

«security of information systems»

AERES evaluation of LSV – 2 December 2013

B Gourdi

NE Yousfi

Engineers

Former members: Steve Kremer Rohit Chadha Graham Steel Malika abachène A Adié Ph Chaput H Benzina M Arapinis JK Tsay G Bana Y Kawamoto R Künnemann JL Carré M Arnauc Postdocs PhD students

The SECSI Team 2008-2013

- SECSI = SECurité des Systèmes d'Information
- Founded in 2000, INRIA team 2002-

Antoine **Nercier**

S Ciobaca

Stéphanie Delaune

Engineers

The many facets of computer security

SECSI activities

- Verification of cryptographic protocols see next slides
- Intrusion prevention

Intrusion detection as **model-checking** The **ORCHIDS** tool, currenly valorized (DGA convention 2013-2016) Analyzing **network resilience** through timed games

• Semantic foundations of

mixed probabilistic/non-deterministic choice Anonymity and view-consistent schedulers Belief functions, previsions Noetherian spaces and WSTS (spin-off)

security properties Video OrchIDS is a new generation Intrusion Detection System (IDS) based on real-time event correlation. Screenshot OrchIDS can also be used as an offline powerful tool for forensics analysis of past events simultanously Downloa from multiple log sources) Good 0.4 0.5 0.5 0.5 0.7 0.4 Non-deterministic (demonic) choice (by adversary) Probabilistic choice (by program) Flip

S MINRIA

verification techniques for

logic-based

Outline

1.Verification of cryptographic protocols

2. Focus I: verification of electronic voting protocols

3. Focus II: computational models of security

4. Scientific project

Cryptography

 Basic functionalities: encryption signature hashing

-----BEGIN PGP PUBLIC KEY BLOCK-----Version: GnuPG/MacGPG2 v2.0.18 (Darwin) Comment: GPGTools - <u>http://gpgtools.org</u>

mQENBE/teyoBCADXBnYRCs+sddsIu+38u4pJk6AlCyJrY5uVfGl6Z4K4rwYF1nEN Jy0pxpsJj20V4++SuhI+wlDOHr45kXAJNh11h+jGQsICF1xgya0hCagXBnmjmFbN /3mlNeF42H0XPOy/2xKp6orGuv19pW+SbMo3zTOAjzcyC3RnfWm72HEMesA1nXKz fczZGOzsmKbt5cU6V16A9S66NWjq3QZ/Y81EgAsI2mYNtcbzuzFUpx11tIjw9uDb h11ZXeNJC7pgOtPNx2YfNzD175z/UBp+2pJ2GZImf9gk3gLiydXxILsgeMhALsWF wekdgsXkU1zohF5tpg1wF4W6oy5vH+vZ2G5RABEBAAG0QUp1YW4gR291YmF1bHQt TGFycmVjcSAoQ29uY291cnMgRU5TKSA8Z291YmF1bHRAbHN2LmVucy1jYWNoYW4u ZnI+iOE+BBMBAgAoBOJP7XsgAhsDBOkDwmcABgsJCAcDAgYVCAIJCgsEFgIDAOIe AQIXgAAKCRATtyehwe0YdfYoB/4yPTYDf1X1Yv/aNS4+RiC/hlqRdIvEgfAPJs7X 5QT1ZKoG6ZxQd6UFEpiAA16drdsLSXBi4PPrN456v2ZANxwTe16mDjU0P0RN9as6 XrgVT1XAfENEYOukWDukCzhVge8/6JkIA2kRXfdoMEd7aDuwEv/cs41uk9+0PGh/ VFIpkTJS990RS/GQMzmtquGBAkTGSESLP0hmoB8DcCN2cHiCuCffpLjZ9phwiDDJ zKhN59hwCAr47p0Mv6nHzhFjKVX8R4+Z6AKy8GYCsKjJvUudf+ZiR1OrZnLB1yP1 IbckFQj6QEEYLKp+PCgltJfELswPWITdEpJwHq858rzgNqy1uQENBE/teyoBCACh 8POEMbHPRbsqYRr/+w0+rCJD0WAOjj0dpvMg9wbytgMtnsL6p9CzIou3GePBPqRt 314XB1T5yKYNOXUGGrJrC/pKRl/tfRnWajE4zJLnFwkRV55XrznqELEkHfpg7cr6 YX71zSfrtTSVwUuOrrbEhKDX9k9gOiujc6ciau5FvMGgUBemeCiVejzo3fvF71Xm ylvc23vJmhY2IjeO8PRddpr52GY0FbZ0C78xdfKcAOOu9WC3TnrKP59YK1fGNFEj ddlnDhS1aRWIK4taLPH23Z6i8HmkDU6rydazIMfydaL+ojE3jEUE6UFc+YNreTYE sf1703cSETMBsab4DOfLABEBAAGJASUEGAECAA8FAk/tevoCGwwFCOPCZwAACgkO E7cnocHtGHWZ3wf+KsG+iNMo0aCeQ/L0nhUA7Rqjl30B0Rp2y2++LblqEAh+unIQ 9jQXLhQm6v3qltVYH9yvwujL2Z0RpR9tWMRG+XeHXh2l1gvvMFdWBXwl7VwbP85M lbQBJP4/SkHdzYx5EcmAj01y0TjtMzwQjCdGPBM6vNLc7y0yuBoQ747d+RHvqxSn Ctpu4R21LC/hekI/3zEsi//KdsAJnyk+RrX10Nnck7tjlYn4G150KTOvIzAVnMvu FbQw+2deJkOGlZjw+KE55BXGj2piqoR5BHvxbZf3u5p8SbMOhqpHnm6eTaQqj/Yj ZNACXVvHqlP64WVCxpa3Co9mng8Sysrso8pWkQ== =TyrM

