
Modern user interface

for interactive theorem proving

• Lab: LSV, Cachan, France

• Team: Deducteam

• Advisor: Frédéric Blanqui (INRIA) and Emilio Gallego (Mines ParisTech)

Context. Lambdapi is a new proof assistant based on a logical framework
called the λΠ-calculus modulo rewriting, which is an extension of the simply-
typed λ-calculus (the basis of functional programming languages like OCaml or
Haskell) with dependent types (e.g. vectors and matrices of some given dimen-
sion) and an equivalence relation on types generated by user-defined rewrite
rules [1]. Thanks to rewriting, Lambdapi allows the formalization of proofs
that cannot be done in other proof assistants (e.g. simplicial sets of infinite
dimensions).

However, for developing large proofs, it is essential to have a good interface.
Interactive theorem proving is built on the mutual interaction between a human
and a prover. The human will submit a candidate proof, and the proof assistant
will confirm or reject the user proposal. Building large proofs is a very difficult
task, and users do require large amount of help from the tools. Searching,
completion, project management, are all essential to the successful development
of large proofs.

Goal. The goal of this internship is to develop a Lambdapi plugin for the
VSCode or Emacs editors, based on the Language Server Protocol (LSP).

Adding features like auto complete, go to definition, or documentation on
hover for a programming language takes significant effort. Traditionally this
work had to be repeated for each development tool, as each tool provides dif-
ferent APIs for implementing the same feature.

A Language Server is meant to provide the language-specific smarts and
communicate with development tools over a protocol that enables inter-process
communication.

The idea behind the Language Server Protocol (LSP) is to standardize the
protocol for how such servers and development tools communicate. This way, a
single Language Server can be re-used in multiple development tools, which in
turn can support multiple languages with minimal effort.

1

http://www.lsv.fr/
http://deducteam.gforge.inria.fr/
http://rewriting.gforge.inria.fr/
https://www.cri.ensmp.fr/people/gallego/
https://github.com/rlepigre/lambdapi
https://code.visualstudio.com/
https://www.gnu.org/software/emacs/
https://microsoft.github.io/language-server-protocol/


The Lambdapi server is already implemented (subdirectory lp-lsp) [2, 3],
and a Lambdapi plugin for Atom called atom-dedukti has already been devel-
oped last summer [4], which could be useful.

Workplan.

• syntax coloring

• enable Unicode symbols

• display error messages and their locations

• display unsolved goals

• for an unsolved goal, display the assumptions

• provide buttons and short cuts for going forward or backward in a proof

• display informations about symbols or text selections (e.g. type, definition,
rewrite rules)

• propose to LSP developers an extension of LSP for interactive proof de-
velopment

Requirements. Knowledge of JavaScript and JSON. Knowledge of LISP
required only if one wants to develop the Emacs plugin.

References
[1] A. Assaf, G. Burel, R. Cauderlier, D. Delahaye, G. Dowek, C. Dubois,

F. Gilbert, P. Halmagrand, O. Hermant, and R. Saillard. Dedukti: a Logical
Framework based on the λΠ-Calculus Modulo Theory, 2016. Draft.

[2] E. J. Gallego-Arias. SerAPI: Machine-Friendly, Data-Centric Serialization
for Coq, 2016.

[3] E. J. Gallego-Arias, B. Pin, and P. Jouvelot. jsCoq: towards hybrid theorem
proving interfaces. In Proceedings of the 12th Workshop on User Interfaces
for Theorem Provers, 2016.

[4] I. Lachheb. Une interface pour Dedukti. https://hal.inria.fr/
hal-01898401, 2018. Internship report.

2

https://atom.io/
https://github.com/Deducteam/atom-dedukti
http://lsv.fr/~dowek/Publi/expressing.pdf
http://lsv.fr/~dowek/Publi/expressing.pdf
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
http://feever.fr/Papers/jscoq.pdf
http://feever.fr/Papers/jscoq.pdf
https://hal.inria.fr/hal-01898401
https://hal.inria.fr/hal-01898401

