
Refinement in Dedukti

• Lab: LSV, ENS Cachan, France

• Team: Deducteam

• Advisor: Frédéric Blanqui (INRIA)

Dedukti is a formal proof checker based on a logical framework called the λΠ-
calculus modulo, which is an extension of the simply-typed lambda-calculus with
dependent types (e.g. matrices) and an equivalence relation on types generated
by user-defined rewrite rules. Proofs generated by some automated theorem
provers (e.g. Zenon, iProver) or proof assistants (e.g. HOL, Coq, Matita) can
be checked in Dedukti by encoding function definitions and axioms by rewrite
rules [3].

But, currently, no proof assistant fully uses all the features of Dedukti, which
allows arbitrary user-defined rewrite rules (e.g. (x+ y) + z → x+ (y+ z), where
+ is itself defined by other rules). Such rules are indeed necessary if one wants
to ease the use of dependent types and, for instance, be able to define types for
representing simplicial sets of arbitrary dimensions, ∞-categories or models of
Voevodsky’s homotopy type theory.

We therefore would like to develop a tool for interactively building Dedukti
proofs using all the features of Dedukti. But, to scale up and be able to handle
large developments, especially with dependent and polymorphic types, we need
to allow the users to write down incomplete terms (e.g. the type of the elements
of a list), and provide an inference engine for finding out the missing subterms.

The goal of this internship is then to develop such a refinement engine for
Dedukti. To start with, the student could for instance adapt to Dedukti a
simplified version of the refinement engine of Matita [2]. This engine is based
on a unification algorithm. At the beginning, the student could implement a
simple first-order unification algorithm, and extend it later to take into account
user-defined rewrite rules.

Finally, the candidate could take into account unification hints like in Matita
and Coq for handling type classes and canonical structures [1, 5, 4], which are
powerful techniques for handling overloaded symbols.

Expected abilities: basic knowledge of type inference.

1

http://www.lsv.fr/
http://deducteam.gforge.inria.fr/
http://rewriting.gforge.inria.fr/
http://dedukti.gforge.inria.fr/


References
[1] A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. Hints in uni-

fication. In Proceedings of the 22nd International Conference on Theorem
Proving in Higher Order Logics, Lecture Notes in Computer Science 5674,
2009.

[2] A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. A bi-directional
refinement algorithm for the calculus of (co)inductive constructions. Logical
Methods in Computer Science, 8:1–49, 2012.

[3] A. Assaf, G. Burel, R. Cauderlier, D. Delahaye, G. Dowek, C. Dubois,
F. Gilbert, P. Halmagrand, O. Hermant, and R. Saillard. Expressing Theo-
ries in the lambda-Pi-Calculus Modulo Theory and in the Dedukti System,
2016. Draft.

[4] A. Mahboubi and E. Tassi. Canonical Structures for the working Coq user.
In Proceedings of the 4th International Conference on Interactive Theorem
Proving, Lecture Notes in Computer Science 7998, 2013.

[5] M. Sozeau. A new look at generalized rewriting in type theory. Journal of
Formalized Reasoning, 2(1):41–62, 2009.

2

http://dx.doi.org/10.1007/978-3-642-03359-9_8
http://dx.doi.org/10.1007/978-3-642-03359-9_8
http://dx.doi.org/10.2168/LMCS-8(1:18)2012
http://dx.doi.org/10.2168/LMCS-8(1:18)2012
http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf
http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-39634-2_5
http://dx.doi.org/10.6092/issn.1972-5787/1574