----END PGP PUBLIC KEY BLOCK-----

• Not our business:

. . .

we assume some cryptography, with given security properties

Cryptographic protocols

- Specifications of messages exchanged based on cryptography
 = layer above crypto
- Must satisfy security properties: confidentiality, authentification, anonymity...
- Can be broken even with perfect cryptography
- Our business: invent verification techniques for checking security properties of security protocols

Symbolic methods

- Encode messages as first-order terms
- Encode protocols as

Horn clauses theories / deduction systems / process algebras

$A \to B$:	$ u N_A, r_1.$	$enc(\langle A, N_A \rangle, pk(B), r_1)$
$B \to A$:	$\nu N_B, r_2.$	$enc(\langle N_A, N_B \rangle, pk(A), r_2)$
$A \rightarrow B$:	νr_3 .	$enc(N_B, pk(B), r_3)$

 Encode security property as Horn query (reachability) / process equivalence (e.g., voter anonymity)

The Needham-Schroeder protocol

 $egin{array}{ccccc} A &
ightarrow B & : & \{A, N_a\}_{{
m pub}(B)} \ B &
ightarrow A & : & \{N_a, N_b\}_{{
m pub}(A)} \ A &
ightarrow B & : & \{N_b\}_{{
m pub}(B)} \end{array}$

Questions

- Is N_b a shared secret between A and B?
- When B receives {N_b}_{pub(B)}, does this message really originate from A ?

An attack was found 17 years after its publication! [Lowe'95]

The Needham-Schroeder protocol

Answers

- Is N_b a shared secret between A and B? $\hookrightarrow No$
- When *B* receives {*N_b*}_{pub(*B*)}, does this message really originate from *A*? → No

Remark : Crypto has not been broken \hookrightarrow Attack on the protocol logic.

Verification in an adversarial context

- protocol is executed in adversarial environment
- protocols are modelled in first-order logic or in process algebra (e.g., the applied pi calculus);
- attackers are any process which can be written in the applied pi calculus
- partial automation with H1 (home made) or ProVerif.

