
Software Engineering

Lecture 1

Introduction, principles & architecture

David Baelde
baelde@lsv.ens-cachan.fr

MPRI

September 13, 2017

baelde@lsv.ens-cachan.fr

Introduction

Prehistory

Main control panel of ENIAC (1946)

First Turing-complete computers

I Huge and expensive (30 tons, 167m2, 150kW, 6M$)

I One-off, built for specific purposes (military computations)

I Focus on making hardware reliable

Industrialization

IBM System/360 (1964)

Mainframe computers

I Wide range of applications, scientific to commercial

I Separation of architecture and implementation

I Software complexity rises

Birth of software engineering

1960’ software crisis

I Spectacular failures: bugs, cost, overtime, cancellation

I Frederick P. Brooks about OS/360:

The flaws in design and execution pervade especialy
the control program. [. . .] The product was late, it
took more memory than planned, the costs were
several times the estimate, and it did not perform
very well until several releases after the first.

1968 NATO conference on Software Engineering

Need for software manufacturers to be based on the types
of theoretical foundations and practical disciplines that
are traditional in the established branches of engineering.

Birth of software engineering

1960’ software crisis

I Spectacular failures: bugs, cost, overtime, cancellation

I Frederick P. Brooks about OS/360:

The flaws in design and execution pervade especialy
the control program. [. . .] The product was late, it
took more memory than planned, the costs were
several times the estimate, and it did not perform
very well until several releases after the first.

1968 NATO conference on Software Engineering

Need for software manufacturers to be based on the types
of theoretical foundations and practical disciplines that
are traditional in the established branches of engineering.

Birth of software engineering

1960’ software crisis

I Spectacular failures: bugs, cost, overtime, cancellation

I Frederick P. Brooks about OS/360:

The flaws in design and execution pervade especialy
the control program. [. . .] The product was late, it
took more memory than planned, the costs were
several times the estimate, and it did not perform
very well until several releases after the first.

1968 NATO conference on Software Engineering

Need for software manufacturers to be based on the types
of theoretical foundations and practical disciplines that
are traditional in the established branches of engineering.

Software Engineering

A lot of parameters:

I Product: is it critical? clearly defined? meant to evolve?

I Economical aspects: cost of machines and workers,
competition and time pressure.

I Technology: languages, RCS, communication means.

I Science: PL theory, verification, static analysis, etc.

I Humans: client, users, developpers, managers, etc.

I Ideology: more or less hierarchy, secret, etc.

Relies on common sense, computer science but also social sciences:
psycho, ethno, experiments, etc.
No best approach.

Software Engineering

A lot of parameters:

I Product: is it critical? clearly defined? meant to evolve?

I Economical aspects: cost of machines and workers,
competition and time pressure.

I Technology: languages, RCS, communication means.

I Science: PL theory, verification, static analysis, etc.

I Humans: client, users, developpers, managers, etc.

I Ideology: more or less hierarchy, secret, etc.

Relies on common sense, computer science but also social sciences:
psycho, ethno, experiments, etc.
No best approach.

Software Engineering

A lot of parameters:

I Product: is it critical? clearly defined? meant to evolve?

I Economical aspects: cost of machines and workers,
competition and time pressure.

I Technology: languages, RCS, communication means.

I Science: PL theory, verification, static analysis, etc.

I Humans: client, users, developpers, managers, etc.

I Ideology: more or less hierarchy, secret, etc.

Relies on common sense, computer science but also social sciences:
psycho, ethno, experiments, etc.
No best approach.

Software Engineering

A lot of parameters:

I Product: is it critical? clearly defined? meant to evolve?

I Economical aspects: cost of machines and workers,
competition and time pressure.

I Technology: languages, RCS, communication means.

I Science: PL theory, verification, static analysis, etc.

I Humans: client, users, developpers, managers, etc.

I Ideology: more or less hierarchy, secret, etc.

Relies on common sense, computer science but also social sciences:
psycho, ethno, experiments, etc.
No best approach.

Software Engineering

Problems Goal

Complexity Correctness
Change Evolutivity

Approach

I Principles behing good software products and processes.

I Methodologies that apply and promote those principles.

I Tools to implement and help follow methodologies.

Scope

Activities

spec. design

implem.

validation evolution

Products

doc doc

code

tests history

Software Engineering

Problems Goal

Complexity Correctness
Change Evolutivity

Approach

I Principles behing good software products and processes.

I Methodologies that apply and promote those principles.

I Tools to implement and help follow methodologies.

Scope

Activities

spec. design

implem.

validation evolution

Products

doc doc

code

tests history

Software Engineering

Problems Goal

Complexity Correctness
Change Evolutivity

Approach

I Principles behing good software products and processes.

