
Security protocols library 1

The security protocols library digest

Andrew Secure RPC

Author(s): M. Satyanarayanan 1987
Last modified November 14, 2011

Summary: Exchanged of a fresh shared key. Symmetric key cryptogra-
phy.

Protocol specification (in common syntax)

A, B : principal
Kab, K’ab : symkey
Na, Nb, N’b : nonce
succ : nonce -> nonce

1. A -> B : A, {Na}Kab
2. B -> A : {succNa, Nb}Kab
3. A -> B : {succNb}Kab
4. B -> A : {K’ab, N’b}Kab

Description of the protocol rules

This protocol establishes the fresh shared symmetric key K’ab. The nonce
N’b is sent in message 4 to be used in a future session.

We assume that initially, the symmetric keys Kab is known only to A and B.

Requirements

The protocol must guaranty the secrecy of the new shared key K’ab: in
every session, the value of K’ab must be known only by the participants
playing the roles of A and B.

The protocol must guaranty the authenticity of K’ab: in every session, on
reception of message 4, A must be ensured that the key K’ab in the message
has been created by A in the same session.

References

[Sat89]

http://www.lsv.ens-cachan.fr/spore

Security protocols library 2

Claimed attacks

[BAN89]. The message 4 contains nothing that A knows to be fresh. Hence,
an intruder I can replay this message in another session of the protocol to
convinced B to accept an old compromised key.

i.1. A -> B : A, {Na}Kab
i.2. B -> A : {succNa, Nb}Kab
i.3. A -> B : {succNb}Kab
i.4. B -> A : {K’ab, N’b}Kab
ii.1. A -> B : A, {Ma}Kab
ii.2. B -> A : {succMa, Mb}Kab
ii.3. A -> B : {succMb}Kab
ii.4. B -> I(A) : {K’’ab, M’b}Kab
ii.4. I(B) -> A : {K’ab, N’b}Kab

See also

BAN modified Andrew Secure RPC, BAN concrete Andrew Secure RPC,
Lowe modified BAN concrete Andrew Secure RPC.

BAN modified Andrew Secure RPC

Author(s): Michael Burrows and Martin Abadi and Roger Needham 1987
Last modified November 14, 2002

Summary: Modified version of Andrew Secure RPC correcting a freshness
flaw. Exchanged of a fresh shared key, Symmetric key cryptography.

Protocol specification (in common syntax)

A, B : principal
Kab, K’ab : symkey
Na, Nb, N’b : nonce
succ : nonce -> nonce

1. A -> B : A, {Na}Kab
2. B -> A : {succNa, Nb}Kab
3. A -> B : {succNb}Kab
4. B -> A : {K’ab, N’b, Na}Kab

http://www.lsv.ens-cachan.fr/spore

Security protocols library 3

Description of the protocol rules

The nonce Na has been added to the message 4 of Andrew Secure RPC to
prevent the flow presented in Andrew Secure RPC.

Requirements

See Andrew Secure RPC.

References

[BAN89]

See also

Andrew Secure RPC, BAN concrete Andrew Secure RPC, Lowe modified
BAN concrete Andrew Secure RPC.

BAN concrete Andrew Secure RPC

Author(s): Michael Burrows and Martin Abadi and Roger Needham 1989
Last modified November 14, 2002

Summary: A concrete realization of the Andrew Secure RPC protocol,
stronger and with less encryption. Exchanged of a fresh shared key, Sym-
metric key cryptography.

Protocol specification (in common syntax)

A, B : principal
Kab, K’ab : symkey
Na, Nb, N’b : nonce
succ : nonce -> nonce

1. A -> B : A, Na
2. B -> A : {Na, K’ab}Kab
3. A -> B : {Na}K’ab
4. B -> A : Nb

http://www.lsv.ens-cachan.fr/spore

Security protocols library 4

Description of the protocol rules

This protocol establishes the fresh shared symmetric key K’ab.

The nonce Nb is sent in message 4 to be used in a future session.

We assume that initially, the symmetric keys Kab is known only to A and B.

Requirements

See Andrew Secure RPC.

References

[BAN89]

Claimed attacks

In [Low96], with 2 parallel runs where the intruder I impersonates B.

i.1. A -> I(B) : A, Na
ii.1. I(B) -> A : B, Na
ii.2. A -> I(B) : {Na, K’ab}Kab
i.2. I(B) -> A : {Na, K’ab}Kab
i.3. A -> I(B) : {Na}K’ab
ii.3. I(B) -> A : {Na}K’ab
i.4. I(B) -> A : Ni
ii.4. A -> I(B) : Nb

A fix to this attack

can be found in Lowe modified BAN concrete Andrew Secure RPC.

See also

Andrew Secure RPC, BAN modified Andrew Secure RPC, Lowe modified
BAN concrete Andrew Secure RPC.

Lowe modified BAN concrete Andrew Secure RPC

Author(s): Gavin Lowe 1996
Last modified November 14, 2002

Summary: A modified version of the BAN concrete Andrew Secure RPC
protocol, preventing a parallel session attack. Exchanged of a fresh shared

http://www.lsv.ens-cachan.fr/spore

Security protocols library 5

key, Symmetric key cryptography.

