
Lecture Notes

Proof Theory
Foundations and Applications

David Baelde
LSV, ENS Cachan

June 2013, UAIC, Iasi, Romania

Contents

1 Basic Sequent Calculus 3
1.1 Classical Propositional Logic . 3
1.2 Sequent Calculus . 4
1.3 Cut Elimination . 9
1.4 Proofs as Programs . 16
1.5 Intuitionistic Logic . 16
1.6 References . 17

2 A logic for reasoning about (co)inductive specifications 18
2.1 First-Order Logic . 18
2.2 Equality . 19
2.3 Fixed Points . 21

2.3.1 Least fixed points . 21
2.3.2 Cut-elimination . 24
2.3.3 Greatest fixed points . 25

2.4 Examples . 25
2.5 Proof of normalization . 26
2.6 References . 26

1

Introduction

Born about a century ago from the foundational crisis of mathematics, proof
theory has evolved into a rich, independent field of study with its own motiva-
tions. The meeting of proof theory and computer science has been particularly
fruitful: logic can provide foundations for computing, and computers can auto-
mate (part of) the reasoning process. As a result of this interaction, we now
have tools for building and checking fully formal proofs, whose success spans
from software verification to formalized mathematics.

In this course, we will provide an introduction to the basic concepts of proof
theory and show how they provide a foundation for complex applications in for-
mal reasoning. In the first part, we will study sequent calculus for propositional
logics. We will highlight the common features of sequent calculi, and the cen-
tral role of the cut rule and the cut elimination theorem. This will give us the
opportunity to mention numerous connections between proof theory and com-
puter science, and the associated research questions. In the second part of the
course, we will show how these foundations give us a firm ground on which to
build much richer proof systems. We will move from propositional to first-order
logic, and then enrich our logic with fixed point definitions, a.k.a. (co)inductive
specifications, to obtain a system in which we can prove useful properties of
discrete mathematics, programs, and more broadly computer science.

2

Chapter 1

Basic Sequent Calculus

We start with a common and simple logic: classical propositional logic. After
reviewing its boolean truth semantics, we introduce the sequent calculus LK0

for it, discuss its structure, and show central results such as completeness and
cut elimination. On the way, we shall mention some connections between proof
theory and computer science. Finally, we introduce intuitionistic logic which
makes some of these connections more evident.

1.1 Classical Propositional Logic

We define the syntax of propositional logic and its truth semantics. This section
is intentionally quite rough. We only include it to be able to ground the following
developments in some intuitive notions.

Definition 1. Let P = { p, q, r, . . . } be a countable set of propositional con-
stants. Formulas of propositional logic are then given by the following grammar:

P,Q ::= p | ⊥ | > | ¬P | P ∧Q | P ∨Q | P ⊃ Q

Definition 2. Let B = { 0, 1 } and +,× be the maximum and minimum opera-
tions on that set. Given an interpretation for propositional constants I : P → B,
we define the interpretation of a formula by induction on the structure of the
formula:

[p]I = I(p)

[⊥]I = 0

[>]I = 1

[¬P]I = 1− [P]I

[P ∨Q]I = [P]I + [Q]I

[P ∧Q]I = [P]I × [Q]I

[P ⊃ Q]I = (1− [P]I) + [Q]I

3

Definition 3. We say that a formula P is satisfiable if there exists an I such
that [P]I = 1. We say that the formula is valid, or simply true, if for all I we
have [P]I = 1.

Example 1. Let p, q ∈ P. The formula p ⊃ q is satisfiable: it suffices to take
an interpretation such that I(p) = 0, or one such that I(q) = 1. However that
formula is not valid when p 6= q: consider I(p) = 1 and I(q) = 0.

Proposition 1 (Basic identities). Let P and Q be arbitrary formulas, then we
have the following equivalences with respect to our semantics:

¬(P ∧Q) ≡ (¬P ∨ ¬Q) ¬(P ∨Q) ≡ (¬P ∧ ¬Q)

¬¬P ≡ P P ⊃ Q ≡ ¬P ∨Q

The first two identities are called de Morgan duality between conjunction and
disjunction.

Exercise 1. Which of the following facts is true? (1) If P ∧ Q is valid then
both P and Q are valid. (2) If P ∨Q is valid then one of P and Q is valid.

Exercise 2. Let P and Q be arbitrary formulas such that P ⊃ Q and Q ⊃ P
are both valid. Let p ∈ P. Show that R[P/p] is valid iff R[Q/p] is valid, where
[P/p] denotes the substitution of P for p.

1.2 Sequent Calculus

In the previous section, we have defined a syntax for our logic, and a truth
semantics based on the interpretation of our syntax in the model B. In the case
of propositional logic, the construction is quite satisfying, because the syntax
is explained by means of a semantics that is somewhat simpler. With richer
logics, for example systems containing arithmetic, the situation would not be
that simple: we would typically presuppose the existence of natural numbers
in order to obtain a model of arithmetic. We are now going to switch to a
different approach based on the notion of proof. This is appealing because
we can design simple, syntactical proof systems for arbitrarily rich logics. Of
course, foundational issues come back one way or the other: here, it will be
when we try to prove that our logic is consistent. In the end, both approaches
are used for various purposes, and it is important to be able to relate the two
approaches. We shall do it for classical logic, but after this our main focus will
be on understanding the general structure of sequent calculi.

Definition 4. A sequent is a pair of multisets of formulas, written Γ ` ∆. An
LK0 derivation (or proof) is a tree-like derivation built using the inference rules
of Figure 1.1.

Intuitively, a sequent Γ ` ∆ should be read as “the conjunction of formulas
in Γ implies the disjunction of the formulas in ∆.” One can check that this

4

Identity group

P ` P axiom
Γ ` ∆, P Γ′, P ` ∆′

Γ,Γ′ ` ∆,∆′ cut

Logical group

Γ,⊥ ` ∆
⊥

Γ ` >,∆ >

Γ, A,B ` ∆

Γ, A ∧B ` ∆
∧L

Γ ` A,∆ Γ′ ` B,∆′

Γ,Γ′ ` A ∧B,∆,∆′ ∧R

Γ, A ` ∆ Γ′, B ` ∆′

Γ,Γ′, A ∨B ` ∆,∆′ ∨L
Γ ` A,B,∆

Γ ` A ∨B,∆ ∨L

Γ ` P,∆ Γ′, Q ` ∆′

Γ,Γ′, P ⊃ Q ` ∆,∆′ ⊃L
Γ, P ` Q,∆

Γ ` P ⊃ Q,∆ ⊃R

Structural group

Γ ` ∆
Γ, P ` ∆

WL
Γ ` ∆

Γ ` P,∆ WR

Γ, P, P ` ∆

Γ, P ` ∆
CL

Γ ` P, P,∆
Γ ` P,∆ CR

Figure 1.1: Inference rules for LK0

5

intuition is respected by the rules of inference of our calculus, and this will be
made formal in the final theorem of the section.

