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Abstract

We introduce a classic technique for showing a re�nement of elemen-
tary equivalence, with applications to de�nability and completeness.

We have already obtained some expressivity results as corollaries of com-
pleteness results. For example, we have shown that well-foundedness is not ex-
pressible in the theory of discrete orders. Indeed, we have shown by quanti�er
elimination that this theory is complete, so all its models are elementarily equiv-
alent. Moreover, the theory admits models where the order is well-founded but
also models where this is not the case.

We would like to obtain similar results for theories that are not complete. For
example, show that well-foundedness is not de�nable in arithmetic: there is no
formula φ such that a model S of arithmetic has a well-founded order i� S |= φ.
Or, more simply, show that well-foundedness is not de�nable at all: there is no
formula whose models are exactly the structures where some binary predicate is
interpreted as a well-founded relation. Ehrenfeucht-Fraïssé games are a tool for
answering such questions.

∗Modi�cations made since the original version of the document are indicated in margins with
their corresponding revision.
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In all of this document we assume that equality is part of the language and
that all structures interpret it as the identity relation over their domain: for all S
and for all a, b ∈ dom(S) we have

a =̂S b i� a = b.

We can express that a structure has at least n elements: the formula

∃x1, . . . , xn.
∧
i 6=j

xi 6= xj

is satis�ed by S i� the domain of S has more than n elements. Similarly, we
can express that there are more than m elements. However, as we shall see, we
cannot express that there are �nitely many elements without specifying their
exact number.

1 Preliminaries
Recall that two structures are said to be elementarily equivalent when S1 |= φ
i� S2 |= φ for any closed formula φ. This equivalence is noted S1 ≡ S2.

De�nition 1.1 (Partial isomorphism). Given two structures S and S ′, a partial
isomorphism from one to the other is a partial mapping h : dom(S)→ dom(S ′)
that is injective and such that:

(1) for any f ∈ F of arity n, for any a1, . . . , an, a in the domain of h,

f̂S(a1, . . . , an) = a i� f̂S′(h(a1), . . . , h(an)) = h(a);

(2) for any P ∈ P of arity n, for any a1, . . . , an in the domain of h,

(a1, . . . , an) ∈ P̂S i� (h(a1), . . . , h(an)) ∈ P̂S .

Note that condition (2) needs not be imposed on the equality predicate, be-
cause the injectivity condition on h amounts to it when P is the equality predi-
cate symbol: (a1, a2) ∈ =̂S i� a1 = a2.

Example 1.2. With F = P = ∅, F ,P-structures are reduced to their domain:
there is nothing to interpret. Partial isomorphisms are just injective partial maps.
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Example 1.3. Assume F = {f} and P = ∅. Let S be an F ,P-structure of
domain {a} with fS(a) = a. Let S ′ be an F ,P-structure of domain {0, 1} with
fS′(x) = 1− x. There is no partial isomorphism from S to S ′ that is de�ned on
dom(S).

Example 1.4. Consider the canonical F ,P-structures Q and R over P = {≤}
and F = {0, 1,+,×}. For any subset S ⊆ Q, the identity function on S is
a partial isomorphism from Q to R, but also from R to Q. There is no partial
isomorphism from R to Q whose domain of de�nition is {

√
2, 2, 1}. Rev. 2

We can reformulate the conditions on partial isomorphisms as formulas in a
speci�c class.

De�nition 1.5 (Flat formulas). A formula is �at if its atoms are of the form x = y,
x = f(x1, . . . , xn) or P (x1, . . . , xn) where x, y and the xi are variables. In other Rev. 1
words, a formula is �at when its atoms contain at most one symbol from F ∪P .

Proposition 1.6. A partial mapping h : S → S ′ of domain {a1, . . . , an} is a
partial isomorphism i� we have, for any �at atomic formula with free variables
among x1, . . . , xn,

S, {xi 7→ ai}i |= φ i� S ′, {xi 7→ h(ai)}i |= φ.