Protocol specification (in common syntax)

A, B : principal
Kab, K’ab : symkey
Na, Nb, N’b : nonce
succ : nonce -> nonce

1. A -> B : A, Na
2. B -> A : {Na, K’ab, B}Kab
3. A -> B : {Na}K’ab
4. B -> A : Nb

Description of the protocol rules

The identity of the responder B has been added in the message 2 of andrewBAN2.

Requirements

See Andrew Secure RPC.

References

[Low96]

See also

Andrew Secure RPC, BAN modified Andrew Secure RPC, BAN concrete
Andrew Secure RPC.

Bull’s Authentication Protocol

Author(s): J. Bull 1997

Summary: This protocol, described in [BO97], aims at establishing fresh
session keys between a fixed number of participants (for instance 3) and a
server: one key for each pair of agents adjacent in the chain.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 6

Protocol specification (in common syntax)

A, B, C, S : principal
Kab, Kbc : fresh symkey
Na, Nb, Nc : fresh number
Kas, Kbs, Kcs : symkey
h : message, symkey -> message

A computes Xa = h((A,B,Na),Kas), (A,B,Na)

1. A -> B : Xa

B computes Xb = h((B,C,Nb,Xa),Kbs), (B,C,Nb,Xa)

2. B -> C : Xb

C computes Xc = h((C,S,Nc,Xb),Kcs), (C,S,Nc,Xb)

3. C -> S : Xc

4. S -> C : A, B, Kab xor h(Na,Kas), {A,B,Na}Kab,
B, A, Kab xor h(Nb,Kbs), {B,A,Nb}Kab,
B, C, Kbc xor h(Nb,Kbs), {B,C,Nb}Kbc,
C, B, Kbc xor h(Nc,Kcs), {C,B,Nc}Kbc

5. C -> B : A, B, Kab xor h(Na,Kas), {A,B,Na}Kab,
B, A, Kab xor h(Nb,Kbs), {B,A,Nb}Kab,
B, C, Kbc xor h(Nb,Kbs), {B,C,Nb}Kbc

6. B -> A : A, B, Kab xor h(Na,Kas), {A,B,Na}Kab

Description of the protocol rules

The protocol is initiated by A and then goes through B and C before reaching
S. At the end, new session keys Kab and Kbc are established. The properties
of exclusive or are:

x xor (y xor z) = (x xor y) xor z (E1)
x xor y = y xor x (E2)
x xor 0 = x (E3)
x xor x = 0 (E4)

Requirements

The protocol must guaranty the secrecy of Kxy. Each key Kxy should be
known to exactly x and y (and also S), even if some nodes other than x and
y are malicious.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 7

References

[BO97]

Claimed attacks

This protocol is subject to an attack [RS98] that can be mounted by a
dishonest participant. For example, assume that C is a malicious agent.
He can intercept Kab xor h(Nb,Kbs) and Kbc xor h(Nb,Kbs) sent by S
at step 4, and since C knows the session key Kbc, he can compute Kbc xor
Kab xor h(Nb,Kbs) xor Kbc xor h(Nb,Kbs). Since this term is actually
equal to Kab, the agent C learns a session key that should be shared only by
A and B.

CAM

Author(s): Greg O’Shea and Michael Roe April 2001
Submitted by Michael Roe January 10, 2003
Last modified November 28, 2002

Summary: A protocol used by mobile computers to inform their peers
when their network address has changed.

Protocol specification (in common syntax)

M,C : principal
Tm : timestamp
PK,SK : principal -> key (keypair)
HoA : principal -> address
CoA : principal -> address
i : salt

1. M -> C : CoA(M), HoA(C), HoA(M), PK(M), i, Tm,
{H(CoA(M), HoA(C), HoA(M), Tm)}SK(M)

HostPart(HoA(M)) = H(PK(M), i)

Description of the protocol rules

Each mobile node (M) generates a key pair PK(M), SK(M). M then generates
a home address HoA(M) by concatenating the routing prefix of its home
network with a hash of PK(M) and a salt i. HoA(M) serves two purposes.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 8

It is used by the correspondent C as an identifier for M, and it is a routable
network address that can be used to contact a home agent that will forward
messages on to M. The places where M can be attached to the network are also
given identifiers; CoA(M) is the identifier of M’s current network attachment
point. CoA(M) varies over time. M knows (by means outside the protocol)
when CoA(M) changes.

M has a set of correspondents that it wishes to communicate with. The set
of M’s correspondents varies over time.

M runs the protocol with C when any of these events happens:

• CoA(M) changes and C is one of M’s correspondents

• M adds C to its set of correspondents

• C is one of M’s correspondents, and time delta1T (as measured by M’s
local clock) has elapsed since M last ran the protocol with C

Each correspondent C maintains a table mapping home addresses HoA(M)
to care-of addresses CoA(M). This is a partial table — there can be home
addresses HoA(M) that do not have an entry in the table.

When C receives message 1, it will check that the timestamp Tm is within
delta2T of the current time (as measured by C’s local clock); that the home
address satisfies the relation HostPart(HoA(M)) = H(PK(M), i); and that
the signature can be verified with PK(M). If all of these checks pass, C adds
the pair to (HoA(M),CoA(M)) to its table, replacing the previous entry for
HoA(M) if one exists.

