

Axis TEMPO "Verification of timed systems"

AERES evaluation of LSV – 2 December 2013

Outline

Presentation of the axis

A Research project for 2013-2018

Tempo as of 2008

Tempo in 2008 (AERES evaluation)

• 9 permanent researchers:

D. Berwanger

B. Bollig

P. Bouyer

Th. Chatain

MCF ENS Cachan

L. Fribourg

 $\underset{\mathsf{PU} \text{ ENS Cachan}}{\mathsf{PU}}$

S. Haddad

N. Markey

C. Picaronny MCF ENS Cachan

- 8 PhD students
- 1 post-doc

Tempo as of 2009

Tempo in 2009 (creation of MExICo)

• 5 permanent researchers:

D. Berwanger

P. Bouyer

L. Fribourg DR CNRS

N. Markey CR CNRS team leader

C. Picaronny MCF ENS Cachan

• 3 PhD students:

N. Chamseddine É. André A. Da Costa

• 1 post-doc:

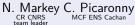
D. Longuet

Tempo as of 30 June 2013

Tempo in June 2013

• 6 permanent researchers:

D. Berwanger P. Bouyer L. Fribourg



G. Lipari Prof., S.Sup.Sant'Anna Pisa, Italy

CR CNRS

3 PhD students:

I post-doc:

B. Barbot J. Reichert R. Soulat M. Van den Bogaard Raj Mohan M.

Tempo as of today

Tempo in 2013 (AERES evaluation)

• 6 permanent researchers:

D. Berwanger P. Bouyer

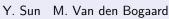
L. Doyen

L. Fribourg G. Lipari DR CNRS Prof., S. Sup. Sant'Anna Pisa, Italy

N. Markey

8 PhD students:

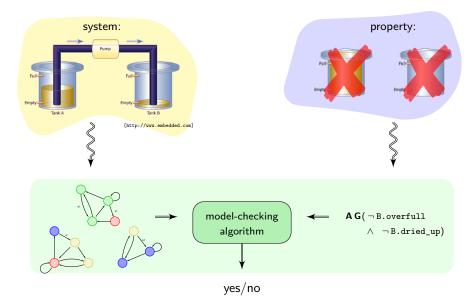
P. Gardy

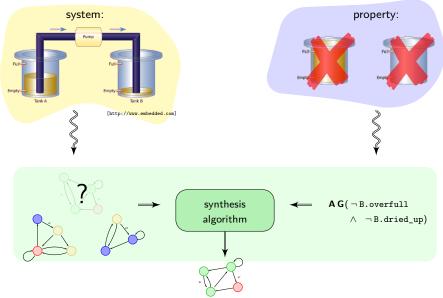


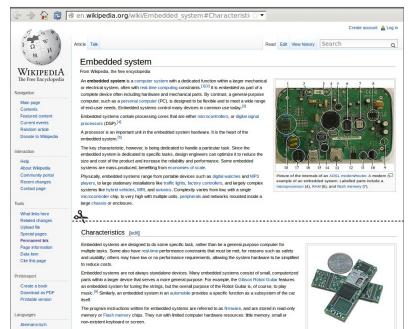
R. Soulat D. Stan

S. Mohamed J. Reichert M. Shirmohammadi Raj Mohan M.

Outline


Presentation of the axis




Research topics: model checking and synthesis

Research topics: model checking and synthesis

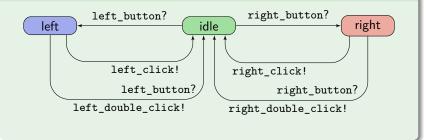
Embedded systems

9/30

Embedded systems

Alemannisch

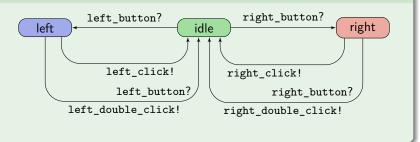
Research topics: model checking and synthesis


Verification of timed and hybrid automata

- robustness issues in timed automata
- parameter synthesis for timed and hybrid systems
- modelling resources in real-time systems

