
Symbolic Verification of Cryptographic Protocols

Unbounded Process Verification with Proverif

David Baelde

LSV, ENS Paris-Saclay & Prosecco, Inria Paris

2017

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 1 / 31

Introduction

Proverif
Protocol verifier developped by Bruno Blanchet at Inria Paris since 2000

Analysis in formal model: secrecy, correspondences, equivalences, etc.
Based on applied pi-calculus, Horn-clause abstraction and resolution
The method is approximate but supports unbounded processes

Highly successful, works for most protocols including industrial ones:
certified email, secure filesystem, Signal messenging, TLS draft,
avionic protocols, etc.

These lectures
Theory and practice of Proverif
Secrecy, correspondences, equivalences

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 2 / 31

Terms

As usual in the formal model, messages are represented by terms
built using constructor symbols from f ∈ Σc

quotiented by an equational theory E;
notation: M ∈M = T (Σc ,N).

In Proverif, computations are also modeled explicitly
terms may also feature destructor symbols g ∈ Σd ;
semantics given by reduction rules g(M1, . . . ,Mn)→ M;
yields partial computation relation ⇓ over T (Σ,N)×M.

Intuition:
use constructors for total functions,
destructors when failure is possible/observable.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 3 / 31

Example primitives

Symmetric encryption
type key.
fun enc(bitstring,key):bitstring.
reduc forall m:bitstring, k:key;

dec(enc(m,k),k) = m.

Block cipher
type key.
fun enc(bitstring,key):bitstring.
fun dec(bitstring,key):bitstring.
equation forall m:bitstring, k:key; dec(enc(m,k),k) = m.
equation forall m:bitstring, k:key; enc(dec(m,k),k) = m.

Exercise: how would you model signatures?

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 4 / 31

Processes

Similar to the one(s) seen before, with a few key differences:
let construct for evaluating computations (destructors);
variables are typed (more on that later);
private channels, phases, tables, events, etc.

Concrete syntax
P,Q ::= 0 | (P|Q) | !P | new n:t;P

| in(c,x:t);P | out(c,u);P
| if u = v then P else Q
| let x = g(u1,..,uN) in P else Q

where u, v stand for constructor terms.

Reference for more details:
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 5 / 31

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

First examples

File structure
Declarations: types, constructors, destructors, public and private
data, processes. . .
Queries, for now only secrecy: query attacker(s).
System specification: the process/scenario to be analyzed.

Demo: hello.pv (basic file structure and use).

Demo: types.pv (on the role of types).

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 6 / 31

How does it work ?

Horn clause modeling
Encode the system as a set of Horn clauses C:

attacker’s abilities, e.g. constructor f yields
∀M1, . . . ,Mn.

(∧
i attacker(Mi)

)
⇒ attacker(f (M1, . . . ,Mn)).

protocol behaviour, e.g. in(c, x).out(c, senc(x , sk)) yields
∀M. attacker(M)⇒ attacker(senc(M, sk)).

Clauses over-approximate behaviours, C 6|= attacker(s) implies secrecy.

Automated reasoning
Entailment is undecidable for first-order Horn clauses but resolution (with
strategies) provides practical semi-decision algorithms.
Proverif’s possible outcomes:

may not terminate, may terminate with real or false attack;
when it declares a protocol secure, it really is.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 7 / 31

Attacker’s clauses (communication)

Predicates
Only two predicates (for now):

attacker(M): attacker may know M
mess(M,N): message N may be available on channel M

Variables range over messages; destructors not part of the logical language.

Communication
Send and receive on known channels:
∀M,N. attacker(M) ∧ attacker(N)⇒ mess(M,N)
∀M,N. mess(M,N) ∧ attacker(M)⇒ attacker(N)

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 8 / 31

Attacker’s clauses (deduction)

Constructors
For each f ∈ Σc of arity n:
∀M1, . . . ,Mn.

(∧
i attacker(Mi)

)
⇒ attacker(f (M1, . . . ,Mn))

Similar clauses are generated for public constants and new names.

Destructors
For each g(M1, . . . ,Mn)→ M:
∀M1, . . . ,Mn.

(∧
i attacker(Mi)

)
⇒ attacker(M)

Equations
Proverif attempts to turn them to rewrite rules, treated like destructors.
For instance senc(sdec(x , k), k) = x yields
∀M,N. attacker(sdec(M,N)) ∧ attacker(N)⇒ attacker(M).