If C has not accepted a valid message containing HoA(M) within the last
Delta3T seconds, then it will remove the entry for HoA(M) from its table.

The local clocks of M and C are assumed to be loosely synchronised. That
is, there exists a Delta4T such that the times measured by C and M’s clocks
are within Delta4T of each other. Clocks are assumed to be monotonically
increasing.

Requirements

There is a time interval DeltaT such that if CoA(M) has not changed within
the last DeltaT seconds, and both C and M are following the protocol, then
either C’s table does not contain an entry for HoA(M) or C’s table contains
(HoA(M), CoA(M)).

http://www.lsv.ens-cachan.fr/spore

Security protocols library 9

References

This protocol was described by O’Shea and Roe in Computer Communica-
tions Review [OR01]. A concrete realisation of this protocol is given in the
first version of the Internet draft draft-roe-mobileip-updateauth-00.txt
([RAOA02]); later versions of this document describe a different protocol
that meets additional requirements. The idea of constructing IPv6 addresses
from the hash of a public key was proposed by Christian Huitema [Hui98],
Jeff Schiller and others.

Related protocols have been proposed by Bradner, Mankin and Schiller
[BMS02], Montenegro and Castelluccia [MC02] and Nikander [Nik01, NYW03].

Remark

Authentication of the principal M is not a goal of this protocol. Although C
cannot necessarily distinguish a run of the protocol with M from a run of the
protocol with a different principal, this is not an attack.

If authentication of M is desired, the protocol can be used in conjunction
with an additional protocol that authenticates M.

Runs of the protocol in which M tries to run the protocol with C, but C does
not create a table entry (e.g. because an attacker prevents the message from
reaching C) are also not attacks. It is an assumption of the protocol that the
absence of a table entry for HoA(M) is “fail safe” and does not correspond
to an insecure state. The table entry is used for an optimisation only; if it
is not present, C has an alternative method of proceeding without it.

CCITT X.509 (1)

Author(s): CCITT 1987
Last modified November 22, 2002

Summary: One message protocol from the recommendations of the
CCITT for the CCITT.X.509 standard.

Remark

This protocol presented here is actually a simplified version from [BAN89]
and [AN96].

http://www.lsv.ens-cachan.fr/spore

Security protocols library 10

Protocol specification (in common syntax)

A, B : principal
Na, Nb : nonce
Ta, Tb : timestamp
Ya, Yb : userdata
Xa, Xb : userdata
PK, SK : principal -> key (keypair)

1. A -> B : A, {Ta, Na, B, Xa, {Ya}PK(B)}SK(A)

Description of the protocol rules

The timestamp Ta and nonce Na are not used here.

Xa and Ya are the data transmitted, the privacy of Ya is ensured by its
encryption with the public key of B and the authenticity of Xa and Ya is
ensured by the encryption with the private key of A.

Remark

As explained in [BAN89], in the original protocol specification [CCI87], only
a hash of the data is signed, for efficiency reasons. This means that the
message should be specified by:

1. A -> B : A, Ta, Na, B, Xa, {Ya}PK(B), {h(Ta, Na, B, Xa, {Ya}PK(B))}SK(A)
where h is a one-way function.

Requirements

The protocol must ensure the confidentiality of Ya: if A and B follow the
protocol, then an attacker should not be able to obtain Ya.

The protocol must ensure the recipient B of the message that the data Xa
and Ya originate from A.

References

[CCI87], [BAN89].

Claimed attacks

[AN96]. Failure of the authenticity of Xa and Ya.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 11

i.1. A -> I(B) : A, {Ta, Na, B, Xa, {Ya}PK(B)}SK(A)
ii.1. I -> B : I, {Ta, Na, B, Xa, {Ya}PK(B)}SK(I)

See also

CCITT X.509 (1c), CCITT X.509 (3).

Comment sent by Michael Roe (20/11/2002)

The requirements section should include a confidentiality property: if A and
B follow the protocol, then an attacker should not be able to obtain Ya.

Note of the moderator: this property has been added above, following the
comment.

Comment sent by Michael Roe (20/11/2002)

In this protocol, private keys are used for different two operations: digital
signature and message decryption. The processing done with the key is
not the same in the two cases, and the difference can matter in protocol
verification. The notation ought to distinguish the two operations

CCITT X.509 (1c)

Author(s): M. Abadi and R Needham 1996
Last modified November 11, 2002

Summary: Correction of the CCITT X.509 (1) one message protocol.

Protocol specification (in common syntax)

A, B : principal
Na, Nb : nonce
Ta, Tb : timestamp
Ya, Yb : userdata
Xa, Xb : userdata
PK, SK : principal -> key (keypair)
h : userdata -> userdata (one-way)

1. A -> B : A, {Ta, Na, B, Xa, {Ya, {h(Ya)}SK(A)}PK(B)}SK(A)

http://www.lsv.ens-cachan.fr/spore

Security protocols library 12

Description of the protocol rules

See CCITT X.509 (1). The solution proposed in [AN96] to correct the
authentication flaw in the CCITT X.509 (1) one message protocol is to sign
the secret data Ya before it is encrypted.