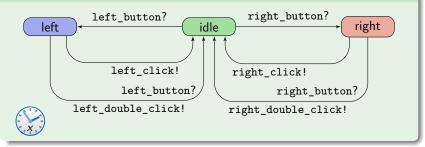
Games for synthesis of complex systems

- temporal logics for games
- equilibria in non-zero-sum games
- games with partial observation

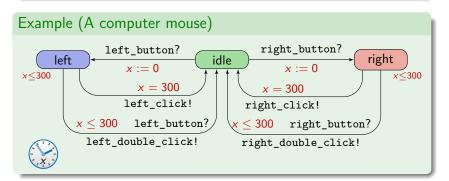

Example (A computer mouse)

Timed automata

- A timed automaton is made of
 - a transition system,


Example (A computer mouse)

Timed automata


- A timed automaton is made of
 - a transition system,
 - a set of clocks,

Example (A computer mouse)

Timed automata

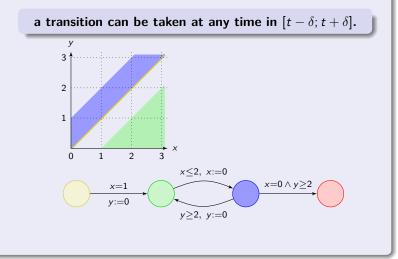
- A timed automaton is made of
 - a transition system,
 - a set of clocks,
 - timing constraints on states and transitions.

Timed automata vs real-time systems

- timed automata use real-valued clocks,
- physical systems are *digital*.

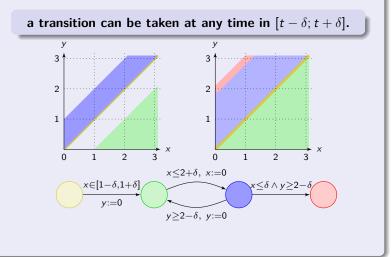
 \rightsquigarrow the possible (very small) delay between the evaluation of a guard and the effective transition is not modelled.

Properties proven to hold on a model might fail to hold on its implementation.

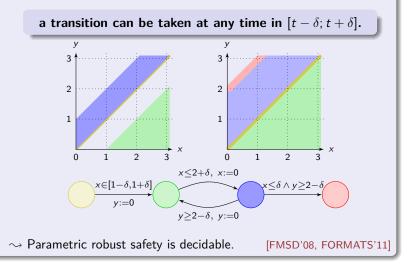

Several approaches

guard enlargement: to model the imprecisions

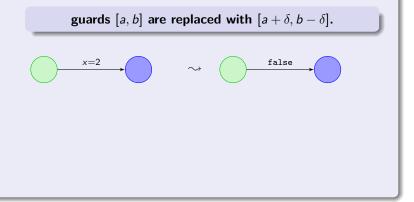
a transition can be taken at any time in $[t - \delta; t + \delta]$.


Several approaches

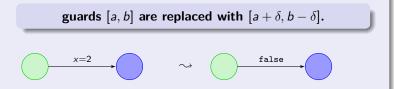
guard enlargement: to model the imprecisions


Several approaches

guard enlargement: to model the imprecisions


Several approaches

guard enlargement: to model the imprecisions


Several approaches

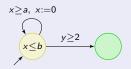
- **guard enlargement:** to model the imprecisions
- shrinking: to counteract enlargement

Several approaches

- **guard enlargement:** to model the imprecisions
- shrinking: to counteract enlargement

A timed automaton is *shrinkable* if its shrunk automaton contains the (time-abstracted) behaviours of the original automaton.

Several approaches

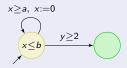

- **guard enlargement:** to model the imprecisions
- **shrinking:** to counteract enlargement
- **robust synthesis**: to react to perturbations

the controller selects a delay d this delay is perturbed by at most $\delta.$

 \sim Parametric robust (repeated) reachability is decidable. [ICALP'12, CONCUR'13]

1.2 Parameter synthesis for timed and hybrid automata

Timed automata with parameters in clock constraints



Inverse method

generalise a given valuation of the parameters.