Proof. Let σ = {xi 7→ ai}1≤i≤n and σ′ = {xi 7→ h(ai)}1≤i≤n. The result is due
to the fact that the three kinds of conditions imposed in de�nition 1.1 and in the
statement of proposition 1.6 are equivalent. On one side we have the injectivity
condition, and conditions (1) and (2). On the other side we have equisatis�ability
conditions for atoms of the form x = y, x = f(x1, . . . , xk) and P (x1, . . . , xk).

The injectivity condition on h is equivalent to

S, σ |= xi = xj i� S ′, σ′ |= xi = xj for all 1 ≤ i ≤ j ≤ n.

Condition (1) of de�nition 1.1 for some function symbol f of arity k requires
that, for all elements b1, . . . , bk, b of dom(h), we have

fS′(h(b1), . . . , h(bk)) = h(b) i� fS(b1, . . . , bk) = b.

This can be rephrased equivalently as

S, σ |= f(xi1 , . . . , xik) = xi i� S ′, σ′ |= f(xi1 , . . . , xik) = xi
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where ip is such that aip = bp, and i is such that ai = b.
Similarly, condition (2) for some predicate symbol P of arity k can be equiv-

alently reformulated as

S, σ |= P (xi1 , . . . , xik) i� S ′, σ′ |= P (xi1 , . . . , xik).

We �nally de�ne two measures over formulas that will be useful for our tech-
nical development.

De�nition 1.7 (Size, ≡n). The size of a formula counts the number of logical
connectives, predicate symbols, function symbols and variables in the formula.
In other words it is the number of nodes of the abstract syntax tree (AST) of the
formula and its terms. We say that two structures are elementarily equivalent up
to size n, noted S1 ≡n S2, when S1 |= φ i� S2 |= φ for any closed formula φ of
size at most n.

De�nition 1.8 (Rank, 'm). The rank of a formula is the maximal number of
nested quanti�ers in it. In other words, it is maximum number of quanti�er
nodes on a path from the root to a leaf of the formula AST. We say that two
structures are elementarily equivalent up to rank m, noted S1 'm S2, when
S1 |= φ i� S2 |= φ for any closed formula φ of rank at most m.

Note that S ≡ S ′ i� (S ≡n S ′ for all n) i� (S 'm S ′ for all m).

Proposition 1.9. Any formula of size less than n is logically equivalent to a �at
formula of rank less than 2n.

Proof. We modify the formula by introducing fresh intermediate variables:

• f(~u) = g(~v) becomes ∃x. f(~u) = x ∧ x = g(~v);

• x = f(x1, . . . , xk, g(~u), ~v) becomes ∃y. x = f(x1, . . . , xk, y, ~v)∧y = g(~u);

• P (x1, . . . , xk, f(~u), ~v) becomes ∃y. P (x1, . . . , xk, y, ~v) ∧ y = f(~u).

Each elementary transformation introduces one new quanti�er, and there cannot
be more than n transformation steps, after which the resulting formula is �at.
Since the initial rank is bounded by n, the �nal one is bounded by 2n.
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2 Ehrenfeucht-Fraïssé games
An Ehrenfeucht-Fraïssé game is played on two F ,P-structures S1 and S2, be-
tween two players called Spoiler (S) and Duplicator (D). At the beginning of the
game, the number n of rounds is announced. The play between Spoiler and Du-
plicator leads to the construction of some sequence (ai, bi)1≤i<k of semantic val-
ues, with ai ∈ dom(S1) and bi ∈ dom(S2) for all 1 ≤ i < k.

At round k, some sequence (ai, bi)1≤i<k has already been constructed. Spoiler
plays �rst and chooses either some ak ∈ dom(S1) or bk ∈ dom(S2). Duplicator
chooses the other value.

At the end of the game, Duplicator wins i� (ai 7→ bi)1≤i≤n de�nes a partial
isomorphism.

Example 2.1. Take F = P = ∅ and two F ,P-structures S1 and S2. Duplicator
has a winning strategy for the Ehrenfeucht-Fraïssé game between S1 and S2 with
n rounds i�min(|S1|, n) = min(|S2|, n). Indeed, at round k ≤ n, Duplicator only
has to ensure that, for all 1 ≤ i < k, ak = ai i� bk = bi. This is possible i� the
condition on cardinals is met.