Inference rules are organized in three groups. The structural group is made
of the rules WL and WR, called weakening rules, and CL and CR which are
contractions. We do not include exchange rules to move formulas at different
places in sequents. Instead our rules should be understood as applying regard-
less of the position of a formula in the sequent. The logical group is the core of
reasoning. The applicability of its rules only depends on the outermost connec-
tive of one formula in the concluding sequent, which creates a tight connection
between the notions of connective and logical rule. That formula is called prin-
cipal. The identity group contains the only rules that require a notion of equality
on formulas: axiom and cut. To check a proof starting with one of these rules,
one has to check that two formulas are the same. We say that a formula is active
in a rule application when it is singled out in the rule: it is the formula being
contracted or weakened, the principal formula in a logical rule, or a formula in
the axiom rule.

In order to familiarize ourselves with the calculus, we are going to make a
few elementary observations before the big results.

Exercise 3. Derive the following sequents in LK0: ` A∨¬A, A∧B ` B ∧A,
A ∨ B ` B ∨ A, A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C), and the equivalences of
Proposition 1.

Proposition 2. The general axiom rule from Figure 1.1 can be derived from
the other rules and the axiom restricted to atomic formulas.

Proof. By induction on P , we introduce one by one the logical connectives of P
until we reach an axiom.

Proposition 3. The rule ∧L is invertible, meaning that if its conclusion is
derivable, then so is its premise. From the viewpoint of somebody trying to build
a proof of the conclusion, this means that applying the rule will never loose
provability.

Proof. Let us first observe that not all rules are invertible. To see that, consider
the following application of ∧R:

A ∧B ` B ` A
A ∧B ` B ∧A

While the bottom sequent is certainly provable, this is definitely not the case of
the right premise.

Coming back to ∧L, there is an easy proof of its invertibility: assuming a
derivation Π, we create a new one that ends with ∧L, then uses cut to “undo”
the left conjunction rule and get back to the original sequent.

A ` A B ` B
A,B ` A ∧B

Π
Γ, A ∧B ` ∆

Γ, A,B ` ∆
cut

Γ, A ∧B ` ∆

6

This version of the result is a priori not useful for proof search: we would like
to know not only that the application does not loose provability but also that
it gets us closer to completing a proof. To get some insight in that respect,
we present an argument based on proof transformations, or more precisely rule
permutations.

Let Π be a derivation of Γ, (P ∧Q)n ` ∆. We prove by induction on Π that
there is a derivation of Γ, Pn, Qn ` ∆.

• If the last rule does not apply to one of the P ∧Q formulas, we apply the
induction hypothesis were applicable and conclude by permuting the last
rule with ∧L as needed.

• Otherwise, the rule can be an axiom, ∧L, or a structural rule. We have
seen that the axiom can be expanded in a way that allows us to conclude.
There is nothing to do if the rule is ∧L. If one of our formulas is weakened
away, we produce the required derivation by weakening the corresponding
subformulas P and Q. If one of the P ∧Q is contracted then by induction
hypothesis we have a derivation of Γ, Pn+1, Qn+1 ` ∆, and by applying
two contraction rules we obtain the expected result.

Exercise 4. Define the negation normal form of a formula by ψ(P), using the
identities of Proposition 1 to simplify any formula into a form without implica-
tion and where negation is restricted to atoms. The one-sided sequent calculus
for classical propositional logic is obtained by removing all left rules as well as
logical rules for implication and negation from LK0, and adapting axiom and
cut as follows:

` p,¬p
` Γ, P ` Γ′, ψ(¬P)

` Γ,Γ′

Show that this system is equivalent, i.e., ` P is provable in LK0 iff it is provable
in the one-sided system. Hint: generalize to ` ψ(¬ ∧ Γ), ψ(∆).

We conclude the section by establishing that our proof system is sound and
complete. This requires introducing a set of alternative rules first – the reasons
for not working with these rules from the beginning will become apparent in the
next section.

Proposition 4. The inference rules of Figure 1.2 are all admissible, meaning
that if their premises are derivable in LK0 then so is their conclusion.

Proof. This is easily checked. Each rule is derived from the corresponding rule
from Figure 1.1 and structural rules.

Theorem 1. The calculus LK0 is sound and complete for propositional classical
logic, i.e., P is valid iff ` P is provable.

7

Γ, P ` P,∆

Γ,⊥ ` ∆ Γ ` >,∆

Γ, A,B ` ∆

Γ, A ∧B ` ∆

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧B,∆

Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨B ` ∆

Γ ` A,B,∆
Γ ` A ∨B,∆

Γ ` P,∆ Γ, Q ` ∆

Γ, P ⊃ Q ` ∆

Γ, P ` Q,∆
Γ ` P ⊃ Q,∆

Γ ` A,∆
Γ,¬A ` ∆

Γ, A ` ∆

Γ ` ¬A,∆

Figure 1.2: A complete set of invertible rules for propositional classical logic

Proof. Given a derivation Π of Γ ` ∆ we prove by induction on Π that the
sequent is valid. This is straightforward: it suffices to check for each rule that
if the premises are valid then so is the conclusion. For completeness, we use
the invertible rules of Figure 1.2. By induction on the total number of logical
connectives in a valid sequent Γ ` ∆, we build a derivation of it.

The careful reader will have noted that the precise choice of rules in Fig-
ure 1.1 is what makes Exercise 4 work smoothly. Indeed, we have chosen pairs
of rules for ∧, ∨ and ⊃ which closely reflect the basic identities of Proposition 1
at the level of proofs. The cut reductions of the next section also dictate some
symmetries in our design. The choice of rules in Figure 1.2 does not enjoy those
symmetries, although the resulting system proves exactly the same theorems.
If we follow symmetries between left and right rules rather than invertibility as
a guideline, we obtain yet another presentation.

Definition 5. The additive connectives & and ⊕ are defined by the following
pairs of rules.

Γ, Ai ` ∆

Γ, A0&A1 ` ∆
&L

Γ ` A0,∆ Γ ` A1,∆

Γ ` A0&A1,∆
&R

Γ, A0 ` ∆ Γ, A1 ` ∆

Γ, A0 ⊕A1 ` ∆
⊕L

Γ ` Ai,∆
Γ ` A0 ⊕A1,∆

⊕R

The connectives ∧ and ∨ are called multiplicative. Notations vary a lot here, so
the terminology should be understood as referring to the rules, not the symbols
used.