1.2 Parameter synthesis for timed and hybrid automata

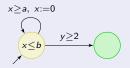
Timed automata with parameters in clock constraints

Inverse method

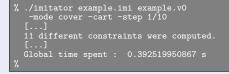
generalise a given valuation of the parameters.

 \rightsquigarrow algorithms for computing regions of good parameter valuations

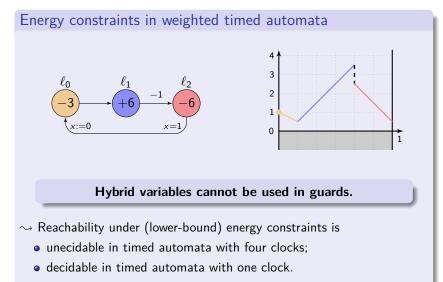
 \sim development of a tool: Imitator \sim applications to circuits, scheduling, ...


[RP'08,RP'10,RP'11,NFM'12] [ICTAC'09,INFINITY'10] [TIME'12,NCMIP'13,FTSCS'13]

 \rightsquigarrow a book:


1.2 Parameter synthesis for timed and hybrid automata

Timed automata with parameters in clock constraints


Inverse method

generalise a given valuation of the parameters.

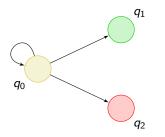
1.3 Modelling resources in (real-time) systems

[FORMATS'08, HSCC'10, QEST'12, Comm. ACM'11]

Research topics: model checking and synthesis

Verification of timed and hybrid automata

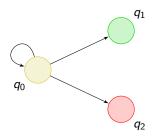
- robustness issues in timed automata
- parameter synthesis for timed and hybrid systems
- modelling resources in real-time systems


Games for synthesis of complex systems

- temporal logics for games
- equilibria in non-zero-sum games
- games with partial observation

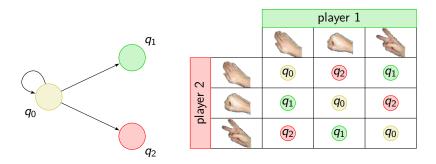
Concurrent games

A concurrent game is made of


• a transition system,

Concurrent games

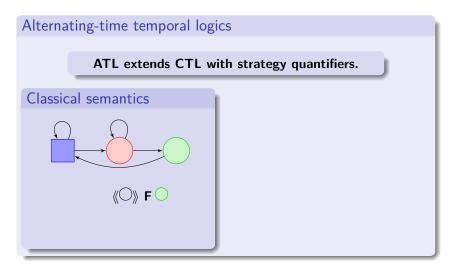
A concurrent game is made of


- a transition system,
- a set of agents,

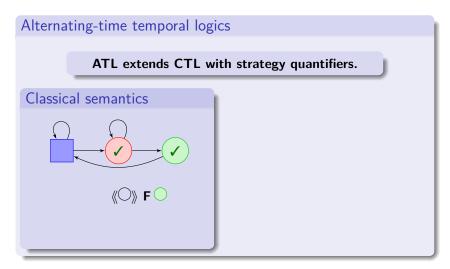
Concurrent games

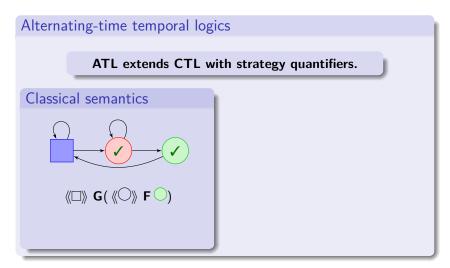
A concurrent game is made of

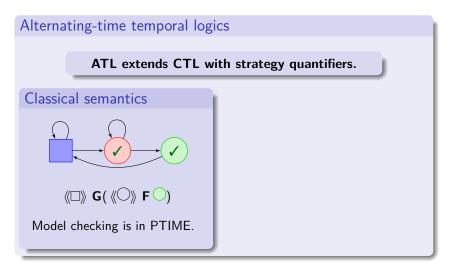
- a transition system,
- a set of agents,
- a transition table indicating the effect of the actions of the players.