Needham-Schroeder in the pi-calculus

INIT ≙

```
in(c, xpkb).\nu na.
out(c, aenc(\langle pk(ska), na \rangle, xpkb)).
in(c, x).
if fst(adec(x, ska)) = na then
let xnb = snd(adec(x, ska)) in
out(c, aenc(xnb, xpkb)).0
```

RESP $\hat{=}$

in(c, y) let ypka = fst(adec(y, skb)) in let yna = snd(adec(y, skb)) in $\nu nb.out(c, aenc(\langle yna, nb \rangle, ypka))$ in(c, z). if adec(z, skb) = nb then P

 $NSPK \stackrel{\sim}{=} \nu ska.out(pk(ska)).!INIT$

 ν *skB*.out(pk(*skb*)).!*RESP*

Claim:

Confidentiality $(P \not\vdash s)$ for all processes *A* we have that:

if $P \mid A \rightarrow^* B$ then $B \not\equiv \text{out}(c, s) \cdot B_1 \mid B_2$

(wrong, here, of course!)

Some applications we have looked at

- Verification algorithms for the TPM (Trusted Platform Module)
- Attacks on privacy, European electronic passport (French version only)
- Verification algorithms for electronic voting protocols Voter anonymity, coercion resistance, individual/universal verifiability, eligibility, etc.
- Verification algorithms for security APIs (PKCS#11)

Outline

1. Verification of cryptographic protocols

2.Focus I: verification of electronic voting protocols

3. Focus II: computational models of security

4. Scientific project

Electronic voting

- Elections: cornerstone of democracy security-sensitive
- E-voting promises to be: convenient, efficient, secure for all kinds of elections (committees, national elections)
- Legally binding, e.g.:
 - Parliament elections: Switzerland, Estonia, 2011
 - French overseas parliament elections, 2013

A flurry of security properties to wish for

Verifying protocols in the applied pi-calculus

- Use equations to model crypto
- For each property, decide
 - who has to be protected
 - who is honest
- Encode honest parties as processes
- Encode security property as
 - reachability, or
 - observational equivalence (harder to check)
 - e.g., privacy is:

 $Sys \approx Sys[A \rightleftharpoons B]$

dec (enc (M, pk(K)), K) = M
 [usual decryption]
enc (enc (M, K1), K2) = enc (enc (M, K2), K1)
 [modular exponentiation]
unblind (sign (blind (M, R), K), R) = sign (M, K)
 [blind signatures]

processV =

```
new b; new c;
let bcv = blind(commit(v,c),b) in
out(ch, (sign(bcv, skv)));
in(ch,m2);
if getMess(m2,pka)=bcv then
let scv = unblind(m2,b) in
phase 1;
out(ch, scv);
in(ch,(l, =scv));
phase 2;
out(ch,(l,c)).
```

Property	type	intuition	
Eligibility	reach.	only eligible voters taken into account	
Fairness	reach.	without last phase, no votes published	
Privacy	obs. eq.	"your vote is secret"	
Receipt-freeness obs. eq.		same, even if you cooperate with attacker	
	I	・ロト・日下・モデ・モート	

Results

Property	Fujioka et al.	Okamoto	Lee et al.
Vote-privacy trusted auth:	√ none	√ timeliness member	√ administrator
Receipt-freeness trusted auth:	× n/a	√ timeliness member	√ admin. & collector
Coercion-resistance trusted auth:	× n/a	× n/a	√ admin. & collector

- In 2010, our proofs were by hand + auxiliary lemmas done by ProVerif
- We now have tools for observational equivalence:
 - AKISS (S. Ciobaca, based on Horn clauses)
 - APTE (V. Cheval, deciding more cases)

Other research in security crypto protocols

- Intruder deduction under equational theories
- From trace properties to observational equivalence properties
- Composition results: are parallel compositions of secure protocols still secure? [No]
- Perhaps our most visible success: analysis of crypto APIs (PKCS#11)
- Computational security

dec (enc (M, pk(K)), K) = M
 [usual decryption]
enc (enc (M, K1), K2) = enc (enc (M, K2), K1)
 [modular exponentiation]
unblind (sign (blind (M, R), K), R) = sign (M, K)
 [blind signatures]

 $P_1: A \to B: \operatorname{enc}(s, \operatorname{pub}(B))$ $P_2: A \to B: \operatorname{enc}(N_a, \operatorname{pub}(B))$ $B \to A: N_a$

Question: What about the secrecy of s?