Requirements

The protocol must ensure the recipient B of the message that the data Xa
and Ya originate from A.

References

[AN96], [CCI87].

See also

CCITT X.509 (1), CCITT X.509 (3).

CCITT X.509 (3)

Author(s): CCITT 1987
Last modified November 22, 2002

Summary: Three messages protocol in the recommendations of the
CCITT for the CCITT.X.509 standard.

Remark

This protocol presented here is actually a simplified version from [BAN89]
and [AN96].

Protocol specification (in common syntax)

A, B : principal
Na, Nb : nonce
Ta, Tb : timestamp
Ya, Yb : userdata
Xa, Xb : userdata
PK, SK : principal -> key (keypair)

http://www.lsv.ens-cachan.fr/spore

Security protocols library 13

1. A -> B : A, {Ta, Na, B, Xa, {Ya}PK(B)}SK(A)
2. B -> A : B, {Tb, Nb, A, Na, Xb, {Yb}PK(A)}SK(B)
3. A -> B : A, {Nb}SK(A)

Description of the protocol rules

See CCITT X.509 (1).

Remark

As in the case of CCITT X.509 (1), in the original protocol specification
[CCI87], only a hash of the data is signed, for efficiency reasons. Hence the
messages specification ought to be:

1. A -> B : A, Ta, Na, B, Xa, {Ya}PK(B), {h(Ta, Na, B, Xa, {Ya}PK(B))}SK(A)
2. B -> A : B, Tb, Nb, A, Na, Xb, {Yb}PK(A), {h(B, Tb, Nb, A, Na, Xb, {Yb}PK(A))}SK(B)
3. A -> B : A, {Nb}SK(A)

where h is a one-way function.

Requirements

The protocol must ensure the confidentiality of Ya and Yb: if A and B follow
the protocol, then an attacker should not be able to obtain Ya or Yb.

The protocol must ensure the recipient B of the message 1 that the data Xa
and Ya originate from A.

The protocol must ensure the recipient A of the message 2 that the data Xb
and Yb originate from B.

References

[BAN89], [CCI87].

Claimed attacks

1. This parallel session attack presented in [BAN89] works if B does not
check the timestamp Ta in the first message.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 14

i.1. A -> I(B) : A, {Ta, Na, B, Xa, {Ya}PK(B)}SK(A)
i.1. I(A) -> B : A, {Ta, Na, B, Xa, {Ya}PK(B)}SK(A)
i.2. B -> I(A) : B, {Tb, Nb, A, Na, Xb, {Yb}PK(A)}SK(B)
ii.1. A -> I : A, {Ta’, Na’, C, Xa’, {Ya’}PK(I)}SK(A)
ii.2. I -> A : I, {Ti, Nb, A, N’a,Xi, {Yi}PK(A)}SK(I)
ii.3. A -> I : A, {Nb}SK(A)
ii.3. I(A) -> B : A, {Nb}SK(A)

2. Another attack can be found in [lM90].

See also

CCITT X.509 (1), CCITT X.509 (1c), BAN modified version of CCITT
X.509 (3).

BAN modified version of CCITT X.509 (3)

Author(s): Michael Burrows and Martin Abadi and Roger Needham 1989
Last modified January 16, 2003

Summary: Modified version of the three messages protocol in the recom-
mendations of the CCITT for the CCITT.X.509 standard (CCITT X.509
(3)).

Protocol specification (in common syntax)

A, B : principal
Na, Nb : nonce
Ya, Yb : userdata
Xa, Xb : userdata
PK, SK : principal -> key (keypair)

1. A -> B : A, {Na, B, Xa, {Ya}PK(B)}SK(A)
2. B -> A : B, {Nb, A, Na, Xb, {Yb}PK(A)}SK(B)
3. A -> B : A, {B, Nb}SK(A)

Description of the protocol rules

Compared to CCITT X.509 (3), the identity of B has been added to the sig-
nature in message 3. This prevents the [BAN89] attack on the CCITT X.509

http://www.lsv.ens-cachan.fr/spore

Security protocols library 15

(3) protocol, which can occur when B does not check the timestamps. With
this modification, the timestamps become redundant and can be removed.

Requirements

See CCITT X.509 (3).

References

[BAN89].

See also

CCITT X.509 (1), CCITT X.509 (1c), CCITT X.509 (3).

Denning-Sacco shared key

Author(s): Dorothy E. Denning and Giovanni Maria Sacco 1981
Last modified November 12, 2002

Summary: Modified version of the Needham Schroeder Symmetric Key
with timestamps to fix the freshness flaw. Distribution of a shared sym-
metric key by a trusted server and mutual authentification. Symmetric key
cryptography with server and timestamps.

Protocol specification (in common syntax)

A, B, S : principal
Kas, Kbs, Kab : key
T : timestamp

1. A -> S : A, B
2. S -> A : {B, Kab, T, {Kab, A, T}Kbs}Kas
3. A -> B : {Kab,A, T}Kbs

Description of the protocol rules

The nonces of Needham Schroeder Symmetric Key (for mutual authentica-
tion of A and B) have been replaced by a timestamp T.

The shared symmetric key established by the protocol is Kab.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 16

Requirements

See Needham Schroeder Symmetric Key.

