I it su�ces to show E ∪ {φ1} `NJ φ2. Assume the contrary. Then by
Lemma 4.5 there is some world-set E′ such that E ⊆ E′, φ1 ∈ E′ and φ2 6∈ E′.
By induction hypothesiswE′ |= φ1, but then by our assumptionwE |= φ1 ⇒ φ2
we must also have wE′ |= φ2. We then have φ2 ∈ E′ by induction hypothesis,
which is a contradiction.

(⇐) Assuming E `NJ φ1 ⇒ φ2, we show wE |= φ1 ⇒ φ2. We simply follow
the de�nition of satisfaction for an implication. For any E ≤ E′ such that
wE′ |= φ1, we have to establish wE′ |= φ2. By induction hypothesis we have
φ1 ∈ E′, or in other words E′ `NJ φ1. Since we also have E′ `NJ φ1 ⇒ φ2, we
conclude E′ `NJ φ2 by⇒E. By induction hypothesis we can �nally conclude:
wE′ |= φ2.
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Theorem 4.7 (Completeness). Γ |= φ implies Γ `NJ φ.

Proof. Assume Γ |= φ and Γ 6`NJ φ. By Lemma 4.5 we have some world-set E such that
Γ ⊆ E and φ 6∈ E. We obviously have wE |= Γ, so by Γ |= φ we also have wE |= φ. By
Lemma 4.6, this implies φ ∈ E, which is a contradiction.

5 Proof normalization
The basis for rejecting the law of excluded middle is that it allows to prove φ∨¬φ for any φ,
without saying explicit which of φ and ¬φ holds — something which is indeed not always
possible. In a constructive proof, we would like that a proof of φ∨ψ consists of either a proof
of φ or one of ψ. We cannot ask this in general: in NJ0, P ∨ ¬P ` P ∨ ¬P can be derived
(and the constructivity of its proofs is clear) but both P ∨ ¬P ` P and P ∨ ¬P ` ¬P are
unprovable. We will see that we can obtain this disjunction property in NJ0 for sequents
without hypotheses, although this is still not obvious: it requires to transform proofs into a
normal form where eliminations are never applied to introductions.

De�nition 5.1. A détour in a proof is an instance of an introduction rule used to deduce
the �rst premise of an elimination rule. A proof is said to be détour-free when it contains
no détour.

Note that the shape of inference rules implies that the introduction and elimination rules
involved in a détour are necessarily introduction and elimination rules for the same logical
connective.

Proposition 5.2. For any φ, a détour-free proof of ` φ starts1 with an introduction rule.

Proof. Assume the contrary: then the �rst rule must be an elimination since the proof is
détour-free. We will show that this is absurd: intuitively, the �rst subderivation of the
elimination cannot be an axiom (there is no hypothesis) nor an introduction (that would
yield a détour) so it is another elimination, and so on, which means that we have an in�nite
leftmost branch in a �nite proof.

We now write this argument formally. Assume that there is a détour-free derivation π
of a sequent of the form ` ψ that starts with an elimination rule. We show by induction
on π that this is absurd. Consider the elimination rule at the conclusion of π. By inspection
of the rules, we see that its �rst premise is still of the form ` ψ′. So the corresponding
subderivation cannot start with an axiom. It also cannot start with an introduction since
that would form a détour. Hence we have a smaller derivation of ` ψ′ which is still détour-
free: by induction hypothesis, this is absurd.

This result allows us to prove the disjunction property for détour-free proofs, and also
a consistency result for détour-free proofs.

Corollary 5.3. Assume there is a détour-free proof of ` φ∨ψ, Then there is either a proof
of ` φ or one of ` ψ.

Corollary 5.4. There is no détour-free proof of ` ⊥.

We now turn to the task of transforming any derivation into a détour-free derivation of
the same sequent. This is done by transforming derivations step by step, reducing détours
at each step. Some reductions are obvious but others introduce new détours, so we will need
a convenient well-founded ordering to prove that we can apply our reductions in a way that
terminates.