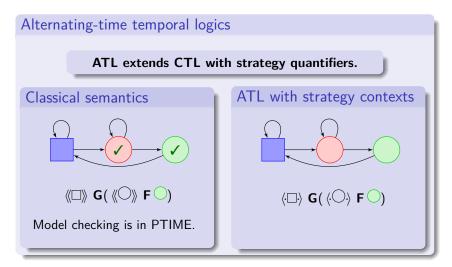


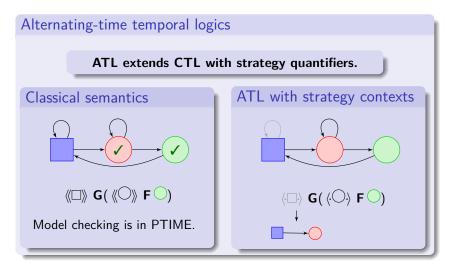
2.1 Temporal logics for games

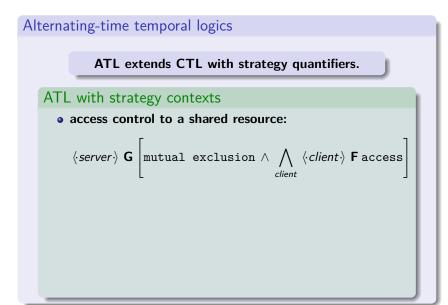

Alternating-time temporal logics

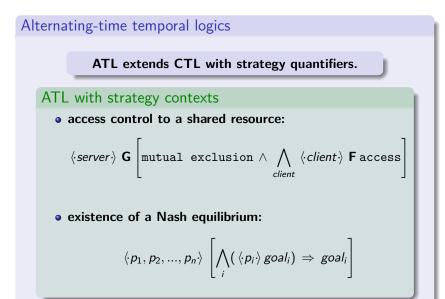

ATL extends CTL with strategy quantifiers.

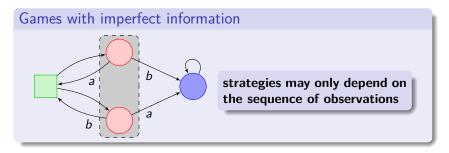

2.1 Temporal logics for games




2.1 Temporal logics for games







- \sim ATL_{sc} is much more expressive than ATL, and well-suited for describing non-zero-sum objectives $$[\rm LFCS'09]$$
- \sim model checking ATL_{sc} is decidable, and k-EXPTIME-complete when limited to k nested quantifier [FSTTCS'10,CONCUR'12]
- \sim satisfiability is undecidable; it is decidable when restricted to turn-based games. [GandALF'13]

2.2 Equilibria in non-zero-sum games

2.3 Games with imperfect information

- → antichain-based algorithm for parity games with imperfect information, implemented in the tool Alpaga [CONCUR'08, TACAS'09, I&C'10]
- \sim polynomial-time reduction from parity games to safety games under imperfect information $$[\rm FSTTCS'08]$]$
- \sim application of imperfect information games for solving counter parity games $$[\rm MFCS'12]$$

Outline

Presentation of the axis

Research project for 2013-2018

How we addressed the recommendations of AERES 2009

Preserve interactions between Tempo and MExICo:

- joint Tempo/MExICo groupe de travail;
- several Tempo/MExICo collaborations; B. Barbot PhD. thesis;
- papers on timed stochastic systems (P. Bouyer, S. Haddad), on timed distributed systems (S. Balaguer, S. Akshay).

How we addressed the recommendations of AERES 2009

Preserve interactions between Tempo and MExICo:

- joint Tempo/MExICo groupe de travail;
- several Tempo/MExICo collaborations; B. Barbot PhD. thesis;
- papers on timed stochastic systems (P. Bouyer, S. Haddad), on timed distributed systems (S. Balaguer, S. Akshay).