References

[DS81]

Claimed attacks

This protocol is subject to a mutiplicity attack [Low97].

i.1. A -> S : A, B
i.2. S -> A : {B, Kab, T, {Kab, A, T}Kbs}Kas
i.3. A -> B : {Kab,A, T}Kbs
ii.3. I(A) -> B : {Kab,A, T}Kbs

In ses-

sion ii, B thinks that A wants to establish a new shared key and accepts
it.

See also

Lowe modified Denning-Sacco shared key, Needham Schroeder Symmetric
Key.

Lowe modified Denning-Sacco shared key

Author(s): Gavin Lowe 1997
Last modified November 12, 2002

Summary: Modified version of the Denning-Sacco shared key protocol
to correct a freshness flaw. Distribution of a shared symmetric key by a
trusted server and mutual authentification. Symmetric key cryptography
with server and timestamps.

Protocol specification (in common syntax)

A, B, S : principal
Nb : nonce
Kas, Kbs, Kab : key
T : timestamp
dec : nonce -> nonce

http://www.lsv.ens-cachan.fr/spore

Security protocols library 17

1. A -> S : A, B
2. S -> A : {B, Kab, T, {Kab, A, T}Kbs}Kas
3. A -> B : {Kab,A, T}Kbs
4. B -> A : {Nb}Kab
5. A -> B : {dec(Nb)}Kab

Description of the protocol rules

This version add a nonce handshake (messages 4, 5) at the end of Denning-
Sacco shared key to prevent the attack from [Low97].

Requirements

See Needham Schroeder Symmetric Key.

References

[Low97]

See also

Needham Schroeder Symmetric Key, Denning-Sacco shared key.

Diffie Helman

Author(s): W. Diffie and M. Helman 1978
Last modified November 11, 2002

Summary: The Diffie Helman key exchange algorithm.

Protocol specification (in common syntax)

A, B : principal
P, G, Xa, Xb : number
one : -> number
kap : number, number, number -> number

1. A -> B : P, G
2. A -> B : kap(P, G, Xa)
3. B -> A : kap(P, G, Xb)
4. A -> B : {one()}kap(P, kap(P, G, Xb), Xa)

http://www.lsv.ens-cachan.fr/spore

Security protocols library 18

Description of the protocol rules

The function kap must satisfy:

kap(P, kap(P, G, Y), X) = kap(P, kap(P, G, X), Y)

It is implemented by: kap(P, X, Y) = exp(X, Y) mod P.

It the protocol, P is choosen to be a prime number P and G < P.

The fresh symmetric key exchanged is kap(P,kap(P,G,Xb),Xa) = kap(P,kap(P,G,Xa),Xb).

Requirements

The protocol must guaranty the secrecy of the fresh key.

The protocol must guaranty the authenticity of the participants.

References

[DH76]

Claimed proofs

[Bla01]

Claimed attacks

The authenticity is not guaranteed by the protocol.

1. I(A) -> B : P, G
2. I(A) -> B : kap(P, G, Xi)
3. B -> I(A) : kap(P, G, Xb)
4. I(A) -> B : {one()}kap(P, kap(P, G, Xb), Xi)

or

1. A -> I(B) : P, G
2. A -> I(B) : kap(P, G, Xa)
3. I(B) -> A : kap(P, G, Xi)
4. A -> I(B) : {one()}kap(P, kap(P, G, Xi), Xa)

GJM

Author(s): Juan A. Garay, Markus Jakobson, Philip MacKenzie 1999

http://www.lsv.ens-cachan.fr/spore

Security protocols library 19

Submitted by Alexandre Boisseau October 30, 2002

Summary: The goal of this protocol is to achieve distributed contract
signing in an abuse-free way, that is no party ever can prove to a third
party that he is able of determining the issue of the exchange (validate or
invalidate the contract). To achieve this goal, a special construction called
private contract signature is introduced. Such a private contract signature
has the particular property that it is meaningful only for a given trusted
third party. Moreover, this protocol is optimistic in the sense that the
trusted third party is required only in case of problem.

Protocol specification (in common syntax)

A,B,T : principal
C : msg
PCS : (principal,msg,principal,principal):msg
S-SIG : (principal,msg):msg
TP-SIG : (principal,msg):msg
resolved,aborted : bool
abort : msg

Exchange-1. A -> B : PCS(A,C,B,T)
Exchange-2. B -> A : PCS(B,C,A,T)
Exchange-3. A -> B : S-SIG(A,C)
Exchange-4. B -> A : S-SIG(B,C)
Abort-1. A -> T : S-SIG(A,[C,A,B,abort])
Abort-2. T -> A : if (resolved) then S-SIG(B,C) else S-SIG(T,S-SIG(A,[C,A,B,abort]))
Resolve-A-1. A -> T : [PCS(B,C,A,T),S-SIG(A,C)]
Resolve-A-2. T -> A : if (aborted) then S-SIG(T,S-SIG(A,[C,A,B,abort])) else if (resolved) S-SIG(B,C) else TP-SIG(B,C)
Resolve-B-1. B -> T : [PCS(A,C,B,T),S-SIG(B,C)]
Resolve-B-2. T -> B : if (aborted) then S-SIG(T,S-SIG(A,[C,A,B,abort])) else if (resolved) S-SIG(A,C) else TP-SIG(A,C)