I Methodologies that apply and promote those principles.

I Tools to implement and help follow methodologies.

Scope

Activities

spec. design

implem.

validation evolution

Products

doc doc

code

tests history

Software Engineering

Problems Goal

Complexity Correctness
Change Evolutivity

Approach

I Principles behing good software products and processes.

I Methodologies that apply and promote those principles.

I Tools to implement and help follow methodologies.

Scope

Activities spec. design implem. validation evolution
Products doc doc code tests history

Rigor

Rigor

How to ensure correctness?

I Ideally, formal methods!

I In practice, mostly through rigorous methodologies.

Correctness is meaningless without a spec!

I Always specify precisely what you need, and no more

I Informal specs (i.e., doc) are much better than nothing

I Make sure the spec is visible to the implementer

There will be bugs!

I Be paranoid, seek to detect anomalies early on

I Design precise tests, run them after each change

Rigor

How to ensure correctness?

I Ideally, formal methods!

I In practice, mostly through rigorous methodologies.

Correctness is meaningless without a spec!

I Always specify precisely what you need, and no more

I Informal specs (i.e., doc) are much better than nothing

I Make sure the spec is visible to the implementer

There will be bugs!

I Be paranoid, seek to detect anomalies early on

I Design precise tests, run them after each change

Rigor

How to ensure correctness?

I Ideally, formal methods!

I In practice, mostly through rigorous methodologies.

Correctness is meaningless without a spec!

I Always specify precisely what you need, and no more

I Informal specs (i.e., doc) are much better than nothing

I Make sure the spec is visible to the implementer

There will be bugs!

I Be paranoid, seek to detect anomalies early on

I Design precise tests, run them after each change

Change

Anticipation of change

Code will evolve

I Bugs will have to be fixed

I Requirements and the environment may change

I Components could be re-used in a (slightly different) context

Be ready

I Actively work to identify potential changes

I Design code so that change and re-use is facilitated

I Use tools that help to keep track of change

I Organize work around upcoming changes

Anticipation of change

Code will evolve

I Bugs will have to be fixed

I Requirements and the environment may change

I Components could be re-used in a (slightly different) context

Be ready

I Actively work to identify potential changes

I Design code so that change and re-use is facilitated

I Use tools that help to keep track of change

I Organize work around upcoming changes

Software development processes

Waterfall model

Requirements

Design

Implementation

Maintenance

I Prevalent at least until 70’

I Probably inspired from other engineering fields

I DoD guidelines for military software: mandatory until 88
remains reference after that (until recently?)

Software development processes

Waterfall model

Requirements

Design

Implementation

Maintenance

I Prevalent at least until 70’

I Probably inspired from other engineering fields

I DoD guidelines for military software: mandatory until 88
remains reference after that (until recently?)

Incrementality

Proceed step by step to get early feedback and adjust.

I Start by implementing a subset of features.

I Start with functional correctness only.

Incremental development model

Specification Development Validation

Pros/cons

⊕ Early feedback. Opportunity to fix requirements and design.
May be necessary if requirements are not initially clear.

⊕ Good for the morale of developers and clients!

	 Requires refactoring to maintain good structure.

	 Hard to keep track of change in large projects.

Incrementality

Proceed step by step to get early feedback and adjust.

I Start by implementing a subset of features.

I Start with functional correctness only.

Incremental development model

Specification Development Validation

Pros/cons

⊕ Early feedback. Opportunity to fix requirements and design.
May be necessary if requirements are not initially clear.

⊕ Good for the morale of developers and clients!

	 Requires refactoring to maintain good structure.

	 Hard to keep track of change in large projects.

The Linux kernel

The main invention in Linux is . . .

its development model.

I Wide distribution and invitation to contribute,
thanks to personal computers and the internet.

I Active integration of patches and frequent releases,
initially by hand, then with dedicated tools.

I Pre-requisites in the code:

I precise documentation
I extensibility through modules for drivers, file system, etc.

E. S. Raymond, The Cathedral and the Bazaar, O’Reilly, 1999.

The Linux kernel

The main invention in Linux is its development model.

I Wide distribution and invitation to contribute,
thanks to personal computers and the internet.

I Active integration of patches and frequent releases,
initially by hand, then with dedicated tools.

I Pre-requisites in the code:

I precise documentation
I extensibility through modules for drivers, file system, etc.

E. S. Raymond, The Cathedral and the Bazaar, O’Reilly, 1999.

More development models

Collaborative software development

Incremental with collaboration and involvement of the public
Main model for open-source software:

I More testers → earlier bug reports

I Massive peer review (?)