Develop prototypes and tools:

- tool Imitator, applications to several cases;
- tool Minimator, application to power electronics;
- several prototypes: alpaga, praline, shrinktech.

How we addressed the recommendations of AERES 2009

Preserve interactions between Tempo and MExICo:

- joint Tempo/MExICo groupe de travail;
- several Tempo/MExICo collaborations; B. Barbot PhD. thesis;
- papers on timed stochastic systems (P. Bouyer, S. Haddad), on timed distributed systems (S. Balaguer, S. Akshay).

Develop prototypes and tools:

- tool Imitator, applications to several cases;
- tool Minimator, application to power electronics;
- several prototypes: alpaga, praline, shrinktech.

Develop original and ambitious research topics:

- framework for robust verification of timed automata;
- non-zero-sum games for synthesis of complex systems;
- development of algorithms and a tool suite for parameter synthesis.

Publications of TEMPO for 2008-2013

Publications				
	Number of publications	139		
	books, edited books, chapters in books	11		
	articles in int. journals	33		
	articles in int. conferences	72		
	other publications	23		

PhD and habilitations defended

PhD theses	
Habilitation theses	

Highlights of TEMPO for 2008-2013

Highlights

- Award:
 - Patricia Bouyer receives the EATCS Presburger Award in 2011

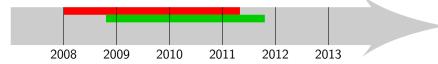
Invited talks and tutorials:

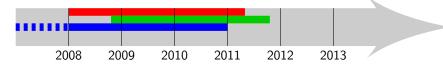
• MOVEP'08, GAMES'08, WATA'10, QMC'10, SIES'11, RP'13

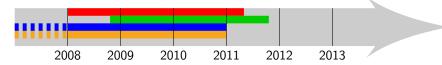
• Organization of conferences:

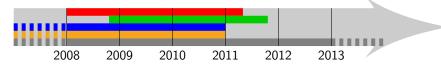
- TIME'10 (Paris, Sep. 2010)
- GAMES'11 (Paris, Sep. 2011)
- FORMATS'13 (Buenos Aires, Aug. 2013)
- HIGHLIGHTS'13 (Paris, Sep. 2013)
- P. Bouyer is workshop chair for LICS (2013-2015)

Long-term visitors:

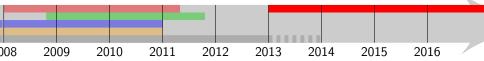

- Giuseppe Lipari (Marie-Curie RBUCE-UP chair, 2 year)
- Jörg Olschewski, Claus Thrane (PhD students, 6 months)

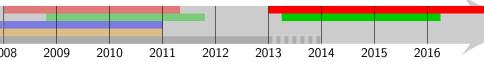

- STREP Quasimodo: quantitative verification Academic partners: Aalborg (coord), Aachen, LSV, Saarbrücken, Twente, ULB Industrial partners: Hydac (D), Chess (D), Terma (DK).
- ESF Gasics: games for synthesis Partners: ULB (coord), Aalborg, Aachen, LSV, Warwick
- ANR DOTS: distributed, timed, open systems
 Partners: LSV (coord), IRCCyN, IRISA, LaBRI, LAMSADE
- ANR Valmem: verification of memory circuits Academic partner: LSV (coord), LIP6 Industrial partner: STMicroelectronics
- Farman projects: TOAST, SIMOP, EMOTICON, CRAFT, BOOST, ...

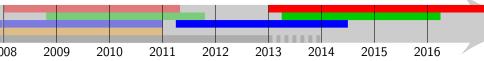

- STREP Quasimodo: quantitative verification Academic partners: Aalborg (coord), Aachen, LSV, Saarbrücken, Twente, ULB Industrial partners: Hydac (D), Chess (D), Terma (DK).
- ESF Gasics: games for synthesis
 Partners: ULB (coord), Aalborg, Aachen, LSV, Warwick
- ANR DOTS: distributed, timed, open systems
 Partners: LSV (coord), IRCCyN, IRISA, LaBRI, LAMSADE
- ANR Valmem: verification of memory circuits Academic partner: LSV (coord), LIP6 Industrial partner: STMicroelectronics
- Farman projects: TOAST, SIMOP, EMOTICON, CRAFT, BOOST, ...