Description of the protocol rules

About cryptographic primitives involved :

• S-SIG(X,M) denotes standard signature of contractual text M by prin-
cipal A,

• PCS(A,M,B,T) denotes private contract signature of contractual text M
by A inside a session involving participant B and TTP T. It is assumed
that such a construction has the following properties:

http://www.lsv.ens-cachan.fr/spore

Security protocols library 20

– a “fake-version” of PCS(A,M,B,T) can be computed by B, identi-
cal to the true one from the point of view of an external observer
O (distinct from A, B and T),

– PCS(A,M,B,T) can be converted by T into a “TTP-signature”, de-
noted TTP-SIG(A,M) and identical to S-SIG(A,M) from the point
of view of an external observer.

About the execution of the protocol:

• when no problem appears between A and B, the Exchange subprotocol
is able to complete contract distribution,

• after sending the first message, if A does not receive any response from
B, she can run the Abort subprotocol,

• after sending the second message, if B does not receive any response
from A, she can run the Resolve-B subprotocol,

• after sending the third message, if A does not receive any response
from B, she can run the Resolve-A subprotocol.

Requirements

This protocol was designed in order to satisfy the following properties:

• completeness: an adversary (submitted to some restrictions) cannot
prevent two honest participants from obtaining a valid signature on a
contractual text,

• fairness: it is impossible for a corrupted participant to obtain a valid
contract without allowing the remaining participant to do the same.
Moreover, once an honest participant has obtained an abort confirma-
tion from the TTP, it is impossible for any other participant to obtain
a valid contract. Finally, every honest participant is able to complete
the protocol.

• abuse-freeness: it is impossible for a (possible corrupted) participant,
at any point of the protocol, to be able to prove to an external ob-
server that he has the power to determine the outcome of the protocol
(validate or invalidate the contract).

References

[GJM99]

http://www.lsv.ens-cachan.fr/spore

Security protocols library 21

Claimed proofs

[SM01] [KR02] [CKS01]

Claimed attacks

[SM01]

Gong

Author(s): Li Gong 1989
Last modified February 6, 2003

Summary: Mutual authentication protocol of two principals with a
trusted server, and exchange of a new symmetric key. Uses one-way func-
tions and no encryption.

Protocol specification (in common syntax)

A, B, S : principal
Na, Nb, Ns : number
Pa, Pb : number
K, Ha, Hb : number
f1 : number, number, number, number -> number
f2 : number, number, number, number -> number
f3 : number, number, number, number -> number
g : number, number, number, number -> number
xor : number,number -> number

alias K = f1(Ns,Na,B,Pa)
alias Ha = f2(Ns,Na,B,Pa)
alias Hb = f3(Ns,Na,B,Pa)

1. A -> B : A, B, Na
2. B -> S : A, B, Na, Nb
3. S -> B : Ns, xor(f1(Ns, Nb, A, Pb), K),

xor(f2(Ns, Nb, A, Pb), Ha),
xor(f3(Ns, Nb, A, Pb), Hb),
g(K, Ha, Hb, Pb)

4. B -> A : Ns, Hb
5. A -> B : Ha

http://www.lsv.ens-cachan.fr/spore

Security protocols library 22

Description of the protocol rules

f1, f2, f3, and g are one-way functions.

Initially, the principal A (resp. B) shares the long-term secret Pa (resp. Pb)
with the server S.

Na, Nb and Ns are nonces and Ha, Hb and K are just aliases for resp. f2(Ns,Na,B,Pa),
f3(Ns,Na,B,Pa), and f1(Ns,Na,B,Pa).

We assume commutativity and associativity for the xor operator,

xor(x, y) = xor(y, x)
xor(x, xor(y, z)) = xor(xor(x, y), z)

as well as the xor axioms:

xor(x, 0) = x
xor(x, x) = 0

Hence, the principal B can extract Ha, Hb and K from the message 3, and
check them using the checksum g(K, Ha, Hb, Pb).

Knowing Pa, the principal A can construct Ha, Hb and K once he has received
Ns in message 4, he can check the check value for Hb he has just computed
against the one sent by B in message 4 and send the last message.

Requirements

The protocol must guaranty the secrecy of K: in every session, the value of
K must be known only by the participants playing the roles of A, B and S in
that session.

The protocol must also ensure mutual authentication of A and B.

References

[Gon89]

Kao Chow Authentication v.1

Author(s): I Long Kao and Randy Chow 1995
Last modified November 11, 2002

http://www.lsv.ens-cachan.fr/spore

Security protocols library 23

Summary: Key distribution and authentication protocol. Symmetric keys
cryptography with server.

Protocol specification (in common syntax)

A, B, S : principal
Na, Nb : number
Kab, Kbs, Kas : key

1. A -> S : A, B, Na
2. S -> B : {A, B, Na, Kab}Kas, {A, B, Na, Kab}Kbs
3. B -> A : {A, B, Na, Kab}Kas, {Na}Kab, Nb
4. A -> B : {Nb}Kab

Description of the protocol rules

Kas and Kbs are symmetric keys whose values are initially known only by A
and S, respectively B and S.