8

Exercise 5. Show that A ∧ B ≡ A&B and A ∨ B ≡ A ⊕ B for all A and B.
Show that ¬(A ⊕ B) ≡ ¬A&¬B. Check that this duality is present at the level
of proofs: the transformation from Exercise 4 turns &L into ⊕R, etc.

1.3 Cut Elimination

Gentzen concentrated in the cut rule all the inventive, indirect part of reasoning.
Then he observed that this rule could be eliminated: any proof with cut can be
transformed into a cut-free proof. This is a very powerful result because cut-free
proofs have a simple structure that is easy to analyze.

Proposition 5. There is no cut-free derivation of ` ⊥. Hence the logic is
consistent if it eliminates cut.

Proof. By cut elimination it suffices to show that there is no cut-free derivation
of ` ⊥. This is obvious because the only applicable rules on that sequent are
structural rules, and they do not allow to conclude.

A stronger observation about cut-free proofs is that they form an analytic
proof system: deduction does not rely on any invention, but only involves in-
specting sub-components of the goal formulas.

Proposition 6 (Subformula property). All formulas occurring in a cut free
derivation of Γ ` ∆ are subformulas of formulas occurring in Γ or ∆.

Proof. This follows from a simple inspection of the rules.

We shall now prove that cut is admissible, i.e., that it can be eliminated. In
the above proof of completeness, we have actually built a cut-free derivation for
any valid formula. Thus we have an indirect, semantic cut elimination proof for
our logic: if a sequent is provable then it is valid, and by completeness it has a
cut-free derivation.

Gentzen showed cut elimination in a more direct way. His approach is inter-
esting because it does not require a notion of model, but relies only on proofs.
We shall define a set of proof transformations, called cut reductions, such that
irreducible proofs are cut free, and show that any proof can be reduced in a
finite number of steps into an irreducible, and thus cut-free proof. There are a
lot of syntactical details to consider! To get the essential idea behind all these
symbols, it is useful to keep in mind some intuitions — that Gentzen proba-
bly did not have. One should not think too much of sequents as sets or even
multisets, as it is useful to follow the “path” of a given formula through the
proof. This way a proof appears as a recipe for manipulating formulas, working
on one and then on the other. Following individual formulas in a proof, we can
“see” wires, and it becomes obvious that what happens on one wire is quite
independent from what happens on another: the order of rule applications on
distinct formulas is irrelevant. This kind of intuition is behind the first set of
reductions.

9

Definition 6 (Auxiliary cut reductions). These reductions apply to any cut
which has a subderivation where the cut formula is not immediately active.
There are many rules with lots of symmetric cases, but the essential idea is
always the same: permuting the cut above the other rule.
Permuting cut and left conjunction rules:

Γ ` C,∆
Γ′, A,B,C ` ∆′

Γ′, A ∧B,C ` ∆′

Γ,Γ′, A ∧B ` ∆,∆′ cut −→

Γ ` C,∆ Γ′, A,B,C ` ∆′

Γ,Γ′, A,B ` ∆,∆′ cut

Γ,Γ′, A ∧B ` ∆,∆′

Permuting cut and right conjunction rules:

Γ ` C,∆
Γ′, C ` A,∆′ Γ′′ ` B,∆′′

Γ′,Γ′′, C ` A ∧B,∆′,∆′′

Γ,Γ′,Γ′′ ` A ∧B,∆,∆′,∆′′ cut

↓
Γ ` C,∆ Γ′, C ` A,∆′

Γ,Γ′ ` A,∆,∆′ cut
Γ′′ ` B,∆′′

Γ,Γ′,Γ′′ ` A ∧B,∆,∆′,∆′′

Permuting cut and weakening:

Γ ` C,∆
Γ ` A,C,∆ Γ′, C ` ∆′

Γ,Γ′ ` A,∆,∆′ cut −→

Γ ` C,∆ Γ′, C ` ∆′

Γ,Γ′ ` ∆,∆′ cut

Γ,Γ′ ` A,∆,∆′

Permuting cut and contraction:

Γ ` A,A,C,∆
Γ ` A,C,∆ Γ′, C ` ∆′

Γ,Γ′ ` A,∆,∆′ cut −→

Γ ` A,A,C,∆ Γ′, C ` ∆′

Γ,Γ′ ` A,A,∆,∆′ cut

Γ,Γ′ ` A,∆,∆′

We also allow the permutation of two cuts:

Γ ` A,∆
Γ′, A ` B,∆′ Γ′′, B ` ∆′′

Γ′,Γ′′, A ` ∆′,∆′′ cut(B)

Γ,Γ′,Γ′′ ` ∆,∆′,∆′′ cut(A)

↓
Γ ` A,∆ Γ′, A ` B,∆′

Γ,Γ′ ` B,∆,∆′ cut(A)
Γ′′, B ` ∆′′

Γ,Γ′,Γ′′ ` ∆,∆′,∆′′ cut(B)

And several other similar cases. . .

Definition 7 (Principal cut reductions). These reductions cover all cases where
the cut formula is active in both subderivations.

10

If one subderivation is an axiom, then the cut reduces to the other subderiva-
tion. Here is one such case, where the cut formula is underlined to help keeping
track of things:

Γ ` C,∆ C ` C axiom

Γ ` C,∆ cut −→ Γ ` C,∆

When the cut formula is a conjunction, the cut is reduced into two cuts on
the immediate subformulas of the original cut formula:

Γ′ ` P,∆′ Γ′′ ` Q,∆′′

Γ′,Γ′′ ` P ∧Q,∆′,∆′′
Γ, P,Q ` ∆

Γ, P ∧Q ` ∆

Γ′,Γ′′,Γ ` ∆′,∆′′,∆
cut

↓

Γ′ ` P,∆′
Γ′′ ` Q,∆′′ Γ, P,Q ` ∆

Γ′′,Γ, P ` ∆′′,∆
cut

Γ′,Γ′′,Γ ` ∆′,∆′′,∆
cut

If the cut formula is weakened away, then the corresponding parts of the
sequent are weakened away and the cut disappears:

Γ ` ∆
Γ ` C,∆ Γ′, C ` ∆′

Γ,Γ′ ` ∆,∆′ cut −→
Γ ` ∆

Γ,Γ′ ` ∆,∆′

If the cut formula is contracted, the cut is reduced into two cuts, with one
subderivation being duplicated:

Γ ` C,C,∆
Γ ` C,∆ Γ′, C ` ∆′

Γ,Γ′ ` ∆,∆′ cut

↓
Γ ` C,C,∆ Γ′, C ` ∆′

Γ,Γ′ ` C,∆,∆′ cut
Γ′, C ` ∆′

Γ,Γ′,Γ′ ` ∆,∆′,∆′ cut

Γ,Γ′ ` ∆,∆′

And several other similar cases. . .