Example 2.2. With the two structures of example 1.3, Spoiler has a winning
strategy for one round: he simply has to choose a1 := a ∈ dom(S1).

Exercise 2.3. Give two structures for which Duplicator wins the game for two
rounds but not three.

2.1 An extended example
Let F = ∅ and P = {R} with R of arity 2. Let n be some natural number.

Let S1 be the F ,P-structure of domain {0, . . . , 2n − 1} with Rev. 1

RS1 = {(k, k + 1 mod 2n) | k ∈ [0; 2n − 1]}.

Let S2 be the F ,P-structure of domain {(i, 0), . . . , (i, 2n − 1) | i ∈ {0, 1}} with

RS2 = {((i, k), (i, k + 1 mod 2n)) | k ∈ [0; 2n − 1], i ∈ {0, 1}}.

In other words, S1 is an oriented loop of size 2n and S2 is two disconnected copies
of S1. We will show that Duplicator has a winning strategy on S1 and S2 for n
rounds.
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For a, a′ in the domain of some Si, de�ne the distance d(a, a′) from a to a′
as the minimum number of RSi steps from a to a′. In particular d(a, a′) = 0 i�
a = a′ and d(a, a′) = ∞ if a′ is not reachable from a. At round k, Duplicator
will maintain the following invariant:

for all i, j ∈ [1; k],
if d(ai, aj) ≤ 2n−k or d(bi, bj) ≤ 2n−k then d(ai, aj) = d(bi, bj).

We �rst observe that, if this can be realized, the Duplicator will indeed win:
for k = n the invariant ensures that the sequence of pairs de�nes an injective
mapping from S1 to S2 and that (ai, aj) ∈ RS1 i� (bi, bj) ∈ RS2 , i.e. we have a
partial isomorphism.

Let us now verify that this invariant can be maintained by Duplicator.

• If Spoiler plays ak such that d(ak, ai) ≤ 2n−k for some i < k then Dupli-
cator must play the unique bk such that d(bk, bi) = d(ak, ai). Let us verify
that this choice maintains the invariant.

– Obviously, the condition of d(ai, aj) for i, j ∈ [1; k−1] at round k−1
implies the condition at round k.

– Assume d(ak, aj) ≤ 2n−k for some j < k distinct from i. We have
either d(ak, aj) = d(ak, ai) + d(ai, aj) or d(ak, ai) = d(ak, aj) + Rev. 1
d(aj, ai). In the �rst case we conclude that d(ai, aj) ≤ 2n−k, thus
d(bi, bj) = d(ai, aj) and the choice of bk made above wrt. bi also en-
sures d(bk, bj) = d(bk, bi). In the second case we have d(aj, ai) ≤
2n−k, hence d(bj, bi) = d(aj, ai) and we conclude similarly.

– A similar argument applies for the case where d(aj, ak) ≤ 2n−k. This
time we have d(aj, ai) = d(aj, ak)+d(ak, ai). Since the two distances
are less than 2n−k we conclude that d(aj, ai) ≤ 2n−k+1 and, by the
invariant at round k − 1, we have d(bj, bi) = d(aj, ai). We conclude
that d(bj, bk) = d(bj, bi)−d(bk, bj) = d(aj, ai)−d(ak, aj) = d(aj, ak).

• Otherwise, if Spoiler chooses ak such that d(ai, ak) ≤ 2n−k, we proceed
similarly. The cases where Spoiler chooses bk within 2n−k steps of some bi
are also similar.

• Otherwise, Spoiler chooses some ak that is more than 2n−k steps away from
all (ai)1≤i<k (or symmetrically with bk). Duplicator needs to �nd some bk
that is more than 2n−k steps aways from all (bi)1≤i<k. It is always possi-
ble because we have at most k − 1 elements on a cycle of length 2n, and
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the distances between two consecutive elements cannot all be ≤ 2n−k+1

because (k − 1)2n−k+1 < 2n.

