Logique & Calculabilité

Hubert Comon ∧ David Baelde {comon,baelde}@lsv.ens-cachan.fr

Exercise 8 (interpolation theorem)

Let ϕ and ψ be two formulas such that $\phi \vDash \psi$. We have shown that there is a formula θ (called the *interpolant*) such that $\phi \vDash \theta$ and $\theta \vDash \psi$, and all propositional variables occurring in θ occur in both ϕ and ψ .

- 1. Apply the method to obtain an interpolant for $p \land q \vDash \phi$ when q does not occur in ϕ .
- 2. Compute an interpolant for $\phi \vDash p \land q$ when q does not occur in ϕ , by reducing the problem to the earlier situation.

Exercise 15

A set of formulas E is *independent* if, for any $\phi \in E$, $E \setminus \{\phi\} \not\vDash \phi$.

- 1. Show that any finite set of formulas E admits an independent subset E' such that, for any $\phi \in E$, $E' \vDash \phi$.
- 2. Show that any countable set of formulas E admits an equivalent independent set of formulas E', *i.e.*, for any $\phi \in E'$, $E \vDash \phi$ and for any $\psi \in E$, $E' \vDash \psi$.
- 3. Show that it is impossible to require additionally that $E' \subseteq E$.

Exercise 17

Show that a graph can be colored with k colors iff each of its finite sub-graphs can be colored with k colors.

Exercise 11,13,14

- 1. Show that \lor , \land , \neg are definable using only the connective \rightarrow and the constant \bot . We say that the set $\{\rightarrow, \bot\}$ is *functionally complete*.
- 2. Give a binary connective which, alone, is functionally complete.
- 3. Show that $\{\leftrightarrow, \neg\}$ is not functionally complete.

Exercise 20

Give a formula which admits two different clausal normal forms.

Exercise 21

We aim to estimate the maximal blowup in the size of formulas when putting them in clausal normal form. For $\phi \in \mathcal{F}_0(\mathcal{P})$, let $\tau(\phi)$ be the minimal size of a clausal formal for ϕ .

1. Find a family of formulas ϕ_n such that $|\phi_n|$ grows linearly in n and $\tau(\phi_n)$ grows exponentially in n. More precisely, we wish to obtain:

$$\lim_{n \to +\infty} \frac{\tau(\phi_n)}{\sqrt{2^{|\phi_n|}}} > 0$$

2. Show that $\tau(\phi) < |\phi| \times 2^{\frac{|\phi|+3}{2}}$ for any ϕ .

Exercise 19'

Consider a set E of *Horn clauses*, *i.e.*, clauses containing at most one positive literal. We shall view interpretations as sets of predicates variables, instead of functions from predicates to Booleans.

- 1. Show that models of E are closed under finite intersection.
- 2. Show that there is a least model of E.
- 3. Given a predicate variable p, propose an algorithm for deciding whether $E \models p$ or not.