Demo: set verboseClauses = short/explained.
David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 9 / 31

Protocol clauses (informal)

Outputs
For each output, generate clauses:

with all surrounding inputs as hypotheses;
considering all cases for conditionals and evaluations.

Example:
in(c, x).in(c, y).if y = n then let z = sdec(x , k) in out(c, senc(〈z , n〉, k))

yields the following clause (assuming that c is public)
∀M. attacker(senc(M, k)) ∧ attacker(n)⇒ attacker(senc(〈M, n〉, k))

Replication
Replication is ignored, as clauses can already be re-used in deduction.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 10 / 31

Protocol clauses (informal)

Outputs
For each output, generate clauses:

with all surrounding inputs as hypotheses;
considering all cases for conditionals and evaluations.

Example:
in(c, x).in(c, y).if y = n then let z = sdec(x , k) in out(c, senc(〈z , n〉, k))

yields the following clause (assuming that c is public)
∀M. attacker(senc(M, k)) ∧ attacker(n)⇒ attacker(senc(〈M, n〉, k))

Replication
Replication is ignored, as clauses can already be re-used in deduction.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 10 / 31

Protocol clauses (informal)

Outputs
For each output, generate clauses:

with all surrounding inputs as hypotheses;
considering all cases for conditionals and evaluations.

Example:
in(c, x).in(c, y).if y = n then let z = sdec(x , k) in out(c, senc(〈z , n〉, k))

yields the following clause (assuming that c is public)
∀M. attacker(senc(M, k)) ∧ attacker(n)⇒ attacker(senc(〈M, n〉, k))

Replication
Replication is ignored, as clauses can already be re-used in deduction.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 10 / 31

Protocol clauses (exercise)

For Proverif P is the same as !P.
More generally Q = C [P] is the same as Q′ = C [!P].

Exercise
Find Q = C [P] and Q′ = c[!P] such that

Q ensures the secrecy of some value;
Q′ does not.

Analyze Q in Proverif; what happens?

A possible solution: repeat.pv.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 11 / 31

Protocol clauses (exercise)

For Proverif P is the same as !P.
More generally Q = C [P] is the same as Q′ = C [!P].

Exercise
Find Q = C [P] and Q′ = c[!P] such that

Q ensures the secrecy of some value;
Q′ does not.

Analyze Q in Proverif; what happens?

A possible solution: repeat.pv.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 11 / 31

Protocol clauses (informal)

Nonces
Treated as (private) constructors taking surrounding inputs as argument.

For example, new a. in(c, x).new b.in(c, y).out(c, u(x , y , a, b)) yields
∀M,N. attacker(M) ∧ attacker(N)⇒ attacker(u(M,N, a[], b[M])).

Exercise
In our process semantics, secrecy is not affected by the exchange of new
and in operations. Find Q and Q′ related by such exchanges such that

both ensure the secrecy of some value;
Proverif only proves it for Q.

A possible solution: freshness.pv.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 12 / 31

Protocol clauses (informal)

Nonces
Treated as (private) constructors taking surrounding inputs as argument.

For example, new a. in(c, x).new b.in(c, y).out(c, u(x , y , a, b)) yields
∀M,N. attacker(M) ∧ attacker(N)⇒ attacker(u(M,N, a[], b[M])).

Exercise
In our process semantics, secrecy is not affected by the exchange of new
and in operations. Find Q and Q′ related by such exchanges such that

both ensure the secrecy of some value;
Proverif only proves it for Q.

A possible solution: freshness.pv.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 12 / 31

Exercise: Needham-Schroeder

The file nspk.pv contains a partial definition of the original
Needham-Schroeder public-key protocol.

1 Complete the definition of the responder role.
2 Following what we did in lecture 2 (ded.pdf, slide 6) model the

secrecy of nb when the responder (believes he) is interacting with the
honest agent A.