Exercise 2.4. Show that the construction is tight: Spoiler wins the game for
n = 2 if S1 and S2 consist of cycles of length 2n − 1.

2.2 Main theorem
We now prove the main result about Ehrenfeucht-Fraïssé games. In this section
we assume that F and P are �nite.

Theorem 2.5. Two F ,P-structures S1 et S2 are elementarily equivalent i� Du-
plicator has a winning strategy for any number of rounds.

Note that, in the above result, the strategy does not have to be uniform in the
number of rounds: as was the case in the previous example, the winning strategy
can be adapted to the remaining number of rounds.

Ehrenfeucht-Fraïssé games can still be used to establish that two structures
are elementarily equivalent when F ,P is in�nite: it su�ces to verify that they
are elementarily equivalent for any �nite subsets F ′ ⊆ F and P ′ ⊆ P .

We show each direction separately, working on the size of formulas in one
direction and on their rank in the other. More precisely, we relate the existence
of winning strategies for Duplicator in n rounds to elementary equivalence for
�at formulas of rank at most n, i.e. ≡n.

Lemma 2.6. If Duplicator has a winning strategy for the game in 2n rounds on
S1 and S2, then S1 ≡n S2.

Proof. It su�ces to show that S1 |= φ and S2 |= φ are equivalent for all closed �at
formulas φ of rank at most 2n. Intuitively, the winning strategy for Duplicator
will tell us how to map the values used for the satisfaction of the quanti�ers of φ
from S1 to S2 and vice versa; since the formula has rank 2n a game in 2n rounds
is exactly what we need.

Formally, we show more generally that, for any �at formula φ of rank 2n−k
and such that fv(φ) ⊆ {x1, . . . , xk}, and for any partial isomorphism h : S1 →
S2 of domain a1, . . . , ak, we have:

S1, {xi 7→ ai}1≤i≤k |= φ i� S2, {xi 7→ h(ai)}1≤i≤k |= φ

We proceed by induction over φ. Propositional cases are straightforward. The
cases of �at atoms follow from proposition 1.6.
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Assume φ is of the form ∀xk+1.φ
′, and we have S1, {xi 7→ ai}1≤i≤k |= φ.

We need to show, for any bk+1 ∈ dom(S2), that S2, {xi 7→ bi}1≤i≤k+1 |= φ′.
Let ak+1 be the element that Duplicator would choose using its winning strategy
in the Ehrenfeucht-Fraïssé game at round k + 1 when Spoiler choose bk+1. By Rev. 1
de�nition of the game, the mapping h extended with h(ak+1) = bk+1 is still a
partial isomorphism. We conclude by induction hypothesis using this extended
partial isomorphism and φ′, which is now of rank 2n− k − 1.

The case of the existential quanti�er is analogous: we leave it as an exercise
– it is of course also possible to deal with this case using de Morgan laws for
quanti�ers, but that would not be very informative.

Lemma 2.7. If S1 'n S2 then Duplicator has a winning strategy for n rounds
on S1 and S2.

Proof. The idea is to construct a formula of rank n whose satisfaction expresses
that Duplicator has a winning strategy. For 0 ≤ k ≤ n, the formula φb1,...,bn−k

k of
rank k and free variables x1, . . . , xn−k will intuitively express that there exists a
winning strategy for k rounds, assuming that b1, . . . , bn−k have been chosen so
far in S2. More precisely, we will construct this formula in such a way that the
following always holds:

S2, {xi 7→ bi}1≤i≤n−k |= φ
b1,...,bn−k

k for all k, b1, . . . , bn−k (1)

And we will show that Duplicator has a winning strategy for k more rounds
assuming that (ai, bi)1≤i≤n−k have been chosen so far when the symmetric sat-
isfaction holds:

S1, {xi 7→ ai}1≤i≤n−k |= φ
b1,...,bn−k

k (2)

Given b1, . . . , bn ∈ dom(S2), we de�neA(b1, . . . , bn) as the set of �at literals
A over x1, . . . , xn such that S2, {xi 7→ bi}1≤i≤n |= A. We then de�ne:

φb1,...,bn0

def
=

∧
A∈A(b1,...,bn)

A

φ
b1,...,bn−k−1

k+1

def
= (∀xn−k.

