AERES Evaluation

MExICo

Modelling and Exploitation of Interaction and Concurrency
MExICo: Created in 2009

ENS Cachan

Thomas Chatain
MdC

Paul Gastin
Head of CS Dept

Serge Haddad
Professor

CNRS

Benedikt Bollig
CR

INRIA

Stefan Haar
CR
MExICo: 2013

ENS Cachan

Thomas Chatain
MdC

Paul Gastin
Head of CS Dept

Serge Haddad
Professor

Stefan Schwoon
MdC
INRIA Chair 2009

Claudine Picaronny
MdC
(Temp2013 \rightarrow MExICo)

CNRS

Benedikt Bollig
CR

INRIA

Stefan Haar
DR

Alban Linard
Research Engineer

Visitor 2009-2011

Marc Zeitoun
Pr. Univ. Bordeaux (LABRI)
Past PhD student

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tali Sznajder</td>
<td>2009</td>
</tr>
<tr>
<td>Akshay S.</td>
<td>2010</td>
</tr>
<tr>
<td>Hilal Djafri</td>
<td>2012</td>
</tr>
<tr>
<td>Sandie Balaguer</td>
<td>2012</td>
</tr>
<tr>
<td>Benjamin Monmege</td>
<td>2013</td>
</tr>
</tbody>
</table>

Current PhD students

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>César Rodríguez</td>
<td>12/12/2013</td>
</tr>
<tr>
<td>Aiswarya Cyriac</td>
<td>2013</td>
</tr>
<tr>
<td>Benoît Barbot</td>
<td>2014</td>
</tr>
<tr>
<td>Hernán Ponce de León</td>
<td>2014</td>
</tr>
<tr>
<td>Simon Theissing</td>
<td>2016</td>
</tr>
</tbody>
</table>
Mexico (Tenochtitlán), ca. 1524
MExICo, since 2009

Partial Orders
Partial Observation
Concurrency
Recursivity
Real Time
Quantities
Focus I: Partial orders

Concurrent and distributed systems need *partial orders*

- conceptually: exhibit *causal* dependencies
- computationally: fight *state space explosion*

Focus

- Distributed Synthesis
- Unfolding Semantics
Highlight: Distributed Synthesis

Two problems

- Decide the existence of a distributed program such that their joint behavior $P_1 || P_2 || P_3 || P_4 || E$ satisfies φ, for all E.
- Synthesis: If it exists, compute such a distributed program.
Highlight: Distributed Synthesis

Synchronous semantics: Introduced by Pnueli/Rosner 1990

- At each tick of a global clock, all processes and the environment output their new value
- DS Undecidable with global specifications
- DS Undecidable with constraints on internal channels
- DS Undecidable with bandwidth constraints

Asynchronous Semantics: Gastin, Lerman, Zeitoun

- Processes evolve asynchronously for local actions
- Synchronize by signals
- Specifications over partial orders

Positive Results

Synthesis problem is decidable for

- strongly-connected architectures,
- disjoint unions of decidable architectures.
Partial order unfoldings

The State Space Explosion Problem

- Need to explore behavior of concurrent systems:
 - Verification, Diagnosis, Control, Test, ...
- State graph size prohibitive

Therefore:

Use occurrence net unfoldings
Improving Unfoldings

Contextual Petri Nets
- Extension by **read arcs**
- Allow for independent concurrent **read actions**
- Contextual unfolding **up to exp-smaller**
- Implemented in **CUNF tool**

Other improvements
- **Merged processes**
- **Reveals** Relations: Implication between events, contraction
Focus II: Partial Observation

- Active Diagnosis
- Weak Diagnosis
- Test
Partially observable Systems and Diagnosis

Assumptions

- Possible behaviours well-known
- Current execution only partially visible

Goal:

- Determine, from partial observations, whether a certain event (fault) has happened in the past.
Active Diagnosis

A system with an *ambiguous* pair of runs is not diagnosable

In that case: Compute *control*

- based on past observations
- so that faults manifest themselves through observations

Our Results

- Memory Consumption down from $2^{O(n)}$ to
 - $2^{O(n^2)}$ with minimal diagnosis delay
 - $2^{O(n)}$ with *twice* the minimal delay