3 Witness the man-in-the-middle attack in Proverif.
4 Fix the protocol, check with Proverif.

A solution: nsl-secrecies.pv
The encoding is slightly more general than above.
Demo HTML output with attack diagram.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 13 / 31

Protocol clauses

J0KH
ρ = ∅ JP |QKH

ρ = JPKH
ρ ∪ JQKH

ρ J!PKH
ρ = JPKH

ρ

Jin(c, x). PKH
ρ = JPKH∪{mess(cρ,x)}

ρ+(x 7→x)

Jout(c, u). PKH
ρ = {H ⇒ mess(cρ, uρ)} ∪ JPKH∧mess(c,x)

ρ

Jnew a. PKH
ρ = JPKH

ρ+(a 7→a[p′
1,...,p′

n]) where H = ∧imess(pi , p′
i)

Jif u = v then P else QKH
ρ = JPKHσ

ρσ ∪ JQKH
ρ where σ = mgu(uρ, vρ)

Jlet x = g(u1, . . . , un) in P else QKH
ρ =

(⋃
(p′,σ)∈X JPKHσ

ρσ+(x 7→p′σ)
)
∪ JQKH

ρ

where X = { (p′, σ) | g(p′
1, . . . , p′

n)→ p′, σ = mgu(∧iuiσ = p′
i) }

Example:
in(c, x).in(c, y).if y = n then let z = sdec(x , k) in out(c, senc(〈z , n〉, k))

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 14 / 31

Protocol clauses

J0KH
ρ = ∅ JP |QKH

ρ = JPKH
ρ ∪ JQKH

ρ J!PKH
ρ = JPKH

ρ

Jin(c, x). PKH
ρ = JPKH∪{mess(cρ,x)}

ρ+(x 7→x)

Jout(c, u). PKH
ρ = {H ⇒ mess(cρ, uρ)} ∪ JPKH∧mess(c,x)

ρ

Jnew a. PKH
ρ = JPKH

ρ+(a 7→a[p′
1,...,p′

n]) where H = ∧imess(pi , p′
i)

Jif u = v then P else QKH
ρ = JPKHσ

ρσ ∪ JQKH
ρ where σ = mgu(uρ, vρ)

Jlet x = g(u1, . . . , un) in P else QKH
ρ =

(⋃
(p′,σ)∈X JPKHσ

ρσ+(x 7→p′σ)
)
∪ JQKH

ρ

where X = { (p′, σ) | g(p′
1, . . . , p′

n)→ p′, σ = mgu(∧iuiσ = p′
i) }

Example:
in(c, x).in(c, y).if y = n then let z = sdec(x , k) in out(c, senc(〈z , n〉, k))

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 14 / 31

Protocol clauses

J0KH
ρ = ∅ JP |QKH

ρ = JPKH
ρ ∪ JQKH

ρ J!PKH
ρ = JPKH

ρ

Jin(c, x). PKH
ρ = JPKH∪{mess(cρ,x)}

ρ+(x 7→x)

Jout(c, u). PKH
ρ = {H ⇒ mess(cρ, uρ)} ∪ JPKH∧mess(c,x)

ρ

Jnew a. PKH
ρ = JPKH

ρ+(a 7→a[p′
1,...,p′

n]) where H = ∧imess(pi , p′
i)

Jif u = v then P else QKH
ρ = JPKHσ

ρσ ∪ JQKH
ρ where σ = mgu(uρ, vρ)

Jlet x = g(u1, . . . , un) in P else QKH
ρ =

(⋃
(p′,σ)∈X JPKHσ

ρσ+(x 7→p′σ)
)
∪ JQKH

ρ

where X = { (p′, σ) | g(p′
1, . . . , p′

n)→ p′, σ = mgu(∧iuiσ = p′
i) }

Example:
in(c, x).in(c, y).if y = n then let z = sdec(x , k) in out(c, senc(〈z , n〉, k))

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 14 / 31

Protocol clauses

J0KH
ρ = ∅ JP |QKH

ρ = JPKH
ρ ∪ JQKH

ρ J!PKH
ρ = JPKH

ρ

Jin(c, x). PKH
ρ = JPKH∪{mess(cρ,x)}

ρ+(x 7→x)

Jout(c, u). PKH
ρ = {H ⇒ mess(cρ, uρ)} ∪ JPKH∧mess(c,x)

ρ

Jnew a. PKH
ρ = JPKH

ρ+(a 7→a[p′
1,...,p′

n]) where H = ∧imess(pi , p′
i)

Jif u = v then P else QKH
ρ = JPKHσ

ρσ ∪ JQKH
ρ where σ = mgu(uρ, vρ)

Jlet x = g(u1, . . . , un) in P else QKH
ρ =

(⋃
(p′,σ)∈X JPKHσ

ρσ+(x 7→p′σ)
)
∪ JQKH

ρ

where X = { (p′, σ) | g(p′
1, . . . , p′

n)→ p′, σ = mgu(∧iuiσ = p′
i) }

Example:
in(c, x).in(c, y).if y = n then let z = sdec(x , k) in out(c, senc(〈z , n〉, k))

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 14 / 31

Semi-deciding non-derivability

Let C be the encoding of a system.

