Axe Infini

Algorithmics for symbolic verification of infinite systems

Alain FINKEL
Plan

1. Introduction
 1. Scientific context
 2. Forward reachability procedure
 3. Backward reachability algorithm
 4. Our two preferred models

2. WSTS and CM

3. Management

4. 5 Strategy
Scientific context

• What objectives do we address?

 – Automatic analysis of (abstraction of) programs with unbounded parameters (stack, channel, recursive,...).

 – Analyse = solve reachability from s towards t

 – Analyse = ∃ path s --*→ t in an infinite graph?

 – Needs finite and computable representations
Communicating programs

finite control but unbounded channels

unbounded

unbounded

channel c_1

channel c_2

\rightarrow

\leftarrow

4/12/13

Infini - AERES - 2rd, december 2013
Lists program
is this program correct?

List Reverse (List x) {
 List y, t;
 y = NULL;
 while (x != NULL) {
 t = y;
 y = x;
 x = x->n;
 y = n->t;
 t = NULL;
 }
 return y;
}
Recursivity and counter

• From P(17), will R necessarily be activated?

\[P(x): \text{If } x \geq 16 \]
\[\text{If } 8 \mid x \text{ then } Q(x + 1) \]
\[\text{else } P(x - 2) \]
\[\text{else } F(x) \]

\[Q(x): \text{If } 2 \mid x \text{ then } R(x) \]
\[\text{else } S(x + 1) \]

In Bouajjani & al TCS n°295, 2003, page 86
Modelisation of the communication protocol TTP only +1 and -1 operations but already difficult analysis

Model for the TTP, N stations
Plan

1. **Introduction**
 1. Scientific context
 2. Forward reachability procedure
 3. Backward reachability algorithm
 4. Our two preferred models

2. WSTS and CM

3. Management

4. 5 Strategy
Reachability is difficult for “simple” CM

- $t_1: (x,y) \rightarrow (x-1,y+1)$
- $t_2: (x,y) \rightarrow (x+4,y-2)$

- Is there a path s.t.:
 $(2,1) \rightarrow \ldots * \ldots \rightarrow \uparrow(3,3)$?
A Naive Forward Algorithm
Forward Analysis for WSTS, Part II: Complete WSTS

Introduction

Example: \(\text{Post}^* \)

A Naive Forward Algorithm
• A path of length 8 from \((2,1) \) which meets \((3,3) \)
Infinite reachability tree
Is $Post^*(2,1)$ (finitely) computable?
When does this procedure terminate?
Plan

1. Introduction
 1. Scientific context
 2. Forward reachability procedure
 3. Backward reachability algorithm
 4. Our two preferred models

2. WSTS and CM

3. Management

4. 5 Strategy
Reachability/coverability

- \(t_1: (x,y) \rightarrow (x-1,y+1) \)
- \(t_2: (x,y) \rightarrow (x+4,y-2) \)
- Is there a path s.t.:
 \[(2,1) \rightarrow ... \rightarrow ... \rightarrow (3,3)\]
Forward Analysis for WSTS, Part II: Complete WSTS

Example: Coverability (in Petri Nets, here)
Forward Analysis for WSTS, Part II: Complete WSTS

Example: Coverability (in Petri Nets, here)
Backward strategy

• A path of length 10 from ↑ (3,3) that finally contains state (2,1).
Plan

1. Introduction
 1. Scientific context
 2. Forward reachability procedure
 3. Backward reachability algorithm
 4. Our two preferred models

2. WSTS and CM

3. Management

4. 5 Strategy
Our two preferred models

- **WSTS**: *generic* (=abstract) model for tens of « concrete » models

- **Counter machines**: *universal* model for computation (& modelization/verification)
Well Structured Transition Systems (WSTS)

- Ingredients:
 - A transition relation $\delta \subseteq X \times X$;
 - A well quasi-ordering (wqo) \preceq on X;
 - + monotonicity:

- \preceq is wqo iff (equivalently):
 - no infinite descending chain, and no infinite antichain;
 - every sequence has an infinite non-decreasing subsequence;
 - every upward-closed subset U is of the form $\uparrow A$, A finite.
WSTS and WQO history