Example 2. Consider two derivations: first, a derivation of ` (a ∧ a) ∨ ¬a;
second, a derivation of (a∧ a)∨¬a ` a∨¬a which performs a case analysis on
the disjunction, instead of proving a ∨ ¬a directly without using the hypothesis.
Cut these two derivations to obtain a proof of ` a ∨ ¬a, and apply the above
rule to reduce it. Eventually it becomes a cut of ` a∧a,¬a against an axiom on
¬a and a derivation of a ∧ a ` a. The axiom goes away, the contraction on ¬a
passes below the cut, then a principal reduction can occur on the conjunction.

11

At this point we have two cuts on a but one is weakened away. Finally, axioms
are simplified and we end up with:

a ` a
` a,¬a
` a,¬a,¬a
` a,¬a
` a ∨ ¬a

Exercise 6. Write cut reduction (auxiliary and principal) for the additive con-
nectives of Definition 5. What happens if you create a “Frankenstein” connec-
tive, e.g., with the left rule of multiplication conjunction and the right rule of
additive conjunction?

Theorem 2. If Γ ` ∆ has a derivation then it has a cut-free derivation.

To prove this theorem, Gentzen showed that there always exists a strategy
for applying the above rules to obtain a cut-free proof. To do so in the style of
Gentzen, one needs additional devices that are a bit heavy. To see why, let us
observe the effect of cut reductions, omitting the permutation of two cuts which
is not necessary to eliminate cuts. When performing an auxiliary reduction on a
cut, the cut is either removed (in the case of units) or it is changed into a new cut
with one strictly smaller subderivation. Except for case of contraction, principal
reductions either remove a cut or change it into cuts on smaller cut formulas.
The case of contraction is more complex, as it does not reduce the size of the
cut formula nor that of the cut’s subderivations. If we reduce the deepest cut,
there is no hope to control the size of the resulting derivation. What can save
us, though, is that the subderivations of the new cuts are subderivations of the
original one. Gentzen’s solution is to package cuts and contractions together in
a new rule called mix, as a way to present a special reduction strategy in which
the subderivations that are duplicated by contractions are not treated separately
but kept together as long as possible. With this device, he could show that a
particular reduction strategy terminates using a lexicographic ordering. The
introduction of the mix rule makes the presentation of reduction rules more
tedious, with no gain for our main purpose, so we will see a different proof.

Our proof technique is more abstract than a termination argument based on
a simple ordering, but it has the advantage of working on the bare reductions
presented above, and of scaling well to richer logics or stronger results. In fact, it
is an adaptation of techniques that were first used to proof strong normalization
arguments for typed λ-calculus. More specifically, the following definitions are
adapted from Girard’s proof of strong normalization for linear logic proof nets.

Definition 8. A derivation of type A (resp. A⊥) is a derivation with a dis-
tinguished formula A in the right (resp. left) side of its conclusion sequent. We
shall denote types by T , and we define T⊥ by (A)⊥ = A⊥ and (A⊥)⊥ = A. This
way we can talk of left and right types in a symmetrical way. We say that two
derivations are compatible if they are of respective types T and T⊥ for some T .

12

Definition 9. Given two normalizing and compatible derivations Π and Π′,
we say that Π ⊥ Π′ when cut(Π,Π′) normalizes. For a set of normalizing
derivations X of type T and for a normalizing derivation Π of type T⊥, we write
Π ⊥ X if Π ⊥ Π′ for all Π′ ∈ X . Finally we define X⊥ as { Π : Π ⊥ X }.

Proposition 7. For any set of normalizing proofs X of type T , we have X ⊆
X⊥⊥, and X⊥ = X⊥⊥⊥.

Proof. The first part follows simply by unfolding twice the definition. This
already gives us one direction of the second part. For other direction it suffices
to observe that if X ⊆ Y then Y ⊥ ⊆ X⊥: this gives us X⊥⊥⊥ ⊆ X⊥ from the
first fact.

Proposition 8. For any set X = Y ⊥ (in practice we will always take X =
X⊥⊥) we have axiom ∈ X and, if Π reduces to Π′ ∈ X, then Π ∈ X.

Proof. For any normalizing proof, cut(Π, axiom) reduces to Π and hence nor-
malizes. This gives us the first part. For the second part, we have Π′ ∈ Y ⊥, so
Π′ ⊥ Θ for each Θ ∈ Y , and we seek to obtain Π ⊥ Θ for each such Θ. This
follows simply from the fact that cut(Π,Θ) reduces to cut(Π′,Θ), and hence
normalizes.

For concision, we use the formula constructors as a notation for proofs and
proof constructions. For instance, > stands for the > rule, and Π ∧ Π′ stands
for the proof ending with a right conjunction rule and whose subderivations are
Π and Π′. We also write things like cut(Π,Π′) or even cut(Π,Π1,Π2 . . .) when
the precise structure of the cuts is irrelevant or given by the context — note
that since we allow cut permutations, the order of cuts does not matter, we only
need to know on which formula each cut is performed and how the contexts are
split.

Definition 10. For a formula A, we define [A] as a set of proofs of type A, by
induction on A:

[⊥] = ∅⊥⊥

[>] = {>}⊥⊥

[¬A] = [A]⊥

[A ∧B] =

ΠA

Γ ` A,∆
ΠB

Γ′ ` B,∆′

Γ,Γ′ ` A ∧B,∆,∆′ where ΠA ∈ [A],ΠB ∈ [B]

⊥⊥

[A ∨B] =

ΠA

Γ, A ` ∆

ΠB

Γ′, B ` ∆′

Γ,Γ′, A ∨B ` ∆,∆′ where ΠA ∈ [A]⊥,ΠB ∈ [B]⊥

⊥

[A ⊃ B] =

ΠA

Γ ` A,∆
ΠB

Γ′, B ` ∆′

Γ,Γ′, A ⊃ B ` ∆,∆′ where ΠA ∈ [A],ΠB ∈ [B]⊥

⊥

13

We extend the definition to contexts in a natural way: if Γ = (A1, . . . , An) then
[Γ] = [A1]× . . .× [An] and [Γ]⊥ = [A1]⊥ × . . .× [An]⊥.

Definition 11. A derivation Π of Γ ` ∆ is said to be reducible if for all ~γ ∈ [Γ],
~δ ∈ [∆]⊥, cut(Π, ~γ, ~δ) normalizes.