Proposition
If m is not secret then (roughly) attacker(m) is derivable from C
using the consequence rule:

H1σ . . . Hnσ (~H ⇒ C) ∈ C
Cσ

Equivalently: if attacker(m) is not derivable, then m is secret.

Goal
Find a semi-decision procedure that allows to conclude often enough
that a fact is not derivable from C.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 15 / 31

Resolution with selection

Conventions
Let φ = ∀M1, . . . ,Mk . H1 ∧ Hn ⇒ C be a clause.
Quantifiers may be omitted: free variables implicitly universally quantified.
Hypotheses’ order is irrelevant: {Hi}i ⇒ C , where {Hi}i is a multiset.

Resolution with selection
For each clause φ, let sel(φ) be a subset of its hypotheses.

φ = (H ′
1 ∧ . . . ∧ H ′

m ⇒ C ′) ψ = (H1 ∧ . . . ∧ Hn ⇒ C)
(
∧

i H ′
i ∧

∧
j 6=k Hj ⇒ C)σ

With σ = mgu(C ′,Hk), sel(φ) = ∅, Hk ∈ sel(ψ)
and variables of φ and ψ disjoint.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 16 / 31

Logical completeness (1)

If C′ is a set of clauses, let solved(C′) = {φ ∈ C′ | sel(φ) = ∅ }.

Proposition
Let C and C′ be two sets of clauses such that
C ⊆ C′ and
C′ is closed under resolution with selection.

If F is derivable from C then it is derivable from solved(C′),
with a derivation of size (number of nodes) ≤ the original size.

Goal: saturate the initial set of clauses by resolution?

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 17 / 31

Resolution examples

The selection strategy is crucial to obtain termination:

attacker(x) ∧ attacker(y)⇒ attacker(aenc(x , y))

Redundant clauses are often generated:

attacker(xpkb) ∧ attacker(aenc(〈na[xpkb], xnb, xpkb〉, pk(ska)))
⇒ attacker(aenc(xnb, xpkb))

Assume 2nd assumption selected, resolve against constructor clause.

Termination not achieved in general, as seen in NS shared-key:

B → A : senc(nb, k)
A→ B : senc(nb − 1, k)

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 18 / 31

Resolution examples

The selection strategy is crucial to obtain termination:

attacker(x) ∧ attacker(y)⇒ attacker(aenc(x , y))

Redundant clauses are often generated:

attacker(xpkb) ∧ attacker(aenc(〈na[xpkb], xnb, xpkb〉, pk(ska)))
⇒ attacker(aenc(xnb, xpkb))

Assume 2nd assumption selected, resolve against constructor clause.

Termination not achieved in general, as seen in NS shared-key:

B → A : senc(nb, k)
A→ B : senc(nb − 1, k)

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 18 / 31

Resolution examples

The selection strategy is crucial to obtain termination:

attacker(x) ∧ attacker(y)⇒ attacker(aenc(x , y))

Redundant clauses are often generated:

attacker(xpkb) ∧ attacker(aenc(〈na[xpkb], xnb, xpkb〉, pk(ska)))
⇒ attacker(aenc(xnb, xpkb))

Assume 2nd assumption selected, resolve against constructor clause.

Termination not achieved in general, as seen in NS shared-key:

B → A : senc(nb, k)
A→ B : senc(nb − 1, k)

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 18 / 31

Logical completeness (2)

Subsumption
({Hi}i ⇒ C) v ({H ′

j}j ⇒ C ′) if there exists σ such that
C ′σ = C and
for all j , H ′

jσ = Hi for some i .
Given a set of clauses, let elim(C) be a set of clauses such that
for all φ ∈ C there is ψ ∈ elim(C) such that φ v ψ.

Saturation of an initial set of clauses C0
1 initialize C := elim(C0)
2 for each φ generated from C by resolution, let C := elim(C ∪ {φ})
3 repeat step 2 until a fixed point is reached, let C′ be the result.

Theorem
If F is derivable from C0 then it is derivable from solved(C′).