∨
b∈S2

φ
b1,...,bn−k−1,b
k )

∧ (
∧
b∈S2

∃xn−k. φb1,...,bn−k−1,b
k )

For these formulas to be well-de�ned, we need to make sure that we are forming
conjunctions and disjunctions over �nite sets: there are a priori in�nitely many
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b ∈ S2, but only �nitely many φb1,...,bn−k−1,bk . This is shown by induction on k: for
k = 0 we have as many formulas as there are subsets of the �nite setA; for k+1

the number Nk+1 of formulas φb1,...,bn−k−1

k+1 that can be obtained for the various
choices of (bi)1≤i≤n−k−1 is bounded by the number Nk of possible formulas for
rank k (we have Nk+1 ≤ 2Nk+1).

Now that our formulas are de�ned, let us check that they have the expected
meaning. Equation (1) can be veri�ed easily by induction on k: we leave it as an
exercise.

In particular, we have S2 |= φn and, since S1 'n S2, we also have S1 |= φn.
We will show that this implies the existence of a winning strategy for Duplicator
for n rounds.

We show more generally, for all 0 ≤ k ≤ n and (ai, bi)1≤i≤n−k such that
eq. (2) holds, that Duplicator has a a winning strategy for k rounds when (ai, bi)i
have previously been chosen. This is done by induction on k.

• For k = 0 the game is over, and Duplicator wins because we have a partial
isomorphism: by de�nition of φb1,...,bn0 the two structures satisfy the same
�at atoms.

• For k + 1 we de�ne the Duplicator strategy as follows:

– Assume Spoiler plays an−k inS1. Because the �rst conjunct ofφb1,...,bn−k−1

k+1

is satis�ed in S1, we can choose the value of the universally quanti-
�ed variable xn−k to be an−k and we have some b ∈ S2 (call it bn−k)
such that

S1, {xi 7→ ai}1≤i≤n−k |= φ
b1,...,bn−k

k .

Duplicator chooses this value, and keeps playing using the winning
strategy obtained by induction hypothesis on k.

– If Spoiler plays bn−k in S2, by the second conjunct we have some an−k
such that

S1, {xi 7→ ai}1≤i≤n−k |= φ
b1,...,bn−k

k .

Again, Duplicator chooses this value and keeps playing using the
winning strategy for k.
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3 Applications
The primary application of these games is to show that some property of struc-
tures cannot be de�ned as a �rst-order formula. For instance, the winning strat-
egy of section 2.1 shows that connectedness cannot be de�ned. Indeed, the ex-
istence of a formula φ such that S |= φ i� S is connected would contradict
S1 'n S2 when n is the rank of φ.

Exercise 3.1. With F = P = ∅, show that there cannot be a closed formula φ
such that S |= φ i� dom(S) is �nite.

Ehrenfeucht-Fraïssé games can also be used to prove completeness results.
For α ∈ N∪{∞}, de�ne the theory TαR generated by the following axioms, with
an axiom (NoLoopi) for each i < α:

∀x. ∃y.R(x, y) (Tot)
∀x. ∃y.R(y, x) (Tot−1)

∀x, y, z. R(x, y) ∧R(x, z)⇒ y = z (Uniq)
∀x, y, z. R(y, x) ∧R(z, x)⇒ y = z (Uniq−1)

∀x1, . . . , xi. ¬(R(x1, x2) ∧ . . . ∧R(xi−1, xi) ∧R(xi, x1)) (NoLoopi)

Section 2.1 can be adapted to show the existence of a winning strategy for
Duplicator on any two models of T∞R . More precisely, Duplicator wins for n
rounds on any two models of T nR . Hence, any two models of T∞R are elementarily
equivalent, i.e. the theory is complete.

Exercise 3.2. Let n ∈ N. Show that �niteness is not �rst-order de�nable in T nR :
there cannot exist a formula φ such that, for all models S of T nR , we have S |= φ
i� dom(S) is �nite. Show that �niteness is however �rst-order de�nable in T∞R .
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