There is no combination of attributes that makes PKCS#11 both secure and usable.

[Steel et al., CCS'10]:

Complete Insecurity

digiteo

[DelauneKremerSteel, CSF'08]

Graham Steel, lauréat du concours national 2012 d'aide à la création d'entreprises de technologies innovantes

Automated security analysis for cryptographic systems

Outline

1. Verification of cryptographic protocols

2. Focus I: verification of electronic voting protocols

3.Focus II: computational models of security

4. Scientific project

• Remember that Needham-Schroeder was broken?

• Remember that Needham-Schroeder was broken?

 Needham-Schroeder-Lowe is secure ... as proved by many systems

jeudi 28 novembre 13

- Remember that Needham-Schroeder was broken?
- Needham-Schroeder-Lowe is secure ... as proved by many systems
- Now implement encryption by the secure ElGamal encryption scheme
- The implementation is not secure! ... Lowe's attack applies anew
- **Problem**: ElGamal is malleable, i.e. satisfies additional equations

• In crypto, one prefers computational models over symbolic models

Adversary is now a PP-time Turing machine

- Verification can be done using CryptoVerif, or EasyCrypt
- or we may bring the computational and symbolic models closer:
 - add **new equations** to the symbolic model
 - or replace crypto primitives by ones with **less equations**
- In any case, require a full abstraction result (a.k.a., computational soundness)

Soundness results

 Many results, starting from Abadi and Rogaway 2000.
 Key point: make crypto assumptions precise and as weak as possible

Theorem [HCL + Cortier 2008]:

Symbolic observational equivalence of processes implies computational indistinguishability, for IND-CPA + IND-CTXT encryption schemes.

• Under fairly general additional assumptions

• Still...

Beyond standard assumptions for soundness

- No key cycle / existence of a key hierarchy
- Encryption is plaintext-concealing, should it be: key-concealing? length-concealing?
- Keys are generated at random (honestly): dishonest keys?
- Static corruption: extendible to adaptive corruption?
- We have had a few good results, but the subtle pitfalls of computational security are accumulating Needed: a completely new approach

Outline

1. Verification of cryptographic protocols

2. Focus I: verification of electronic voting protocols

3. Focus II: computational models of security

4.Scientific project

Scientific project

logic-based verification techniques for security properties

- New, realistic, symbolic models of security The Comon-Lundh/Bana approach: axiomatize what adversary cannot do Find minimal security assumptions on primitives
- Equivalence properties and S. Delaune's VIP program:
 models

 (new privacy properties in routing, in vehicular networks)
 algorithms
 (trace/observational equiv., finer abstractions)
 (of decision procedures, of intruder theories)
 (when is P1 || P2 secure? When is !P secure?)
- New proof techniques: automated/mechanized formal proofs probabilistic/non-deterministic systems
 (e.g., in Coq; circuit security)
 (full abstraction results)

Recommendations from the 2009 evaluation committee... and what we did about them

- «A améliorer : collaborations industrielles, valorisation des outils logiciels»
 - → Dassault Sys., Hispano-Suiza, Safran in CPP; EADS IW, Cassidian, Thalès
 - → CryptoSense **startup**
 - → not just industry! **DGA**, ANSSI
- «Recommandations : [...] objectifs ambitieux et pertinents [...] unité de l'axe de recherche et sa place au LSV moins évidentes qu'il y a quatre ans.»
 - → SECSI is still applying **logic** to **security**: LSV never ceased to be our **home**
- « [...] intégrer ces approches, à l'occasion d'études de cas plus appliquées.»
 → e-voting, secure MANET routing, European e-passport, TPM, crypto APIs...
- - a novel **symbolic** framework for **computational** security