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 19 / 31

Summing up: Proverif’s procedure

Procedure for secrecy
Encode system as C0.
Saturate it to obtain C′.
Declare secrecy of m if solved(C′) contains
no clause with conclusion attacker(m′) with m′σ = m.

Remarks
Choice of selection function: at most one hypothesis, of the form
attacker(u) where u is not a variable.
Not covered here: treatment of equations, several optimizations.
Differences with standard resolution: focus on deducible facts
rather than consistency; factorisation not needed (Horn).

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 20 / 31

Summing up: Proverif’s procedure

Procedure for secrecy
Encode system as C0.
Saturate it to obtain C′.
Declare secrecy of m if solved(C′) contains
no clause with conclusion attacker(m′) with m′σ = m.

Remarks
Choice of selection function: at most one hypothesis, of the form
attacker(u) where u is not a variable.
Not covered here: treatment of equations, several optimizations.
Differences with standard resolution: focus on deducible facts
rather than consistency; factorisation not needed (Horn).

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 20 / 31

Termination and decidability

Proverif’s procedure works very well in practice, but offers no guarantee.
This can be improved under additional assumptions.

Tagging
Secrecy is decidable for (reasonable classes of) tagged protocols.

Blanchet & Podelski 2003: termination of resolution
Ramanujan & Suresh 2003: decidability, but forbid blind copies

At most one blind copy
Comon & Cortier 2003: decidability through (ordered) resolution

Illustration: resolution with selection on tagged NS shared-key

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 21 / 31

Correspondences

Roughly, express that if X happens then Y must have happened.
If B thinks he’s completed the protocol with A, then A thinks he’s
completed the protocol with B.

Events
Add events to the syntax of protocols:

(* Declaration *)
event evName(type1,..,typeN).
(* Use inside processes *)
P ::= ... | event evName(u1,..,uN); P

Semantics extended as follows:

(event E . P |Q,Φ) τ−→ (P |Q,Φ)

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 22 / 31

Queries

Definition
The query
query x1:t1, .., xN:tK;
event(E(u1,..,uN)) ==> event(E’(v1,..,vM))

holds if for all traces of the system
if the trace ends with an event rule for an event of the form E (ui)i ,
there is a prior execution of the rule for an event of the form E ′(vj)j .

Note that variables of ui are universally quantified
while those only ocurring in vj are existentially quantified.

Example
query na:bitstring, nb:bitstring;

event(endR(pka,pkb,na,nb)) ==> event(endI(pka,pkb,na,nb)).

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 23 / 31

Exercise: mutual authentication

Extend nsl-secrecies.pv to check mutual authentication:
1 Declare and emit an event endResponder(pka, pkb, na, nb) expressing

that the responder, running with identity pkb, has completed an
execution with pka, and that the negociated nonces are na and nb.

2 Do the same for the initiator.
3 Check that, when the responder has finished, an initiator has finished

with the same parameters.
4 Consider the converse authentication property.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 24 / 31

Exercise: injectivity

Proverif also allows to check injective correspondences:
query x1:t1, .., xN:tK;
inj-event(E(u1,..,uN)) ==> inj-event(E’(v1,..,vM))

holds if for all traces of the system there is an injective φ such that
if an event of the form E (ui)i is emitted at step τ ,
an event of the form E ′(vj)j is emitted at step φ(τ) < τ .

Exercise:
1 Check that NSL satisfies mutual authentication in its injective form,

which is the proper form.
2 Give a protocol that satisfies mutual authentication only in its

non-injective form.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 25 / 31

How does it work ?

It is natural to encode events as outputs using a dedicated predicate.
For example,

(in(c, x). if x = na then event E)

would yield
(attacker(na)⇒ occurs(E)).

Problem # 1
This approximate encoding would only express that the event may occur.
When checking E ==> E ′ we cannot over-approximate E ′!

We will see how “must occur” can be encoded in the language of
Horn clauses and resolution.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 26 / 31

How does it work ?

Problem # 2
Because of the approximate encoding of fresh names, messages in the
logic do not correspond uniquely to messages in the semantics.

The process new d : channel;
! new a : bitstring;

in(c, x : bool);
if x = true then event A(a); out(d , ok) else
if x = false then in(d , x : bitstring); event B(a)

should not have any trace satisfying
query x : bitstring; event(B(x)) ==> event(A(x)).

We will ignore this problem in this lecture.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 27 / 31

How does it work ?