Proposition 9. The derivation Π is (Γ, A ` ∆)-reducible iff for all ~γ ∈ [Γ], ~δ ∈
[∆]⊥ we have cut(Π, ~γ, ~δ) ∈ [A]⊥.

Proof. We show only the first half of the proposition, when A is on the left.
Given Θ ∈ [A], we first show that cut(cut(Π, ~γ, ~δ),Θ) normalizes. This deriva-

tion reduces to cut(Π, ~γ, ~δ,Θ), which normalizes by hypothesis on Π. Conversely,

assuming cut(Π, ~γ, ~δ) ∈ [A]⊥, we need to show that cut(Π, ~γ, ~δ,Θ) for Θ ∈ [A].

This is obvious, we only have to re-arrange cuts to reduce to cut(cut(Π, ~γ, ~δ),Θ)
and conclude by hypothesis.

Theorem 3. All derivations of Γ ` ∆ are reducible.

Proof. By induction on the structure of the derivation.

• The case of the axiom is obvious. A cut against a normalizable derivation
Θ reduces to Θ which is normalizable.

• Right conjunction rule. We consider Π = ΠA ∧ΠB , that is

ΠA

Γ ` A,∆
ΠB

Γ′ ` B,∆′

Γ,Γ′ ` A ∧B,∆,∆′

By induction hypothesis ΠA is (Γ ` A,∆)-reducible and ΠB is (Γ′ `
B,∆′)-reducible. We need to show that cut(Π, ~γ, ~γ′, ~δ, ~δ′,Θ) normalizes

for ~γ ∈ [Γ], ~δ ∈ [∆]⊥ and Θ ∈ [A ∧B]⊥. We observe that this derivations

reduces to cut(cut(ΠA, ~γ, ~δ) ∧ cut(ΠB , ~γ′, ~δ′),Θ), using auxiliary reduc-
tions. We conclude by observing that this reduct normalizes since the left
derivation belongs to [A] ∧ [B] which is included in [A ∧ B], and thus it
normalizes when cut against Θ.

• Left conjunction rule. We consider the following derivation Π:

Π′

Γ, A,B ` ∆

Γ, A ∧B ` ∆

By induction hypothesis the derivation Π′ is (Γ, A,B ` ∆)-reducible. We

need to show that cut(Π,Θ, ~γ, ~δ) normalizes for ~γ ∈ [Γ], ~δ ∈ [∆]⊥ and

Θ ∈ [A ∧ B]. Our derivation reduces to cut(cut(Π, ~γ, ~δ),Θ) and thus it

suffices to show that cut(Π, ~γ, ~δ) belongs to [A ∧ B]⊥ = ([A] ∧ [B])⊥ —
we used X⊥⊥⊥ = X⊥ and the definition of [A ∧ B]. That is obvious

because cut(cut(Π, ~γ, ~δ),ΠA ∧ ΠB) reduces to cut(Π, ~γ, ~δ,ΠA,ΠB) which
normalizes because Π is reducible.

14

• We leave the case of other logical rules as an exercise. The essential
argument for the right conjunction rule can be used for the left disjunction
and implication rules: the proof is in the “core” of the interpretation. The
argument for the left conjunction rule applies for the right disjunction and
implication rules: it suffices to check normalization against that “core”.

• The case of a cut is simply done by combining the two induction hypothe-
ses, using the fact that if Π′ is (Γ ` ∆, A)-reducible then cut(Π′, ~δ,~γ)
belongs to [A].

• Structural rules are handled easily. We show contraction:

Π′

Γ, A,A ` ∆

Γ, A ` ∆

We consider cut(Π, ~γ, ~δ,Θ) for Θ ∈ [A], and reduce it to a derivation

ending with a bunch of contractions, followed by cut(Π, ~γ, ~δ,Θ,Θ) which
normalizes by induction hypothesis.

Exercise 7. Complete the missing cases in the proof: start with units, then
negation, then disjunction and implication.

Exercise 8. Propose an interpretation for the additive connectives (& and ⊕)
and extend the previous theorem to handle them.

Corollary 1. All derivations normalize and thus cut is admissible.

Proof. Given a proof Π, the previous theorem gives us that cut(Π, id, id, . . .)
normalizes, because identities belong to all interpretations.

We now establish more generally that if Π is an id-simplification of Θ and
Θ normalizes, then Π also normalizes. Here, id-simplification means that the
former proof is obtained from the latter by reducing cuts against an axiom.

This is done by induction on the reduction sequence of Θ. If the reduction
simplifies a cut against an axiom, we conclude immediately by induction hy-
pothesis. In all other cases the reduction can be mimicked to reduce Π, and
conclude by induction hypothesis.

Corollary 2. The logic is consistent.

This simply follows from cut elimination and the fact that there is no cut-
free derivation of `⊥. And so we have managed to prove consistency, by
manipulating only syntactical objects. This is not as simple as it seems: showing
the termination of cut reductions required a complex mathematical argument,
necessarily more complex than what could be done in the logic which we are
proving consistent.

15

1.4 Proofs as Programs

By showing cut elimination, Gentzen actually gave an algorithm for transform-
ing any proof into a cut free proof. In other words, he gave a method for
computing the composition of cut-free proofs. Now, if we take this idea to the
next level, we may see proofs as programs, or processes, that may evolve in
themselves or by interacting when cut against other processes.

So far we have proved that among possible evolutions of a proof, at least
one terminates, leading to a cut-free proof. That property is called weak nor-
malization of the cut reduction relation. If we take more seriously the idea of
a proof as a computing process, we may ask more precise questions about their
behavior in cut reductions. Do all possible evolutions terminate? This is strong
normalization. Can we characterize when two proofs behave the same in all
possible interactions? This is called behavioral or contextual equivalence.

Such questions might seem a bit abstract, or even irrelevant when talking
about proofs. Even if we may look at LK0 proofs as programs, they are certainly
weird programs. Indeed, the idea of proofs-as-programs started to receive some
attention only when people identified a logic for which proofs corresponded to
a pre-existing, recognized notion of program. Around the 70’s, people realized
that there was a deep connection (an isomorphism) between typed λ-calculus
and intuitionistic logic, a constructive restriction of classical logic. This connec-
tion became known as the Curry-Howard(-Lambek) isomorphism. It was later
extended to lots of other logics and abstract programming languages, estab-
lishing proof theory as a logical foundation for programming languages, mostly
purely functional ones. For instance, classical proofs can be seen as functional
programs with exceptions, sequent calculus proofs correspond to λ-terms that
are executed by means of explicit substitutions, and linear logic yields calculi
with explicit ressource/memory management.