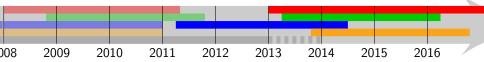

- STREP Quasimodo: quantitative verification Academic partners: Aalborg (coord), Aachen, LSV, Saarbrücken, Twente, ULB Industrial partners: Hydac (D), Chess (D), Terma (DK).
- ESF Gasics: games for synthesis Partners: ULB (coord), Aalborg, Aachen, LSV, Warwick
- ANR DOTS: distributed, timed, open systems
 Partners: LSV (coord), IRCCyN, IRISA, LaBRI, LAMSADE
- ANR Valmem: verification of memory circuits Academic partner: LSV (coord), LIP6 Industrial partner: STMicroelectronics
- Farman projects: TOAST, SIMOP, EMOTICON, CRAFT, BOOST, ...

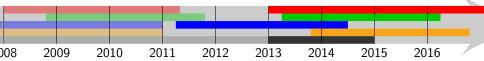
- STREP Quasimodo: quantitative verification Academic partners: Aalborg (coord), Aachen, LSV, Saarbrücken, Twente, ULB Industrial partners: Hydac (D), Chess (D), Terma (DK).
- ESF Gasics: games for synthesis Partners: ULB (coord), Aalborg, Aachen, LSV, Warwick
- ANR DOTS: distributed, timed, open systems
 Partners: LSV (coord), IRCCyN, IRISA, LaBRI, LAMSADE
- ANR Valmem: verification of memory circuits Academic partner: LSV (coord), LIP6 Industrial partner: STMicroelectronics
- Farman projects: TOAST, SIMOP, EMOTICON, CRAFT, BOOST, ...


- STREP Quasimodo: quantitative verification Academic partners: Aalborg (coord), Aachen, LSV, Saarbrücken, Twente, ULB Industrial partners: Hydac (D), Chess (D), Terma (DK).
- ESF Gasics: games for synthesis Partners: ULB (coord), Aalborg, Aachen, LSV, Warwick
- ANR DOTS: distributed, timed, open systems
 Partners: LSV (coord), IRCCyN, IRISA, LaBRI, LAMSADE
- ANR Valmem: verification of memory circuits Academic partner: LSV (coord), LIP6 Industrial partner: STMicroelectronics
- Farman projects: TOAST, SIMOP, EMOTICON, CRAFT, BOOST, ...


- STREP Quasimodo: quantitative verification Academic partners: Aalborg (coord), Aachen, LSV, Saarbrücken, Twente, ULB Industrial partners: Hydac (D), Chess (D), Terma (DK).
- ESF Gasics: games for synthesis Partners: ULB (coord), Aalborg, Aachen, LSV, Warwick
- ANR DOTS: distributed, timed, open systems
 Partners: LSV (coord), IRCCyN, IRISA, LaBRI, LAMSADE
- ANR Valmem: verification of memory circuits Academic partner: LSV (coord), LIP6 Industrial partner: STMicroelectronics
- Farman projects: TOAST, SIMOP, EMOTICON, CRAFT, BOOST, ...