Problem # 2
Because of the approximate encoding of fresh names, messages in the
logic do not correspond uniquely to messages in the semantics.

The process new d : channel;
! new a : bitstring;

in(c, x : bool);
if x = true then event A(a); out(d , ok) else
if x = false then in(d , x : bitstring); event B(a)

should not have any trace satisfying
query x : bitstring; event(B(x)) ==> event(A(x)).

We will ignore this problem in this lecture.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 27 / 31

How does it work?

Translation
Use a predicate begin(·) for events that must occur,
and end(·) for events that may occur.
Treat event(M) actions in processes using both may and must:

Jevent M; PKH
ρ = JPKH∧begin(event(Mρ))

ρ ∪ {Hρ⇒ end(event(Mρ))}

We may look at nspk-auth.pv for concrete examples.

Verification problem
query x1, . . . , xn; event(E (ui)i) ==> event(E ′(vj)j)

⇔ deriving end(E (ui)i) requires to derive an instance of begin(E ′(vj)j)
(ignoring problem # 2)

⇔ for all sets E of begin(M) open facts, end(E (ui)i) is derivable from
C ∪ E only if E contains begin(E ′(vj)j) (or a generalization of it)

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 28 / 31

Verifying correspondences through resolution

So we want to verify the following:
for all sets E of begin(M) open facts, end(E (ui)i) is derivable from C ∪E
only if E contains begin(E ′(vj)j) (or a generalization of it).

But we don’t know E and can’t enumerate all of them!

Key observation
If we never select on begin(M) hypotheses, saturating on C ∪ E is the
same as saturating on C and adding E afterwards.

Procedure
Build C by translating the process and adding attacker clauses.
Get C′ by saturating C, without selecting begin(·) hypotheses.
Check that for all clauses ({Hi}i ⇒ C) ∈ solved(C′),
and all σ such that Cσ = end(E (ui)i)σ,
there exists i such that Hiσ is an instance of begin(E ′(vj)j)σ.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 29 / 31

Verifying correspondences through resolution

So we want to verify the following:
for all sets E of begin(M) open facts, end(E (ui)i) is derivable from C ∪E
only if E contains begin(E ′(vj)j) (or a generalization of it).

But we don’t know E and can’t enumerate all of them!

Key observation
If we never select on begin(M) hypotheses, saturating on C ∪ E is the
same as saturating on C and adding E afterwards.

Procedure
Build C by translating the process and adding attacker clauses.
Get C′ by saturating C, without selecting begin(·) hypotheses.
Check that for all clauses ({Hi}i ⇒ C) ∈ solved(C′),
and all σ such that Cσ = end(E (ui)i)σ,
there exists i such that Hiσ is an instance of begin(E ′(vj)j)σ.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 29 / 31

Verifying correspondences through resolution

So we want to verify the following:
for all sets E of begin(M) open facts, end(E (ui)i) is derivable from C ∪E
only if E contains begin(E ′(vj)j) (or a generalization of it).

But we don’t know E and can’t enumerate all of them!

Key observation
If we never select on begin(M) hypotheses, saturating on C ∪ E is the
same as saturating on C and adding E afterwards.

Procedure
Build C by translating the process and adding attacker clauses.
Get C′ by saturating C, without selecting begin(·) hypotheses.
Check that for all clauses ({Hi}i ⇒ C) ∈ solved(C′),
and all σ such that Cσ = end(E (ui)i)σ,
there exists i such that Hiσ is an instance of begin(E ′(vj)j)σ.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 29 / 31

Diff-equivalence

Definitions and usage in Proverif,
on the blackboard.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 30 / 31

Diff-equivalence: guessing exercises

Exercise
Consider the naive voting protocol where a voter sends his vote encrypted
with the authority’s public key.
Can the vote be guessed? Model using diff-equivalence. Propose a fix.

Exercise
Consider the handshake protocol:

A→ B : senc(n, pw)
B → A : senc(incr(n), pw)

Can pw be guessed? Model using diff-equivalence and a phase:
phase 1; new w ; out(c, choice[w , pw]).

Exercise
CloudFlare’s Captcha alternative for Tor using blind tokens.

David Baelde (ENS Saclay & Inria Paris) Protocol Equivalences 2017 31 / 31

	Semantics
	Horn clause modeling
	Resolution
	Correspondences
	Equivalence