1.5 Intuitionistic Logic

Definition 12. The system LJ0 is obtained from LK0 by removing right struc-
tural rules, and changing the disjunction rule so that the right-hand side of a
sequent contains always exactly one formula:

Γ, A0 ` P Γ, A0 ` P
Γ, A0 ∨A1 ` P

Γ ` Ai
Γ ` A0 ∨A1

Cut reductions and the cut elimination theorem can be adapted to intuitionistic
logic with no major difference.

Theorem 4. The intuitionistic sequent calculus enjoys cut elimination.

Proof. We can adapt the previous proof, we just have to make sure that we are
never forced to escape the intuitionistic fragment.

16

Exercise 9. Try to derive the two directions of each de Morgan duality. Derive
A ⊃ A, show that ¬A∨A is not derivable. What does it means for the classical
decomposition of A ⊃ B into ¬A ∨B?

In the rest of the course, we shall restrict to intuitionistic logic for simplicity,
although most of what we say is valid in classical logic as well.

1.6 References

I recommend the book Proofs and Types by Girard, Taylor and Lafont, 19891.
It is a must read on the connection between typed λ-calculi and logic, and more
advanced topics.

In honor of Gentzen’s centenary, Jan von Plato wrote an essay on Gentzen’s
motivations and impact, titled Gentzen’s Proof Systems: Byproducts in a Work
of Genius2.

Finally, Gentzen’s 1934 paper is surprisingly readable. Its English trans-
lation, Investigations into Logical Deduction, can be found in the book The
Collected Papers of Gerhard Gentzen, edited by M. E. Szabo at North Holland
in 1969.

1http://www.paultaylor.eu/stable/Proofs+Types.html
2http://www.math.ucla.edu/~asl/bsl/1803/1803-001.ps

17

Chapter 2

A logic for reasoning about
(co)inductive specifications

This chapter will be covered in a single lecture, so a lot of details will have to
be skipped. The lecture notes are a bit rough; don’t hesitate to contact me if
you’d like to know how/where things are done cleanly in detail.

2.1 First-Order Logic

Definition 13. In first-order logic, formulas express properties of objects de-
noted by terms. In general, there is a lot of flexibility regarding the particular
choice of a language of terms (denoted by t, u, v). Terms should come with a no-
tion of term variable (denoted by x, y, z) and a notion of substitution (replacing
x by u in t is written t[u/x]) satisfying usual properties.

Terms are usually first-order, meaning that they are made of construc-
tors taking n terms and building a new one: for example, natural numbers
are generated from the constructors 0 and s, 3 being written s(s(s(0))); bi-
nary trees could generated from leaf and node, allowing to write things like
node(leaf, node(leaf, leaf)). Such terms can be multi-sorted, meaning that we
separate terms into several families, such as natural numbers and trees, with
constraints on what sort of term goes into a given position of a constructor.

Although we won’t use it, terms can be many other things. For example,
they could be arithmetic expressions considered up to computation of arithmetic
operations, allowing to identify s(x)+y and s(x+y). They could also be higher-
order, for example typed λ-calculus can be taken as our term language.

Definition 14. Atoms are now predicates and take a number of terms as argu-
ments. Formulas are extended with constructs for quantifies: if P is a formula
then ∀x.P and ∃x.P are formulas. The variable x is bound by the quantification
constructs.

18

We shall always consider formulas up-to the (capture avoiding) renaming of
variables that do not occur free (i.e., only bound) in a formula. For instance,
∀x. p(x, y) is the same as ∀z. p(z, y) but not the same as ∀y. p(y, y) (because this
captures the free occurrence of y); finally, it is also not the same as ∀x. p(x, z)
because that is a renaming of the free variable y.

Definition 15 (LK1). Sequents for first-order classical logic are obtained by
extending sequents with a signature Σ containing distinct first-order variables,
including at least all variables occurring in the rest of the sequent. First-order
sequents are written Σ ; Γ ` ∆.

In practice, we often omit to write the signature when it does not play an
important role or when it is obvious. In particular, all rules from LK0 are
trivially adapted into LK1 that have no effect (nor constraints) on the signature.
For instance, we have:

Σ; Γ, A,B ` ∆

Σ; Γ, A ∧B ` ∆

In addition to the (adapted) LK0 rules, we add logical rules for the new con-
nectives, that is the quantifiers:

Σ; Γ, P [t/x] ` ∆

Σ; Γ,∀x.P ` ∆
∀L

Σ, x ; Γ ` P,∆
Σ; Γ ` ∀x.P,∆ ∀R

Σ, x ; Γ, P ` ∆

Σ; Γ,∃x.P ` ∆
∃L

Σ; Γ ` P [t/x],∆

Σ; Γ ` ∃x.P,∆ ∃R

Theorem 5. First-order sequent calculus (both classical and intuitionistic) en-
joys cut-elimination and is thus consistent.

Proof. As an exercise, try to define cut reductions for the quantifiers. The key is
to realize that if we have a derivation of Σ, x; Γ ` ∆, then we can substitute x by
any t everywhere in the derivation to obtain a derivation of Σ; Γ[t/x] ` ∆[t/x].
We shall admit that the extended system of reduction rules terminate.

Exercise 10. The drinker paradox: in any (non-empty) bar, there is a person
such that if this person drinks, then everybody in the bar drinks. The proof
is non-constructive, this is why this fact is a bit counter-intuitive. Find an
informal proof, then do it in LK1, where it is formalized as ∃x. d(x) ⊃ ∀y. d(y)
— the bar is implicit in the formalization, terms denote persons in the bar, and
d(x) stands for “x drinks”. To reflect the non-emptiness of the bar, we can
assume that we have one constant c, a term denoting one person in the bar.

2.2 Equality

Although first-order logic is standard and widely understood, equality is less
frequently considered within proof-theory, and its treatment is subtle. We detail
here our approach to equality, which dates back to proposals by Girard and
then Schroeder-Heister in the early 1990. Historically, this notion of equality is

19

a byproduct of the introduction of fixed points. But it gains to be introduced
separately. We should point out that there are other approaches to equality, for
example Leibniz’ equality is most common in higher-order logics.

What is clear about equality is its right rule: reflexivity. But there is no
clear cut for the design of the left rule. We shall consider the following rules:

{Σθ; Γθ ` Gθ : uθ = vθ}
Σ; Γ, u = v ` G =L

Σ; Γ ` u = u
=R

The left rule has one premise for each unifier θ of u
.
= v. The application of θ

to terms is standard and naturally extended to formulas and to the left hand-
side of the sequent. Its application to the signature (Σθ) denotes the signature
obtained by removing from Σ the variables that are in the domain of θ, and
adding those that are in its range.