• Timeline
 – ICALP 1987: basis of the theory
 – TCS 2001: survey of the theory
 – IPL 2002: Reachability is non Recursive Primitive
 – STACS 2009 + ICALP 2009: mathematical fundations to forward analysis
 – LICS 2008
 – MFCS 2010
 – LICS 2011
 – ESSLLI 2012
 – LICS 2012
 – Petri 2011, Petri 2012
 – CONCUR 2013

Complexity & decidability of WSTS

• Success: used and studied by numerous colleagues (Henzinger, Raskin,...)
Counter Machines (CM)

Model for the TTP, N stations

Graphical representation of the model rules and transitions.
Plan

1. Introduction
 1. Scientific context
 2. Forward reachability procedure
 3. Backward reachability algorithm
 4. Our two preferred models

2. WSTS and CM
 1. Highlight: wqos and complexity
 2. WSTS
 3. Counter Machines

3. Management

4. Strategy
Highlight : complexity of WQO

- Jancar TCS’01
 The finite reachability set equality for Petri nets

- [Schnoebelen IPL’02](#)
 Reachability LCS

- Reachability LCM (MFCS 2010)
Highlight: complexity of WQO

Challenges: Complexity of WSTS

- Concepts for measuring length of wqo (done)
- Upper/lower bounds (beginning)

Projects 2013-2017

- Delineate models/problems
- Equivalences/hierarchy
- Towards a Garey & Johnson of non-elementary complexities

Plan

1. Introduction
 1. Scientific context
 2. Forward reachability procedure
 3. Backward reachability algorithm
 4. Our two preferred models

2. WSTS and CM
 1. Highlight: wqos and complexity
 2. WSTS
 3. Counter Machines

3. Management

4. Strategy
A paradox?

• Backward strategy always terminates but is not efficient.

• The tool Trex (LIAFA) does not use the backward algorithm.
No paradox
Forward is more efficient than backward

• Backward strategy always terminates but is not efficient.
• The tool Trex (LIAFA) does not use the backward algorithm

• Accelerated forward strategy often terminates with efficiency but no theory
• Trex uses an adhoc accelerated forward procedure without termination guarantee
No theory of downward closed sets

Upward closed sets

- A nice and simple theory

Downward closed sets

- Missing theory

“Theorem (~1900)
For all $X \subseteq A$, A wqo,
$\uparrow X = \uparrow \{x_1, x_2, ..., x_n\}$ with $x_i \in X$.

Open problem (2008)
For all $X \subseteq A$, A wqo, is $\downarrow X$ finitely describable?
We have: $\downarrow X \neq \downarrow \{x_1, x_2, ..., x_n\}$ with $x_i \in X$
Towards a theory of downward closed sets

Mathematical and cognitive hypothesis

- limits are points at infinity but it does not work well
- Need of a « new » paradigm of limits which allows representing infinite downward closed sets.
Think “algebraically”

- Identify \(x \in X \) with the subset \(\downarrow x \subseteq X \)
- Elements and limits are directed downward closed subsets (= ideals)
- Theorem (STACS 2009)
 \(\downarrow X = \{ I_1, I_2, \ldots, I_n \} \)
 where \(I_i \) are ideals.
WSTS: challenges and results

2008 WSTS Challenges

• Build an unified general theory of forward analysis

• Simplify algorithms + proofs

• Measure the complexity

Results: 2008 - 2013

• Built a theory of downward closed sets

• Define Complete WSTS

• Define Completion of WSTS

• Conceptual & simple Karp&Miller algo

• **Measure the complexity (highlight)**

Results and projects

Results 2008 - 2013

- Build a theory of downward closed sets in wqo
- Complete WSTS
- Completion of WSTS
- Conceptual Karp&Miller algo

Projects 2013 - 2017

- Discover the good data-structures for ideals and completion-based algorithms
- Complexity of completion-based algorithms
- Ex: Priority channel systems
Plan

1. **Introduction**
 1. Scientific context
 2. Forward reachability procedure
 3. Backward reachability algorithm
 4. Our two preferred models

2. **WSTS and CM**
 1. Highlight: wqos and complexity
 2. WSTS
 3. Counter Machines