Agile software development

Incremental process + focus on collaboration & self-organization

http://agilemanifesto.org/principles.html

Various methodologies (XP, SCRUM. . .)

http://agilemanifesto.org/principles.html

More development models

Collaborative software development

Incremental with collaboration and involvement of the public
Main model for open-source software:

I More testers → earlier bug reports

I Massive peer review (?)

Agile software development

Incremental process + focus on collaboration & self-organization

http://agilemanifesto.org/principles.html

Various methodologies (XP, SCRUM. . .)

http://agilemanifesto.org/principles.html

Modularity

Modularity

Segment project in modules with clearly defined interfaces.

A slogan: High Cohesion, Low Coupling

I Maximize modularity:
parallelizability of the software process, chances of re-use

I Minimize interactions:
separately test, modify. . . understand, then integrate

Example (types of cohesion)

I Coincidental: no (good) reason

I Temporal: executed around the same time, e.g., init

I Functional: realize a task, e.g., convert file

I . . .

What is a good modularization?

Modularity

Segment project in modules with clearly defined interfaces.

A slogan: High Cohesion, Low Coupling

I Maximize modularity:
parallelizability of the software process, chances of re-use

I Minimize interactions:
separately test, modify. . . understand, then integrate

Example (types of cohesion)

I Coincidental: no (good) reason

I Temporal: executed around the same time, e.g., init

I Functional: realize a task, e.g., convert file

I . . .

What is a good modularization?

Modularity

Segment project in modules with clearly defined interfaces.

A slogan: High Cohesion, Low Coupling

I Maximize modularity:
parallelizability of the software process, chances of re-use

I Minimize interactions:
separately test, modify. . . understand, then integrate

Example (types of cohesion)

I Coincidental: no (good) reason

I Temporal: executed around the same time, e.g., init

I Functional: realize a task, e.g., convert file

I . . .

What is a good modularization?

Modularity

Input Shift

Sort

Output

Modules export arrays

No text in shifted/sorted arrays

A possible modularization for a
KWIC index generator:

Input: lines of text
Output:

all permutations of those lines,
sorted alphabetically

vs. Input

Shift

Sort

Output

Lines

Modules export get/set()

David Parnas, On the Criteria To Be Used in Decomposing
Systems into Modules, Communications of the ACM, 1972.

Modularity

Input Shift

Sort

Output

Modules export arrays

No text in shifted/sorted arrays

vs. Input

Shift

Sort

Output

Lines

Modules export get/set()

David Parnas, On the Criteria To Be Used in Decomposing
Systems into Modules, Communications of the ACM, 1972.

Modularity

Input Shift

Sort

Output

Modules export arrays

No text in shifted/sorted arrays

vs. Input

Shift

Sort

Output

Lines

Modules export get/set()

David Parnas, On the Criteria To Be Used in Decomposing
Systems into Modules, Communications of the ACM, 1972.

Modularity

Segment project in modules with clearly defined interfaces.

A slogan: High Cohesion, Low Coupling

I Maximize modularity:
parallelizability of the software process, chances of re-use

I Minimize interactions:
separately test, modify. . . understand, then integrate

Example (types of cohesion)

I Coincidental: no (good) reason

I Temporal: executed around the same time, e.g., init

I Functional: realize a task, e.g., convert file

I Informational: independent operations on same data, e.g., list

Modularization goes hand in hand with information hiding, aka . . .

Abstraction

Ignoring details

Design

I Do not specify implementation details.

I Details are things that can easily change:
maximum waiting time, password length, etc.

Code

I Code in a high-level language, far from the machine.

I Code for correctness first, then optimize if needed.
“Premature optimization is the root of all evil.” – Knuth

I Don’t hardcode:
no magic numbers, any constant should be justified.

Modularity + Abstraction

Segment project in modules with clearly defined interfaces.

Maximize information hiding in interfaces:

I Minimize coupling.

I Plan for evolution.

Language support

More or less constraining/helpful

I Modules and abstract types in ML-like languages

I Classes in object oriented programming

I Separate compilation units in other languages

I Procedures in structured programming languages!

Proof assistants

Concerns of computer-aided theorem proving

I Soundness: the whole point is to have trustworthy proofs!

I Usability: undo, notations, automation, efficiency,
user extensions, etc.

Proof assistants

Concerns of computer-aided theorem proving

I Soundness: the whole point is to have trustworthy proofs!

I Usability: undo, notations, automation, efficiency,
user extensions, etc.

Edinburgh LCF (70’s)

I Proof objects cannot be maintained for performance reasons

I Small trusted kernel provides
sound manipulations of abstract datatype theorem

I Tactics and tacticals built on top of this sound kernel

I By-product: ML language and module system!

M. J. C. Gordon, From LCF to HOL: a short history, 2000.

Proof assistants

Concerns of computer-aided theorem proving

I Soundness: the whole point is to have trustworthy proofs!