In a sense, the left rule is the naive dual of the right one: it enumerates
all cases for which the right one might have been proved. Indeed, this design
supports cut-elimination. The principal case only consists in permuting =R
below the cut. The interesting phenomenon occur when reducing a cut on
first-order quantifiers: this results in the instantiation of the universal variable
by the witness of the existential quantification. That instantiation has to be
performed in a subderivation, preserving its validity — this is a common simple
result. The new case here is =L: as a variable gets instantiated, some unifiers
might be simply updated, but others might disappear. If the equality eventually
becomes absurd, the corresponding instance of =L has no more premise. It is
also easy to expand the axiom on equality, and along the same lines we obtain
commutativity and canonicity of equality:

. . . ` uθ = vθ
=R

. . .
u = v ` u = v

=L

Infinitary rules are often convenient, but can be rightfully criticized. Indeed,
a proof should always be finitely presentable, so that its validity can be decided.
It is also a practical issue that proofs can be built in a finite amount of time.
Hence, we usually consider a specialized version of the left rule, relying on a
complete set of unifiers (csu), i.e., a set S of unifiers such that all unifiers of
u

.
= v are specializations θθ′ of some θ ∈ S:

{Σθ; Γθ ` Gθ : θ ∈ csu(u
.
= vθ)}

Σ; Γ, u = v ` G

That rule is equivalent to the previous one: in one direction it is because the
complete set of unifiers is a subset of all unifiers, in the other because the
difference between the two can be obtained by specializing substitutions, and
proofs accordingly. In the case of first-order terms, the csu can in fact be a
most general unifier. However, that rule is still not effective in general in the
case of higher-order terms; in practice it can often be managed by using higher-
order pattern unification — a procedure for computing most general unifiers in
a fragment of typed λ-calculus.

20

Example 3. The csu-based rule is natural to work with, as it only requires the
essential information. For example, with first-order terms:

x;Px ` Px
x, y;x = y, Px ` Py

With higher-order terms, in the higher-order pattern fragment:

...
z;` ∃z′. (λa. z) = (λa. z′) ∧ (λb. z) = (λb. z′)

x, y; (λaλb. x a) = (λaλb. y b) ` ∃z′. x = (λa. z′) ∧ y = (λb. z′)

As is clear from these examples, universal variables are not constants. Hence,
we avoid to call them eigenvariables as Gentzen did.

2.3 Fixed Points

The content for this section comes from my thesis, A linear approach to the
proof theory of least and greatest fixed points, available online1. You may refer
to it for more details, related work, or if you’re missing some context.

We present the logic µLJ, our intuitionistic system of reference supporting
least and greatest fixed points. Its language of formulas is extended not only
with the connective µ, now representing least fixed points, but also ν, of the
same type, representing greatest fixed points. The rules of µLJ are presented in
Figure 2.1. We present and discuss below the treatment of fixed points, starting
with least fixed points.

2.3.1 Least fixed points

In proof-theory, least fixed points are characterized by the ability to reason
about them by induction. It is interesting to justify that characterization, and
its formalization in µLJ, from other presentations of least fixed points. It also
shows that we are considering a natural notion, and not an exotic connective or
an ad-hoc increment of expressiveness.

Definition 16 (Fixed, prefixed and postfixed point). Let φ be a mapping from
sets to sets2. The set S is said to be a fixed point of φ when φ(S) = S; a
prefixed point of φ when φ(S) ⊆ S; a postfixed point of φ when S ⊆ φ(S).

Example 4. The predicate operator Bnat can be read as the following function:

N 7→ {0} ∪ {s y : y ∈ N}
1http://www.lix.polytechnique.fr/~dbaelde/thesis/
2One can more generally consider a mapping on a complete lattice, but we seek the most

intuitive presentation.

21

Propositional intuitionistic logic

Σ; Γ,⊥ ` P Σ; Γ ` >

Σ; Γ, P, P ′ ` Q
Σ; Γ, P ∧ P ′ ` Q

Σ; Γ ` P Σ; Γ ` Q
Σ; Γ ` P ∧Q

Σ; Γ, P0 ` Q Σ; Γ, P1 ` Q
Σ; Γ, P0 ∨ P1 ` Q

Σ; Γ ` Pi
Σ; Γ ` P0 ∨ P1

Σ; Γ ` P Σ; Γ, P ′ ` Q
Σ; Γ, P ⊃ P ′ ` Q

Σ; Γ, P ` Q
Σ; Γ ` P ⊃ Q

First-order structure

Σ, x; Γ, P ` Q
Σ; Γ,∃x.P ` Q

Σ; Γ ` P [t/x]

Σ; Γ ` ∃x.P

Σ; Γ, P [t/x] ` Q
Σ; Γ,∀x.P ` Q

Σ, x; Γ ` P
Σ; Γ ` ∀x.P

{(Σ; Γ ` Q)θ : tθ
.
= t′θ}

Σ; Γ, t = t′ ` Q Σ; Γ ` t = t

Fixed points

Σ; Γ, St ` P x;BSx ` Sx
Σ; Γ, µBt ` P

Σ; Γ ` B(µB)t

Σ; Γ ` µBt

Σ; Γ, B(νB)t ` P
Σ; Γ, νBt ` P

Σ; Γ ` St x;Sx ` BSx
Σ; Γ ` νBt

Identity group

Σ;P ` P
Σ; Γ ` Q Σ; Γ′, Q ` P

Σ; Γ,Γ′ ` P

Figure 2.1: Inference rules for µLJ(structural rules missing)

22

Its prefixed points contain zero and are stable by successor. Its postfixed points
do not necessarily contain zero, but each of their elements is either zero or the
successor of another. It admits a least fixed point, obtained by iterating from
the empty set: it is the usual set of natural numbers. The greatest fixed point,
assuming that there exists objects x which are not natural numbers, would con-
tain them as well as their successors snx; assuming infinite terms, the greatest
fixed point would also contain the infinite chain of successors.

Theorem 6 (Knaster-Tarski). Let φ be a monotonic function, then φ has a
least fixed point, which is the intersection of all its prefixed points.

The Knaster-Tarski theorem gives us an induction rule, along the common
interpretation of implication as an inclusion:

“If B(S) ⊆ S and t ∈ µB then t ∈ S.”

x;BSx ` Sx
Σ;µBt ` St

The monotonicity condition of the Knaster-Tarski theorem, ensuring the exis-
tence of a (least) fixed point, translates in µLJ to the constraint that fixed point
bodies are monotonic.