3. Management

4. Strategy
Counter Machines
Challenges and results

CM Challenges in 2008

- Unify, extend complexity analysis of Petri nets and classes of CM.
- Complexity of coverability in Petri nets
- Complexity of reachability in Petri nets

CM results 2008 - 2013

- Complexity of logics for Petri nets, flat CM and reversal-bounded CM
- Large classes of “coverability-like” properties are EXPSPACE-complete on Petri nets
Analysis by « simple » subsystems

Model for the TTP, N stations
Results and projects

CM results 2008 - 2013
- Complexity of logics for Petri nets, flat CM and reversal-bounded CM
- Large classes of “coverability-like” properties are EXPSPACE-complete on Petri nets

Projects 2013 - 2017
- Complexity of reachability for Petri nets
 - EXSPACE PR ACK
 - Multiple-ACK $F_{\varepsilon 0}$
- Complete the book on CMs!
- Towards an algorithmics
Many other subjects...not mentioned

- Games (L. Doyen)
- Lossy channel systems (P. Schnoebelen)
- Parikh automata (with P. McKenzie, Montréal)
-
Plan

1. Introduction
 1. Scientific context
 2. Forward reachability procedure
 3. Backward reachability algorithm
 4. Our two preferred models

2. WSTS and CM
 1. Highlight: wqos and complexity
 2. WSTS
 3. Counter Machines

3. Management
 1. Flow of Infini members, PhD, guest post-doc, invited professors
 2. Organization, scientific influence, contracts

4. Strategy
People

December, 2008

• Head : Alain Finkel (Prof. ENS Cachan)

• 3 Permanent members
 – Etienne Lozes (MCF) → Kassel
 – Sylvain Schmitz (MCF)
 – Philippe Schnoebelen (DR CNRS)

• 5 PhD students
 – Rémi Brochenin (DGA/CNRS, 2006-2009) → post doc
 – Jean-Loup Carré (EADS, 2007-2010) → Prof classes prépa

• Delegations and post-doc
 – Peter Habermehl (MCF Paris7, sabbatical feb.2007-feb. 2009)
 – Pierre-Cyrille Héam (MCF Besançon, sabbatical 2008-2010)
 – Adam Antonik (post-doc)

+ tens of one-month invited professors: Ranko Lazic, Petr Jancar,...

June, 2013

• Head : Alain Finkel (Prof. ENS Cachan)

• 4 Permanent members
 – Stéphane Demri → New York
 – Laurent Doyen (CR) → Tempo
 – Sylvain Schmitz (MCF) → Dahu
 – Philippe Schnoebelen (DR CNRS)

• 5 PhD students
 – Mahsa Shirmohammadi (Doyen + Massart)
 – Amit Kumar Dahr (Demri + Sangnier)
 – Julien Reichert (Berwanger + Doyen)
 – Prateek Karandikar (Schnoebelen + Kumar)
 – Michael Blondin (F. + McKenzie)

• Chair and post-doc
 – Pierre Mckenzie (Digiteo chair)
 – Christoph Haase (post-doc)
9 PhD students

2008: Arnaud Sangnier (F.+ Lozes) CIFRE EDF
2009: Florent Bouchy (F.)
2009: Jean-Loup Carré (Goubault-Larrecq)
2010: Jules Villard (Demri + Lozes)
2010: Diego Figueira (Demri + Segoufin)
2011: Pierre Chambart (Schnoebelen)
2013: Rémi Brochenin (Demri+Lozes)
2012: Michael Cadilhac (F.+McKenzie)
January 2013: Rémi Bonnet (F.)

