SPLICE/AS

Author(s): Suguru Yamaguchi, Kiyohiko Okayama, and Hideo Miyahara November 1991 Last modified November 26, 2002

Summary: Mutual authentication protocol. Public key cryptography with a certification authority signing and distributing public keys.

Protocol specification (in common syntax)

S, (C, AS	:	principal						
N1,	N2, N	13 :	nonce						
Τ:			timestamp						
L :			lifetime						
pk,	sk :		prin	ncipa	l -> key (keypair)				
1.	С	->	AS	:	C, S, N1				
2.	AS	->	С	:	AS, {AS, C, N1, $pk(S)$ }sk(AS)				
3.	С	->	S	:	C, S, {C, T, L, $\{N2\}pk(S)\}sk(C)$				
4.	S	->	AS	:	S, C, N3				
5.	AS	->	S	:	AS, {AS, S, N3, $pk(C)$ }sk(AS)				
6.	S	->	С	:	S, C, $\{$ S, inc(N2) $\}$ pk(C)				

Description of the protocol rules

key is the type of public/private keys. The functions pk and sk associate to a principal's name its public key, resp. private key.

We assume that initially, the client C and the server S only know their own public and private key, and that the authority AS known the function pk, i.e. he knows everyone's public key.

{AS, C, N1, pk(S)}sk(AS) (in message 2) and {AS, S, N3, pk(C)}sk(AS) (in message 5) are certificates signed and distributed by the authority AS, for the respective public keys pk(S) and pk(C).

After a successfull run of the protocol, the value of N2 can be used by $\tt C$ and $\tt S$ as a symmetric key for secure communications.

Requirements

The protocol must guaranty the secrecy of N2: in every session, the value of N2 must be known only by the participants playing the roles of C, S.

The protocol must also ensure C that S has received N2 and S that the N2 he has received in message 3 originated from C.

References

[YOM91]

Claimed attacks

1. In an attack described in [HC95], the intruder I can impersonate the client C and obtain N2 in a single session (i.e. without even running a parallel session).

1.	I	->	AS	:	I, S, N1	
2.	AS	->	I	:	AS, {AS, I, N1, $pk(S)$ }sk(AS)	
3.	I(C)	->	S	:	C, S, {C, T, L, ${N2}pk(S)$ sk(I)	
4.	S	->	I(AS)	:	S, C, N3	In
4.	I(S)	->	AS	:	S, I, N3	
5.	AS	->	S	:	AS, {AS, S, N3, $pk(I)$ }sk(AS)	
6.	S	->	I(C)	:	S, C, $\{$ S, inc(N2) $\}$ pk(I)	

message 5, the server S accepts the certificate {AS, S, N3, pk(I)}sk(AS) from AS as a certificate of the public key of C (note that the certificates do not contain the name of the owner of public keyx in this protocol) and hence crypts the data in the last message 6 with the public key of I.

2. In this second (symmetric) attack from [HC95], the intruder I can impersonate the server S and obtain N2.

1.	С	->	I(AS)	:	C, S, N1
1.	I(C)	->	AS	:	C, I, N1
2.	AS	->	С	:	AS, {AS, C, N1, $pk(I)$ sk(AS)
3.	С	->	I(S)	:	C, S, {C, T, L, $\{N2\}pk(I)\}sk(C)$
4.	I	->	AS	:	I, C, N3
5.	AS	->	I	:	AS, {AS, S, N3, $pk(C)$ }sk(AS)
6.	S	->	С	:	S, C, ${S, inc(N2)}pk(C)$

3. Lowe outlined (see [CJ97]) that a malicious C can replay the message 3 (the first message concerning S) several times, with new values of T and L, to restart authentication with an old value of N2.

See also

Hwang and Chen modified SPLICE/AS, Clark and Jacob modified Hwang and Chen modified SPLICE/AS.

Citations

- [CJ97] John Clark and Jeremy Jacob. A survey of authentication protocol literature : Version 1.0., November 1997.
- [HC95] Tzonelih Hwang and Yung-Hsiang Chen. On the security of splice/as : The authentication system in wide internet. Information Processing Letters, 53:97–101, 1995.
- [YOM91] Suguru Yamaguchi, Kiyohiko Okayama, and Hideo Miyahara. The design and implementation of an authentication system for the wide area distributed environment. *IEICE Transactions on Information and Systems*, E74(11):3902–3909, November 1991.