Example 5. In the particular case of nat, the above induction rule yields the
usual induction principle:

` P 0 Py ` P (s y)

(BnatP)x ` Px
∨L,∃L,=L

nat x ` Px

The problem with the considered induction rule is that it does not satisfy
cut-elimination. We shall see that there is a way to reduce a cut between
derivations of µB ` S and ` µB, obtaining a derivation of the invariant S.
But it is impossible to reduce a cut between derivations of µB ` S and S ` P ,
until the invariant becomes active in the former derivation. In other words, the
reduction of a cut on the invariant has to be postponed until a cut is reduced
on the associated least fixed point. To express this, we consider in µLJ the
following left rule for µ, which aggregates the former induction rule with a cut
on the invariant, thereby restoring cut-eliminability:

Σ; Γ, St ` P x;BSx ` Sx
Σ; Γ, µBt ` P

As shown in Figure 2.1, the right rule for µ is unchanged, and the axiom on
least fixed points is necessary. There is no need to consider a left unfolding rule
for µ. Indeed, induction can emulate unfolding in the case of a monotonic fixed
point B, by picking the invariant B(µB).

23

2.3.2 Cut-elimination

We have introduced the proof-theoretical treatment of least fixed points in µLJ,
by means of semantic intuitions. Although these intuitions are useful, and
connections certainly exists, they do not need to be formally established to
validate the design of µLJ: the syntactic, internal process of cut-elimination
suffices. And a presentation of some of its key points should help understanding
the logic.

The principal cut reduction for least fixed points is based on the transfor-
mation of a derivation of µB into a derivation of one of its invariants. Given a
formula S and a proof Θ of ∀x. BSx ⊃ Sx, one can transform a derivation of
Γ ` µBt into one of Γ ` St. This is done by induction on the derivation of the
least fixed point, along the following scheme:

...

Γ′ ` B(µB)~t′

Γ′ ` µB~t′
...

Γ ` B(µB)t

Γ ` µBt →

...

Γ′ ` BS~t′
Θ(~t′)

BS~t′ ` S~t′
Γ′ ` S~t′

...
Γ ` BSt

Θ(t)

BSt ` St
Γ ` St

The big steps here, represented by dots, consist in traversing the structure of B.
For doing so it is crucial that B is positive. If it is strictly positive, then there is
no recursive occurrence of µB that will ever occur on the left. Otherwise, some
instances may occur on the left, but negatively. In any case these sub-formulas
will only occur at toplevel on the right hand-side of the sequent, and can thus
only be active in the right unfolding rule. This is essential, as it is the only
thing that S can simulate. So, unlike the cut reduction for the self-dual µ, the
reduction associated to least fixed point does rely on monotonicity.

It is in fact possible to refine the transformation, and obtain a more precise
constraint on fixed points. The traversal of B can be expressed as a functoriality
property, i.e., the following rule:

x;Px ` Qx
Σ;BP ` BQ functo

Assuming only the functoriality of B, we can fully formulate the reduction of a

24

principal cut on least fixed points:

Π
Γ ` B(µB)t

Γ ` µBt µR

Π′

∆, St ` G
Θ

BSx ` Sx
∆, µBt ` G µL

Γ,∆ ` G cut

↓

Π
Γ ` B(µB)t

Sx ` Sx
Θ

BSy ` Sy
µBx ` Sx µL

B(µB)t ` BSt
functo

Θ(t)

BSt ` St
B(µB)t ` St cut

Γ ` St cut
Π′

∆, St ` G
Γ,∆ ` G cut

Identifying the functoriality property allows for an elegant presentation of
the rule, and has proved to help structuring normalization proofs. We do not
show a normalization proof for µLJ in this thesis. For cut-elimination proof in
sequent calculus, we refer the reader to the work on LINC [MT03, Tiu04], which
is closely related to µLJ.

2.3.3 Greatest fixed points

In many settings, least and greatest fixed points are duals of each other: in a
complete lattice, reversing the order swaps least and greatest fixed points; this
amounts to consider complements in set theory, in other words the complement
of a least fixed point is given by the greatest fixed point of the dual operator;
this is also observed in category theory [CS02]. Unsurprisingly, the treatment
of greatest fixed points in µLJ is obtained by dualizing the rules for least fixed
points. The same observations can be made: admissibility of the right unfolding,
cut reductions, etc.

2.4 Examples

Formalize and prove basic arithmetic facts: every even number is a natural
number, every natural number is even or odd, (truncated) division by two is
total.

The most common example of coinductive definition is simulation: we say
that a process P simulates Q if whenever Q takes a step α towards some Q′ then
P

α→ P ′ and P ′ simulates Q′. To make this (fixed point) definition mean the
“right” thing for infinite processes, we take the greatest fixed point. This can be
formalized as a coinductive definition. Show that it is reflexive and transitive.
Show that a process looping on one state with a transition α can be simulated
by a process having two loops, one with α and one with β.

25

2.5 Proof of normalization

If time allows, we will outline how we use a fixed point construction to define
[µBt] and [νBt], and use the Knaster-Tarski theorem to extend the previous
proof of normalization in the case of fixed point operators.

2.6 References

For full normalization proofs of calculi involving fixed points and equality as
presented above, see my papers3 Least and greatest fixed points in linear logic,
in ACM Transactions on Computational Logic, 2012, and Combining Deduction
Modulo and Logics of Fixed Point Definitions in the proceedings of LICS 2012.
The first paper deals with a sequent calculus for classical linear logic and the
second with a natural deduction (λ-calculus) presentation of intuitionistic logic;
both calculi feature first-order quantifiers, equality and fixed points.

One great way to learn those logics is to use them: you can have a look
at the tools Bedwyr (http://slimmer.gforge.inria.fr/bedwyr/) and Abella
(http://abella-prover.org/), which work on the logic we’ve seen, plus just
one extension, namely the ∇ quantifier for introducing fresh/generic objects.
The two websites have examples and docs to get started.

3Available on http://www.lsv.ens-cachan.fr/~baelde/mes publis.php

26

Bibliography

[CS02] J. Robin B. Cockett and Luigi Santocanale. Induction, coinduction,
and adjoints. Electr. Notes Theor. Comput. Sci., 69, 2002.

[MT03] Alberto Momigliano and Alwen Tiu. Induction and co-induction in se-
quent calculus. In Mario Coppo, Stefano Berardi, and Ferruccio Dami-
ani, editors, Post-proceedings of TYPES 2003, number 3085 in LNCS,
pages 293–308, January 2003.

[Tiu04] Alwen Tiu. A Logical Framework for Reasoning about Logical Specifi-
cations. PhD thesis, Pennsylvania State University, May 2004.

27