1This means that the conclusion of the proof is derived by means of an introduction rule.
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De�nition 5.5. Given a strict order (E,<) we de�ne the strict order (E], <]) as follows:

• E] is the set of �nite multisets with elements in E. We write s, e for the addition of
an element e to a multiset s.

• <] is the least strict ordering on E] such that, for all n ∈ N, for all e, e1, . . . , en ∈ E
such that ei < e for all i,

s, e1, . . . , en <
] s, e.

Proposition 5.6. If (E,<) is a well-order, then so is (E], <]).

Proof. Assume that there exists an in�nite chain s1 >] s2 >] . . . >] si >] si+1 >
] . . .. We

can assume wlog. that each step in this chain corresponds to an elementary replacement
of an element e by a �nite number of smaller elements e1, . . . , en since >] is the transitive
closure of this elementary relation by transitivity.

We show that there cannot be such an in�nite chain, by induction on the number of
elements of s1 (counting duplicates, i.e. summing all multiplicities). The result is obvious if
s1 is empty. Otherwise, s1 = s′1, e. Consider, if it exists, the �rst step si >] si+1 where e
is replaced by some e1, . . . , en with ei < e for all i. Consider then, for each ei, if it exists,
the �rst step where it is replaced by smaller elements ei1, . . . , eim. Repeating this process
we extract a possibly in�nite tree containing all the descendants of e in our chain. This
tree cannot have an in�nite branch, since this would contradict the well-foundedness of
< over E. Since it is �nitely branching, it must be �nite. Hence we can remove e and its
descendants from our in�nite chain, to obtain a new chain s′1 >] . . . >] s′i >] s′i+1 >

] . . .
that is still in�nite. We conclude by induction hypothesis on s′1.

This results yields an induction principle over �nite multisets: if we can prove P (s) for
any multiset s by assuming that the property also holds for all s′ <] s, then the property
must hold for all multisets. We use it in our �nal result.

Proposition 5.7. If Γ ` φ is derivable in NJ0, then it also admits a détour-free derivation.

Proof sketch. Let π be a derivation of Γ ` φ. We de�ne the degree of a détour as the size
of the formula which is the conclusion of the introduction rule of the detour. We show that
Γ ` φ admits a détour-free derivation by induction on the multiset of the degrees of the
détours of π.

The result is immediate if there is no détour. If π contains a détour involving a conjunc-
tion, we easily simplify π into a new derivation π′ which has one less détour, and conclude
by induction hypothesis. Consider now a détour involving an implication, which must have
the following structure:

π′

∆, ψ1 ` ψ2

∆ ` ψ1 ⇒ ψ2

π′′

∆ ` ψ1

∆ ` ψ2

We can then replace in π′ all uses of the axiom rule on (the new occurrence of) ψ1 by π′′
(possibly using weakening �rst) to obtain a new proof of ∆ ` ψ2: this construction is noted
π′[π′′/ψ1]. Since we can also assume wlog. that the considered détour is of maximal depth,
this transformation does not duplicate existing détours. It can create a new détour onψ1, but
it would be of lesser degree than the détour on ψ1 ⇒ ψ2 that we eliminated, which allows
to conclude by induction hypothesis. The cases of détours on negation and disjunction are
similarly handled.
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The successive transformations used in the previous lemma may be seen as a com-
putation. In fact, proofs of NJ0 correspond closely to type derivations in simply-typed
λ-calculus, and the above procedure is a strategy for computing a β-normal form for the
corresponding λ-term. This is an instance of the so-called Curry-Howard correspondence,
where proofs are programs, formulas are types, and proof normalization is program reduc-
tion. In the context of intuitionistic logic, it gives a very satisfying meaning to the notion of
constructive proof: it is simply a program transforming normal-form proofs of hypotheses
to a normal-form proof of the conclusion. Surprisingly, the Curry-Howard correspondence
also extends to several other logics, including classical logic: this does not mean that clas-
sical logic is constructive, the associated notion of computation is just more complex than
with intuitionistic logic. . . but that is another story.
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