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General Context

The theory of Well Structured Transition Systems, (WSTS) allows the
automatical verification of safety properties of infinite-state systems, such
that parts of reachability sets can be finitely represented [7, 11, 10]. Termi-
nation, boundedness and coverability are decidable for WSTS [4, 5, 9].

As Petri nets are WSTS, the previous properties are decidable.
For complete WSTS [10], the Karp and Miller procedure [13, 10] com-

putes the finite set of maximal elements of the downward closure of the
reachability set. This procedure logs a state space exploration of the rea-
chability set with a finite tree allowing to decide some other reachability
problems like the reccurent control-state reachability problem.The class of
very-WSTS in which this procedure terminates has been determined very
recently in [2] and, still, Petri nets are very-WSTS. When the Ideal Karp
Miller algorithm terminates, LTL is decidable on very-WSTS under natural
but new effective conditions that are also verified on Petri nets [2].

Objective :

The main objective is to construct an efficient coverability graph algo-
rithm and to construct an efficient LTL model checker for Petri nets.

1. Analyse the three following minimal coverability algorithms of Gilles
Geeraerts and Jean-François Raskin and Laurent Van Begin in [12],
of Pierre-Alain Reynier and Frédéric Servais in [18], and of Artturi
Piipponen and Antti Valmari in [17].
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2. Compare these three different coverability algorithms.

3. Compare the three differents tools.

4. From the previous survey on existing algorithms, construct an ef-
ficient implementation of the minimal coverability graph algorithm
based on the original minimal coverability set procedure [8].

5. Extend the decidability of LTL to temporal logics beyond LTL (see,
for instance, bounded Model Checking on WSTS [6]).

Location

This internship will be supervised at the Ecole Normale Supérieure Paris-
Saclay.

Qualifications and Connections

This internship is opened to strongly motivated and excellent Bachelor or
Master students who like discrete mathematics, theoretical computer science
and algorithmics.

Ideally, the candidate holds a Master degree in Computer Science (with
courses in formal verification, theoretical computer science and mathema-
tical structures for CS) or equivalently is graduated from a Computer Science
Engineering School with a strong background in theoretical computer science.

This research program is directly connected to MPRI C2-9 course, on
Mathematical foundations of the theory of infinite transition systems. It
should suit a theoretically-minded student with some taste for theoretical
and algorithmic constructions. The internship is an ideal opportunity for
starting a PhD thesis (possible collaborations with Bordeaux and Montréal).
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