Software Engineering

Lecture 3 Software Testing

David Baelde

ENS Paris-Saclay & MPRI

October 5, 2018

Introduction

Program testing can be used to show the presence of bugs, but never to show their absence! – Dijkstra

Introduction

Program testing can be used to show the presence of bugs, but never to show their absence! – Dijkstra

Python development follows a practice that all semantic changes and additions to the language and stdlib are accompanied by appropriate unit tests. Unfortunately Python was in existence for a long time before the practice came into effect. This has left chunks of the stdlib untested which is not a desirable situation to be in. – Python Developer's Guide

Testing: why?

No matter your tools, debugging is hard!

Testing: why?

No matter your tools, debugging is hard!

We must test software in order to:

- Detect problems earlier.
- Facilitate identification of root cause.
- Prevent regressions.

Testing: what & how?

What?

Explicit spec and/or "good behavior".

Testing: what & how?

What?

Explicit spec and/or "good behavior".

How?

- Unit testing on . . . basic units.
- Integration testing, complete system testing.
- Use tools that make it easy and systematic!

Testing: why?

Testing: why?

Goal: relevant tests based on the structure of the code.

Idea of coverage:

the testing suite must probe "enough" behaviors.

Citeria: lines,

Goal: relevant tests based on the structure of the code.

Idea of coverage:

the testing suite must probe "enough" behaviors.

Citeria: lines, control flow, conditions,

Goal: relevant tests based on the structure of the code.

Idea of coverage:

the testing suite must probe "enough" behaviors.

Citeria: lines, control flow, conditions, values, states, etc. Tests are not proofs!

Goal: relevant tests based on the structure of the code.

Idea of coverage:

the testing suite must probe "enough" behaviors.

Citeria: lines, control flow, conditions, values, states, etc. Tests are not proofs!

Selecting test values,

based on code and spec: equivalence classes, boundaries... manually (demo: triangle.ml)...

Goal: relevant tests based on the structure of the code.

Idea of coverage:

the testing suite must probe "enough" behaviors.

Citeria: lines, control flow, conditions, values, states, etc. Tests are not proofs!

Selecting test values,

based on code and spec: equivalence classes, boundaries... manually (demo: triangle.ml)...or automatically.

Pex 1 (C#)

Generate "interesting" test values, by symbolic execution and constraint solving. Demo: http://www.pexforfun.com

```
public class Point {
  public readonly int X, Y;
  public Point(int x, int y) { X = x; Y = y; }
}
public class Program {
  public static void Puzzle(Point p)
  ł
    if (p.X * p.Y == 42)
      throw new Exception("Bug!");
  }
}
```

Pex 1 (C#)

Generate "interesting" test values, by symbolic execution and constraint solving. Demo: http://www.pexforfun.com

```
public class Point {
  public readonly int X, Y;
  public Point(int x, int y) { X = x; Y = y; }
}
public class Program {
  public static void Puzzle(Point p)
  ł
    if (p.X * p.Y == 42)
      throw new Exception("Bug!");
  }
}
```

Propose 3 inputs: null, (0,0) and (3,14).

Pex 2 (C# + contracts)

```
public class Program {
   public static string Puzzle(string value) {
     Contract.Requires(value != null);
     Contract.Ensures(Contract.Result<string>() != null);
     Contract.Ensures(
        char.IsUpper(Contract.Result<string>()[0]));
     return char.ToLower(value[0]) + value.Substring(1);
   }
}
```

Find inputs that trigger bugs...

Pex 2 (C# + contracts) fixed

```
public class Program {
  public static string Puzzle(string value) {
    Contract.Requires(value != null);
    Contract.Requires(value=="" ||
                      char.IsLower(value[0]));
    Contract.Ensures(Contract.Result<string>() != null);
    Contract.Ensures(
      Contract.Result<string>()=="" ||
      char.IsUpper(Contract.Result<string>()[0]));
    if (value=="") return value:
    return char.ToUpper(value[0]) + value.Substring(1);
 }
}
```

```
Pex 3 (C\# + contracts)
```

```
using System;
```

```
public class Program {
  static int Fib(int x) {
    return x == 0? 0 : x == 1? 1 :
           Fib(x - 1) + Fib(x - 2);
  }
  public static void Puzzle(int x, int y)
  ł
    if (Fib(x + 27277) + Fib(y - 27277) == 42)
      Console.WriteLine("puzzle solved");
 }
}
```

Black box

Black box

What if we cannot / don't want to rely on the code?

Black box: TDD

Test driven development: write tests first, then code that passes them.

Black box: TDD

Test driven development: write tests first, then code that passes them.

Tests cannot replace specs, but allow to exploit it more.

Generate tests from specs: spec coverage, *e.g.*, cause/consequence, clauses

Randomized tests

 Quickcheck, Scalacheck (demo): test predicates on random input values

Randomized tests

- Quickcheck, Scalacheck (demo): test predicates on random input values

Randomized tests

- Quickcheck, Scalacheck (demo): test predicates on random input values

Stress

- Flood a server with requests
- Execution with constrained resources (memory, disk)
- Create latency (network)

Randomized tests

- Quickcheck, Scalacheck (demo): test predicates on random input values
- Csmith: compare C compilers on random code samples

 \rightsquigarrow no need for a spec (phew!)

Stress

- Flood a server with requests
- Execution with constrained resources (memory, disk)
- Create latency (network)

Fuzz testing

- Mainly for file formats and protocols
- Test on (partly) randomly generated/modified data
- zzuf (demo), LibFuzzer, afl-fuzz, ...

Chaos engineering

Today's large distributed systems bring problems for which testing is insufficient. New slogans:

design for failure and experiment in production.

Chaos engineering

Today's large distributed systems bring problems for which testing is insufficient. New slogans:

design for failure and experiment in production.

Example (Netflix)

- The "Chaos Monkey" tool randomly disables machines/services
- http://principlesofchaos.org

In practice

Tooling

Librairies to write tests more easily: xUnit, Scalacheck, Scalatest, etc.

Environments and tools to use them effectively: pytest, sbt, hooks & CI, etc.

Demo

Writing tests = wasting time ?

Writing tests = wasting time ?

When coding, you're already writing tests: maybe in an interpreter, often in temporary printf checkes, visual verification, etc.

The goal is to preserve such tests, so as to fully exploit them.

Writing tests = wasting time ?

When coding, you're already writing tests: maybe in an interpreter, often in temporary printf checkes, visual verification, etc.

The goal is to preserve such tests, so as to fully exploit them.

Regression test

Good practice integrating testing and debugging: before debugging, turn minimized bug into a test; the test will validate the fix and prevent future regressions.

"That's easy for a sorting function, but another story for a server..."

Often, hard to test = poorly designed !

Examples

- Interaction with the filesystem, a database, etc.: sandboxing
- Graphical interface: possibility to script or capture (xnee) beware: testing the interface or the underlying logic?
- Non-functional aspects (time, space): profiling

Conclusion

Summary

- Test your code systematically.
- Design for unit tests.

What's next

- Exercises:
 - Code FIND with pytest and hypothesis
 - Debug bheap.py with the same tools
- Next lecture: software design with tests in mind
- Project: each goal must be tested for validation