Na and Nb are nonces for mutual authentication and to verify the authenticity
of the fresh symmetric key Kab.

The messages 3 and 4 are repeated authentication: after that messages 1
and 2 have completed successfully, 3 and 4 can be played several times by B
before starting a secrete communication with A encrypted with the session
key kab (see also Neumann Stubblebine for repeated authentication).

Remark

This protocol has been designed to prevent the freshness attack on the re-
peated authentication part of the Neumann Stubblebine protocol. Indeed,
the nonce Na in the ciphers of message 2 prevent a shared key compromised
after another run of the protocol to be reused.

However, as shown below, an attack of this kind is still possible. This flaw
is fixed in Kao Chow Authentication v.2.

Requirements

The protocol must guaranty the secrecy of Kab: in every session, the value
of Kab must be known only by the participants playing the roles of A, B and
S.

When A, resp. B, receives the key Kab in message 3, resp. 2, this key must

http://www.lsv.ens-cachan.fr/spore

Security protocols library 24

have been issued in the same session by the server S with whom A has started
to communicate in message 1.

The protocol must also ensures mutual authentication of A and B.

References

[KC95]. The protocol is presented as specified in [CJ97].

Claimed attacks

As described in [KC95], this protocol suffers the same kind of attack as
the Denning Sacco freshness attack on Needham Schroeder Symmetric Key,
when an older session symmetric key Kab has been compromised.

i.1. A -> S : A, B, Na
i.2. S -> B : {A, B, Na, Kab}Kas, {A, B, Na, Kab}Kbs

assume that Kab is compromised
ii.1. Omitted
ii.2. I(S) -> B : {A, B, Na, Kab}Kas, {A, B, Na, Kab}Kbs
ii.3. B -> I(A) : {A, B, Na, Kab}Kas, {Na}Kab, N’b
ii.4. I(A) -> B : {N’b}Kab

See also

Kao Chow Authentication v.2, Kao Chow Authentication v.3, Needham
Schroeder Symmetric Key, Neumann Stubblebine.

Kao Chow Authentication v.2

Author(s): I Long Kao and Randy Chow 1995
Last modified November 11, 2002

Summary: Key distribution and authentication protocol. Symmetric keys
cryptography with server.

Remark

This protocol is a correction of Kao Chow Authentication v.1 to prevent a
freshness attack à la Denning Sacco attack (see Needham Schroeder Sym-
metric Key).

http://www.lsv.ens-cachan.fr/spore

Security protocols library 25

Protocol specification (in common syntax)

A, B, S : principal
Na, Nb : number
Kab, Kbs, Kas : key

1. A -> S : A, B, Na
2. S -> B : {A, B, Na, Kab, Kt}Kas, {A, B, Na, Kab, Kt}Kbs
3. B -> A : B, {A, B, Na, Kab, Kt}Kas, {Na, Kab}Kt, Nb
4. A -> B : {Nb, Kab}Kt

Description of the protocol rules

See Kao Chow Authentication v.1. Kt is an additional fresh symmetric key
whose purpose is to prevent a freshness attack as in Kao Chow Authentica-
tion v.1.

Requirements

See Kao Chow Authentication v.1.

References

[KC95].

This specification of the protocol differs from the one in [CJ97].

Claimed proofs

[KC95]

See also

Kao Chow Authentication v.1, Kao Chow Authentication v.3, Needham
Schroeder Symmetric Key, Neumann Stubblebine.

Kao Chow Authentication v.3

Author(s): I Long Kao and Randy Chow 1995
Last modified November 11, 2002

http://www.lsv.ens-cachan.fr/spore

Security protocols library 26

Summary: Key distribution and authentication protocol. Symmetric keys
cryptography with server.

Remark

This protocol is an extension of Kao Chow Authentication v.2 to encompass
tickets.

Protocol specification (in common syntax)

A, B, S : principal
Na, Nb : number
Kab, Kbs, Kas : key

1. A -> S : A, B, Na
2. S -> B : {A, B, Na, Kab, Kt}Kas, {A, B, Na, Kab, Kt}Kbs
3. B -> A : {A, B, Na, Kab, Kt}Kas, {Na, Kab}Kt, Nb, {A, B, Ta, Kab}Kbs
4. A -> B : {Nb, Kab}Kt, {A, B, Ta, Kab}Kbs

Description of the protocol rules

In message 3, B generates a new ticket {A, B, Ta, Kab}Kbs containing Kab
and a timestamp Ta.

Requirements

See Kao Chow Authentication v.1.

References

[KC95].

See also

Kao Chow Authentication v.1, Kao Chow Authentication v.2, Needham
Schroeder Symmetric Key, Neumann Stubblebine.

Kerberos V5

Author(s): B. Clifford Neuman and Theodore Ts’o 1994

http://www.lsv.ens-cachan.fr/spore

Security protocols library 27

Last modified November 7, 2002

Summary: Distribution of a symmetric key (in a ticket), for communica-
tion between a client and a server, with authentication.

Remark

This protocol is based on based on the Needham Schroeder Symmetric Key
protocol and uses timestamps and nonces to correct the flaw of Denning
Sacco.

