
Checking the type safety of rewrite rules

• Lab: LSV, Cachan, France

• Team: Deducteam

• Advisor: Frédéric Blanqui (INRIA)

Context. Lambdapi is a new proof assistant based on a logical framework
called the λΠ-calculus modulo rewriting, which is an extension of the simply-
typed λ-calculus (the basis of functional programming languages like OCaml
or Haskell) with dependent types (e.g. vectors and matrices of some given di-
mension) and an equivalence relation on types generated by user-defined rewrite
rules [1]. Thanks to rewriting, Lambdapi allows the formalization of proofs that
cannot be done in other proof assistants. However, before adding a new rewrite
rule l → r in the system, it is necessary to check that it preserves typing, that
is, if l is of type T , then r is of type T too. It is a property easy to check with
simple types but undecidable with dependent types [2, 3].

Goal. The goal of this internship is to work on a new algorithm based
on the use of a Knuth-Bendix completion procedure for transforming equality
constraints generated by typing into rewrite rules. This algorithm can use the
fact that some functions are injective but we currently have no criterion for
deciding whether a function defined by rewrite rules is injective. So, a subgoal
of this internship could be to find out some sufficient condition for injectivity
and implement it in Lambdapi.

Workplan.

• study a new algorithm for checking that a rewrite rule preserves typing

• prove its correctness

• implement it in Lambdapi

• define a sufficient condition for injectivity

• implement it in Lambdapi

Requirements. Some basic knowledge of functional programming (OCaml
or Haskell), rewriting theory and dependent type theory is welcome but not
necessary.

1

http://www.lsv.fr/
http://deducteam.gforge.inria.fr/
http://rewriting.gforge.inria.fr/
https://github.com/rlepigre/lambdapi
http://rewriting.gforge.inria.fr/1-33.html


References
[1] A. Assaf, G. Burel, R. Cauderlier, D. Delahaye, G. Dowek, C. Dubois,

F. Gilbert, P. Halmagrand, O. Hermant, and R. Saillard. Dedukti: a logical
framework based on the λΠ-calculus modulo theory, 2016. Draft.

[2] F. Blanqui. Definitions by rewriting in the calculus of constructions. Math-
ematical Structures in Computer Science, 15(1):37–92, 2005.

[3] R. Saillard. Type checking in the Lambda-Pi-calculus modulo: theory and
practice. PhD thesis, Mines ParisTech, France, 2015.

2

http://lsv.fr/~dowek/Publi/expressing.pdf
http://lsv.fr/~dowek/Publi/expressing.pdf
http://doi.org/10.1017/S0960129504004426
https://pastel.archives-ouvertes.fr/tel-01299180
https://pastel.archives-ouvertes.fr/tel-01299180