• 2010: Assistant-Prof. Université Paris 7
• 2013: Post-doc and engineer in Montréal
• 2013: Prof Math-sup
• 2013: Post-doc Londres
• 2013: Post-doc Edimbourg
• 2013: Engineer Université Paris 7
• 2013: Postdoc University of Genes
• 2013: Waiting for a post-doc
• 2013: Post-doc Oxford (Worrell, Ouaknine)
5 PhD in progress

Mahsa Shirmohammadi (Doyen + Massart)
Markov processes
Defense: 2014

Julien Reichert (Berwanger + Doyen)
Games on counters.
Defense: 2014

Amit Kumar Dahr (Demri + Sangnier)
Flat Counter Machines
Defense: 2015

Prateek Karandikar (Schnoebelen + Kumar)
Lossy Channel Systems & complexity
Defense: 2015

Michael Blondin (F. + McKenzie)
Reachability in Petri nets
Defense: 2016
Plan

1. Introduction
 1. Scientific context
 2. Forward reachability procedure
 3. Backward reachability algorithm
 4. Our two preferred models

2. WSTS and CM
 1. Highlight: wqos and complexity
 2. WSTS
 3. Counter Machines

3. Management
 1. Flow of Infini members, PhD, guest post-doc, invited professors
 2. Organization, scientific influence, contracts

4. Strategy
Organization, scientific influence

• Chairman

• Dagstuhl on infinite systems
 april 2014 (Esparza-F.-Mckenzie-Ouaknine)

• Publications
 – 33 journal
 – 71 conf

• Collaborations
 – ∞: papiers communs
 – LSV\∞: Goubault-Larrecq, Haddad,…
 – Monde\LSV: Henzinger, Raskin, Jancar,…

• ANR Blanc « Reachard », LSV/LaBRI
 (2012-2014)
 – Reachability in VASS and other models
 – http://www.lsv.ens-cachan.fr/Projects/anr-
 reachard/

• Etienne Lozes
 (Kassel, Allemagne)
 HDR: 3 july 2012

• Laurent Doyen
 HDR: 13 march 2012

• ANR « DYNRES » (2011-2013)
 – logics for ressources
 – http://anr-dynres.loria.fr/

• + 8 contracts (finished)
December, 2nd, 2013

1. **Stéphane Demri**
 Dahu - infini
 Marie Curie New York (2012 - 2014)

2. **Alain Finkel**

3. **Sylvain Schmitz**
 MCF (2008 -->)
 -- > Dahu INRIA (2013-2015)

4. **Philippe Schnoebelen**

5. **Laurent Doyen**
 CR CNRS (2009 -->)
 -- > Tempo (sept’13 -->)

6. **Pierre McKenzie**
 Univ. Montréal
 Chaire DIGITEO ENS Cachan-Ecole X
 2013 – 2014
Plan

1. Introduction

2. WSTS and CM
 2. WSTS
 3. Counter Machines

3. Management
 1. Flow of Infini members, PhD, guest post-doc, invited professors
 2. Organization, scientific influence, contracts

4. Strategy
Check the work of Infini...

Did Infini realize its 2008 objectives?
From 2008 ... to 2013

Perspectives 2008-2013 (AERES, dec. 2008)

1. Verification of heterogeneous systems: CM,...

2. Verification of systems with dynamic memory

3. Verification of WSTS

Assessment 2008-2013 (june 2013)

1. CM

2. STOP

3. WSTS

Report AERES 2009

1. Strengths:
 • Publications, CM
 • FAST

2. To improve
 1. Interaction with program analysis
 2. + cooperation LIAFA
 3. Data dyn.

3. Recommendations
 1. Recruit a CR (prog Analysis-dem. Aut.)
 2. Develop FAST

Bilan 2008-2013

1. Strengths:
 • publications, CM
 • WSTS

2. What has been done
 1. More theory WSTS+CM
 2. + cooperation LIAFA (Habermehl, PhD Dahr)

3. What has been done
 1. 2009: Recruitment Laurent Doyen, CR CNRS, on Games
 2. FAST stopped but TAPAS continue
 http://tapas.labri.fr/trac
Objectives and challenges
2013 --> 2017

• **Constat**
 – We have formed brilliant researchers in and out of the LSV
 – We inspired fruitful research in France and outside (Oxford, Bruxelles, Vienne, Chennaï, Madrid).

• **Objectives**
 – Strengthen our leadership role in WSTS + CM
 – Recruit a colleague on verification algorithmics
 – Recruit PhD students

• **Challenges**
 – Classify WSTS
 – Complete the theory of complete WSTS
 – Move towards algorithmics (WSTS + CM)
The end

Questions...