- Computational complexity shown *optimal*
Quick Tour 1: Quantities

- Stochastic Systems
- Weighted Systems
Quantities: Stochastic Systems

Product Form (Stochastic) Petri Nets: most open problems solved

- sound and complete set of rules to synthesize Petri net with invariant measure in *product form*
- complexity class of standard problems (liveness, reachability, coverability)
- Structurally characterized subclass with computable invariant measure
- Petri Nets (ICATPN) 2011 *outstanding paper award*

Statistical and Rare Events Model Checking

- Logic HASL: path behavior performance
- Tool COSMOS

Active Probabilistic Diagnosis

under way
Quantities: Weighted Automata and Weighted Logics

Weighted Models
- Introduced **weighted** versions of MSO and CTL
- These weighted logics generalize boolean and probabilistic counterparts
- Allow to include additional quantities, e.g. energies and rewards

Contributions
- Probabilistic Kleene Theorem
- Applications in XML query evaluation
- Further Extensions for MSO
 - ... to pebble models
 - ... to infinite alphabets
Quick Tour 2: Recursivity

Concurrent Recursive Systems
- Unifying framework: partial orders with nesting
- Model checking \textit{decidable} in elementary time for \textit{any} temporal logic
- \textit{Decidability} for MSO model checking of Multi-Pushdown Systems under bounded split width
Quick Tour 3: Real Time

- Interplay: Concurrency ↔ timing
- Distributed Timed Systems
Real Time: Timed Systems and Concurrency

Interplay concurrency ↔ timing

- Networks of TA versus TPN: Concurrency-preserving translation
- Interactions between TAs: when can clock sharing be avoided?

Distributed Timed Systems

- Distributed timed automata with *independently* evolving clocks
- Natural semantics: existential/universal/game-based
- Model-checking problems:
 - Decidable for safety properties
 - Undecidable for liveness properties
 - Decidable for liveness properties wrt. under-approximation
Publications

<table>
<thead>
<tr>
<th></th>
<th>'13</th>
<th>'12</th>
<th>'11</th>
<th>'10</th>
<th>'09</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edited Books</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Chapters</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Journals</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Conferences</td>
<td>20</td>
<td>14</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>67</td>
</tr>
<tr>
<td>PhD theses</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Platform COSYVERIF (→ MeFoSyLoMa group), includes:

- COSMOS for stochastic model checking
- CUNF for unfolding of contextual nets
- 2 outstanding paper awards: Petri nets (ICATPN) 2011 + 2013
- Tutorials ICATPN, WATA; Invited Talks: DCFS, CIAA, DLT, ...
- Co-organization of CONCUR 2010
- Co-direction of CNRS international lab (LIA) INFORMEL with CMI, India
- Several PCs, SCs, Editorial boards
- Teaching: ENS, MPRI and more
Major Partners

Île de France
- MeFoSyLoMa and more: LIP 6, LIAFA, LIPN.

France
- Rennes (SUMO, IRISA)
- Bordeaux (LABRI)
- Nancy (VERIDIS, LORIA)

Europe
- Germany: München, Lübeck, Aachen
- Italy: Padova, Torino, Milano
- Spain: Zaragoza
- UK: Newcastle

Beyond
- India
- Chile, Argentina
Projects completed or under way

<table>
<thead>
<tr>
<th>FP 7 UNIVERSELF</th>
<th>Self-aware networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoE Hycon2</td>
<td>Highly complex and networked control systems</td>
</tr>
<tr>
<td>ANR</td>
<td>IMPRO: Robustness and implementability of timed systems</td>
</tr>
<tr>
<td>DIGITEO</td>
<td>COCHAT: Covered channels in Timed Systems</td>
</tr>
<tr>
<td></td>
<td>LOCOREPS: Recursive concurrent logics</td>
</tr>
<tr>
<td></td>
<td>TECSTES: Conformance testing using event structures</td>
</tr>
</tbody>
</table>
Into the Future I: Some New Paths

Distributed Algorithms
- Variable number of entities, variable topologies
- Parametrized verification

Exploration: new application fields
- *Supervision in multi-modal transport systems*
 IRT SystemX : (started 2013)
Into the Future II: Continuity

More on partially observed and concurrent systems

- Stochastic Diagnosis and Opacity over MDPs or partial orders
- Enhance unfoldings + reveals
- Address fairness

Partial Order Logics

- Identify relevant, tractable fragments
- Develop efficient and distributed verification algorithms

Weighted Models

Based on semi-ring models, develop general quantitative verification techniques
Thanks!