- ERC EQuallS: quantitative verification of complex systems Principal Investigator: Patricia Bouyer
- STREP Cassting: non-zero-sum games for synthesis Academic partners: LSV (coord), Aachen, Aalborg, ULB, U.MONS Industrial partners: Seluxit (DK), Energi Nord (DK)
- ANR ImpRo: robustness of timd systems Partners: IRCCyN (coord), IRISA, LIP6, LSV
- Digiteo project SIMS: controller synthesis for switched systems Partners: CEA-List (coord), LSV
- Farman project: BOOST2, ROSCOV, INVERSYM, DECORR


- STREP Cassting: non-zero-sum games for synthesis Academic partners: LSV (coord), Aachen, Aalborg, ULB, U.MONS Industrial partners: Seluxit (DK), Energi Nord (DK)
- ANR ImpRo: robustness of timd systems Partners: IRCCyN (coord), IRISA, LIP6, LSV
- Digiteo project SIMS: controller synthesis for switched systems Partners: CEA-List (coord), LSV
- Farman project: BOOST2, ROSCOV, INVERSYM, DECORR


- STREP Cassting: non-zero-sum games for synthesis Academic partners: LSV (coord), Aachen, Aalborg, ULB, U.MONS Industrial partners: Seluxit (DK), Energi Nord (DK)
- ANR ImpRo: robustness of timd systems Partners: IRCCyN (coord), IRISA, LIP6, LSV
- Digiteo project SIMS: controller synthesis for switched systems Partners: CEA-List (coord), LSV
- Farman project: BOOST2, ROSCOV, INVERSYM, DECORR

- STREP Cassting: non-zero-sum games for synthesis Academic partners: LSV (coord), Aachen, Aalborg, ULB, U.MONS Industrial partners: Seluxit (DK), Energi Nord (DK)
- ANR ImpRo: robustness of timd systems Partners: IRCCyN (coord), IRISA, LIP6, LSV
- Digiteo project SIMS: controller synthesis for switched systems Partners: CEA-List (coord), LSV
- Farman project: BOOST2, ROSCOV, INVERSYM, DECORR

- STREP Cassting: non-zero-sum games for synthesis Academic partners: LSV (coord), Aachen, Aalborg, ULB, U.MONS Industrial partners: Seluxit (DK), Energi Nord (DK)
- ANR ImpRo: robustness of timd systems Partners: IRCCyN (coord), IRISA, LIP6, LSV
- Digiteo project SIMS: controller synthesis for switched systems Partners: CEA-List (coord), LSV
- Farman project: BOOST2, ROSCOV, INVERSYM, DECORR

- STREP Cassting: non-zero-sum games for synthesis Academic partners: LSV (coord), Aachen, Aalborg, ULB, U.MONS Industrial partners: Seluxit (DK), Energi Nord (DK)
- ANR ImpRo: robustness of timd systems Partners: IRCCyN (coord), IRISA, LIP6, LSV
- Digiteo project SIMS: controller synthesis for switched systems Partners: CEA-List (coord), LSV
- Farman project: BOOST2, ROSCOV, INVERSYM, DECORR

Outline

Presentation of the axis

B Highlights for 2008-2013

A Research project for 2013-2018

Research project

Quantitative verification and synthesis

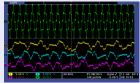
- ERC project EQualIS:
 - 01/2013-12/2017; 1.5 M€
 - led by Patricia Bouyer
 - Measures of correctness, quantitative model checking
 - Timed systems, robustness
 - Interacting systems, games, optimal strategies

Research project

Synthesis of Complex Systems

• STREP project Cassting:

- 04/2013-03/2016; 2 M€
- led by Nicolas Markey
- LSV, Aalborg, Aachen, ULB, UMons + 2 industrial partners
- Non-zero-sum games for synthesis
- Imperfect information, networks of games
- Equilibria, temporal logics for non-zero-sum games
- Case studies: smart energy grids, smart houses


Tempo after 2013

Controller Synthesis for Switched Systems

• Farman project BOOST2:

- 2012-2013; led by Laurent Fribourg
- controller synthesis for switched systems with ODE;
- development of tool Minimator;
- application to DC-DC converters in electronics.

• Digiteo project SIMS:

- 2013-2016; Éric Goubault (CEA List, coord.), Sylvie Putot (CEA List), Laurent Fribourg (LSV); PhD grant for S. Mohamed.
- controller synthesis for switched systems with PDE;
- stability, safety, optimization;
- applications: active control of vibrations, ...