I Usability: undo, notations, automation, efficiency,
user extensions, etc.

Coq v7 (2000)

I Proof objects are maintained: relevant, non-local checks

I Isolated kernel: breaking dependency on undo-able objects

I (OCa)ML modules still used: abstraction ensures safety

I Kernel is purely functional, 1/3 of the code

I 2013, v8.4pl2: same design, impure kernel, 1/10 of the code

J-C. Filliâtre, Design of a proof assistant: Coq version 7, 2000.

Exercises

Intermediaries

Discuss the following Java function:

pub l i c void
showDead l ine (User u , C o n f e r e n c e c) {

TimeZone t z = u . g e t L o c a t i o n () . getTimeZone () ;
Date d = c . g e t P a p e r D e a d l i n e () ;
. . . // someth ing i n v o l v i n g o n l y t z and d

}

Pairs

(Based on 2013 MPRI project “Geriatric Terrorist Anarchy”)

Two C++ classes use pairs:

I The UI performs drawing using SFML’s Vector2f class.

I The simulator moves characters around the world, also using
2D floating point coordinates.

Alternatives to discuss:

I Use Vector2f for the simulator code.

I Create a new class for pairs of floats.

I (Use std::pair.)

strtok

char *strtok(char *str, const char *delim);

The strtok() function parses a string into a sequence

of tokens. On the first call to strtok() the string

to be parsed should be specified in str. In each

subsequent call that should parse the same string,

str should be NULL.

Discuss

I What’s wrong with this spec?

I Give examples of when the function is unusable.

I Propose other designs, not necessarily in C.

Software architecture examples

Layers

Monolithic kernel architecture

file system . . . networking
scheduler IPC pager

Applications

Hardware

User space

Kernel space

Syscall API

Layers

Monolithic kernel architecture

file system . . . networking
scheduler IPC pager

Applications

Hardware

User space

Kernel space

Syscall API

Unix
Powerful abstractions such as processes and file descriptors.

The success of Unix lies not so much in new inventions
but rather in the full exploitation of a carefully selected
set of fertile ideas.

N. Gordon, Ghosts of the UNIX past: a historical search for
design patterns, LWN, 2010.

Layers

Monolithic kernel architecture

file system . . . networking
scheduler IPC pager

Applications

Hardware

User space

Kernel space

Syscall API

Exercise
Does Unix follow a strict layered architecture?

Pipes and filters

Parse
C

Pascal

Optimize
IR

IR

IR

Emit
IR x86

ARM

I Parser generators are engineering pearls in themselves

I Reason separately about individual “filters” (cf. CompCert)

I Easy extension with new front-ends, back-ends or optimizers?

I LLVM took this architecture seriously: truly decoupled phases,
documented interfaces, ships as library, provides dynamic
configuration tools
 maximum re-use, huge community, lots of features

Chris Lattner, The Architecture of Open Source Applications,
volume I, chapter 11: LLVM, 2012.

Pipes and filters

Parse
C

Pascal
Optimize

IR

IR

IR

Emit
IR x86

ARM

I Parser generators are engineering pearls in themselves

I Reason separately about individual “filters” (cf. CompCert)

I Easy extension with new front-ends, back-ends or optimizers?

I LLVM took this architecture seriously: truly decoupled phases,
documented interfaces, ships as library, provides dynamic
configuration tools
 maximum re-use, huge community, lots of features

Chris Lattner, The Architecture of Open Source Applications,
volume I, chapter 11: LLVM, 2012.

Pipes and filters

Parse
C

Pascal
Optimize

IR

IR

IR

Emit
IR x86

ARM

I Parser generators are engineering pearls in themselves

I Reason separately about individual “filters” (cf. CompCert)

I Easy extension with new front-ends, back-ends or optimizers?

I LLVM took this architecture seriously: truly decoupled phases,
documented interfaces, ships as library, provides dynamic
configuration tools
 maximum re-use, huge community, lots of features

Chris Lattner, The Architecture of Open Source Applications,
volume I, chapter 11: LLVM, 2012.

References

Frederick P. Brooks, The Mythical Man-Month
(20th anniversary edition), Addison-Wesley, Prentice Hall,
1995.

Ian Sommerville, Software Engineering (9th edition),
Addison-Wesley, 2011.

C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of
Software Engineering, Prentice Hall, 1991.

A. Hunt, D. Thomas, The Pragmatic Programmer,
Addison-Wesley, 2000.

. . . and many others cited in the slides.

	Introduction
	History
	Software Engineering

	Principles
	Rigor
	Change
	Modularity
	Abstraction
	Exercises

	Software architecture examples
	References

