Woo and Lam Mutual Authentication

Author(s): T.Y.C Woo and S.S. Lam 1994 Last modified November 10, 2002

Summary: Key distribution and mutual authentication with trusted server and symmetric keys.

Protocol specification (in common syntax)

P, Q, S: Kps, Kqs, Kpq: N1, N2:				principal key number			
1.	Р	->	Q	:	P, N1		
2.	Q	->	Ρ	:	Q, N2		
3.	Ρ	->	Q	:	{P, Q, N1, N2}Kps		
4.	Q	->	S	:	{P, Q, N1, N2}Kps, {P, Q, N1, N2}Kqs		
5.	S	->	Q	:	{Q, N1, N2, Kpq}Kps, {P, N1, N2,Kpq}Kqs		
6.	Q	->	Ρ	:	{Q, N1, N2, Kpq}Kps, {N1, N2}Kpq		
7.	Р	->	Q	:	{N2}Kpq		

Description of the protocol rules

Kpq is a fresh symmetric key created at message 5 by the server S.

N1 and N2 are nonces.

Kps and Kqs are symmetric keys whose values are initially known only by P and S, respectively P and S.

Requirements

The protocol must guaranty the secrecy of Kpq: in every session, the value of Kpq must be known only by the participants playing the roles of P, Q and S.

The protocol must also ensures mutual authentication of P and $\mathsf{Q}.$

References

[WL94]

Claimed attacks

1. Parallel session replay attack, [CJ], and [CJ97]. In this attack, the intruder I initiates a session ii in order to make P accept a non-fresh key.

i.1.	Р	->	I	:	P, N1
ii.1.	I	->	Р	:	I, N1
ii.2.	Р	->	I	:	P, N2
i.2.	I	->	Р	:	I, N2
i.3.	Р	->	I	:	$\{P, I, N1, N2\}$ Kps
i.4.	I	->	S	:	{P, I, N1, N2}Kps, {P, I, N1, N2}Kis
i.5.	S	->	I	:	{I, N1, N2, Kpi}Kps, {P, N1, N2, Kpi}Kis
i.6.	I	->	Р	:	${I, N1, N2, Kpi}{Kps, {N1, N2}{Kpi}}$
i.7.	Р	->	I	:	{N2}Kpi
ii.3.	I	->	Р	:	${I, P, N1, N2}$ Kis
ii.4.	Р	->	I(S)	:	$\{ extsf{I}, extsf{P}, extsf{N1}, extsf{N2} \} extsf{Kis}, \{ extsf{I}, extsf{P}, extsf{N1}, extsf{N2} \} extsf{Kps}$
ii.5.	I(S)	->	Р	:	{I, N1, N2, Kpi}Kis, {I, N1, N2, Kpi}Kps
ii.6.	Р	->	I	:	$\{P, N1, N2, Kpi\}$ Kis, $\{N1, N2\}$ Kpi
ii.7.	I	->	Р	:	{N2}Kpi

2. [Low96]. bit-string represent an arbitrary number.

i.1.	I(P)	->	Q	:	P, Q
i.2.	Q	->	I(P)	:	Q, N2
i.3.	I(P)	->	Q	:	bit-string
i.4.	Q	->	I(S)	:	bit-string, {P, Q, Q, N2}Kps
ii.1.	I(P)	->	Q	:	P, N2
ii.2.	Q	->	I(P)	:	Q, N3
ii.3.	I(P)	->	Q	:	bit-string'
ii.4.	Q	->	I(S)	:	bit-string', {P, Q, N2, N3}Kps
i.5.	I(S)	->	Q	:	<pre>bit-string'', {P, Q, N2, N3}Kps</pre>
i.6.	Q	->	I(P)	:	bit-string'', {Q, N2}N3
i.7.	I(P)	->	Q	:	{N2}N3

Citations

- [CJ] John Clark and Jeremy Jacob. Freshness is not enough : Note on trusted nonce generation and malicious principals. attack on a mutual authentification protocol by Woo and Lam.
- [CJ97] John Clark and Jeremy Jacob. A survey of authentication protocol literature : Version 1.0., November 1997.

- [Low96] Gavin Lowe. Some new attacks upon security protocols. In IEEE Computer Society Press, editor, In Proceedings of the Computer Security Foundations Workshop VIII, 1996.
- [WL94] T. Y. C. Woo and S. S. Lam. A lesson on authentication protocol design. Operating Systems Review, 1994.