Protocol specification (in common syntax)

A, G, C, S, U : principal
N1, N2 : nonce
L1, L2 : nonce
T1start, T1expire : timestamp
T2start, T2expire : timestamp
Kcg, Kcs, Kag, Ku, Kgs : key

1. C -> A : U, G, L1, N1
2. A -> C : U, {U, C, G, Kcg, T1start, T1expire}Kag,

{G, Kcg, T1start, T1expire}Ku
3. C -> G : S, L2, N2, {U, C, G, Kcg, T1start, T1expire}Kag,

{C, T1}Kcg
4. G -> C : U, {U, C, S, Kcs, T2start, T2expire}Kgs,

{S, Kcs, T2start, T2expire, N2}Kcg
5. C -> S : {U, C, S, Kcs, T2start, T2expire}Kgs,

{C, T2}Kcs
6. S -> C : {T2}Kcs

Description of the protocol rules

C is a client,

S is a a server (C wants to communicate with S),

U is a user on behalf of which A and S communicate,

G is a ticket granting server,

A is a key distribution center (trusted server).

http://www.lsv.ens-cachan.fr/spore

Security protocols library 28

The keys Kag and Kgs are long term symmetric key whose values are sup-
posed to be known initially only by, A and G, respectively G and S.

L1 and L2 are lifetimes, N1 and N2 are nonces. T1start, T1expire, T2start,
T2expire are time stamps which define the interval of validity of the ticket
in which they are contained.

U is a user on behalf of whom the client C communicates. In particular, C
initially knows the value of the key Ku.

The key Kcg is freshly generated by A for communication between C and G,
and in transmitted to C in message 2, encrypted by Ku, and indirectly to G,
in the ticket {U, C, G, Kcg, T1start, T1expire}Kag which C transmits
blindly to G in message 3.

The authentificator {C, T1}Kcg is used by G to check timeliness of the ticket.

The key Kcs is freshly generated by G for communication between C and G,
and in transmitted to C in message 4, encrypted by Kcg, and indirectly to S,
in the ticket {U, C, S, Kcs, T2start, T2expire}Kgs which C transmits
blindly to S in message 5.

Requirements

The protocol must guaranty the secrecy of Kcs: in every session, the value
of K must be known only by the participants playing the roles of A, B and S
in that session.

A and C must agree on the values of T1start and T1expire.

G and C must agree on the values of T2start and T2expire and T1.

C and S must agree on the value of T2.

References

[NT94]

Claimed proofs

• [NT94]

• [BAN89]

• [SMB90] modelization with Abstract State Machines (stepwise refine-
ments), and (manual) proof of correctness.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 29

See also

Needham Schroeder Symmetric Key

KSL

Author(s): Axel Kehne and Jürgen Schönwälder and Horst Langendörfer
1992
Last modified December 2, 2002

Summary: Nonce based improvement of Kerberos V5 protocol with gen-
eralized timestamps. Distribution of a session key and a ticket and repeated
mutual authentication. Symmetric key cryptography with server.

Protocol specification (in common syntax)

A, B, S : principal
Na, Nb, Nc, Ma, Mb : number
Kas, Kbs, Kab, Kbb : key
Tb : generalizedTimestamp

1. A -> B : Na, A
2. B -> S : Na, A, Nb, B
3. S -> B : {Nb, A, Kab}Kbs, {Na, B, Kab}Kas
4. B -> A : {Na, B, Kab}Kas, {Tb, A, Kab}Kbb, Nc, {Na}Kab
5. A -> B : {Nc}Kab

6. A -> B : Ma, {Tb, A, Kab}Kbb
7. B -> A : Mb, {Ma}Kab
8. A -> B : {Mb}Kab

Description of the protocol rules

The messages 1-5 are the part concerning the generation and exchange of the
session key Kab. The messages 6-8 are for mutual authentification. This
second part of the protocol is also called repeated authentication because
it can be repeated alone several times, until the ticket {Tb, A, Kab}Kbb
expires.

Key exchange. The keys Kas and Kbs are long term symmetric key whose
values are supposed to be known initially only by A and S, respectively B

http://www.lsv.ens-cachan.fr/spore

Security protocols library 30

and S.

The session key Kab is freshly generated by S and in sent in message 3 directly
to B, and indirectly to A, in the cipher {Na, B, Kab}Kas, transmitted blindly
to A by B in message 4.

Kbb is a secret key only known to B, used to encrypt the ticket {Tb, A,
Kab}Kbb in message 4. This ticket will be used in the repeated authentica-
tion.

Repeated authentication. In the ticket {Tb, A, Kab}Kbb, Tb is a gen-
eralized timestamp, made of a timestamp from the local clock of B, a lifetime
limiting the validity of the ticket (relatively to the local clock of B) and a
clock identifier, i.e. a nonce which is updated each time B’s local clock is
corrected.

When he receives a ticket in message 6, B compares the time identifier in
Tb to the current identifier of his local clock and if they match, verifies the
validity of the ticket, i.e. he checks that the time of his local clock is within
the time window defines by the timestamp and the lifetime of Tb. If one of
these tests fails, then B rejects the ticket. Otherwise, he starts an exchange
of nonces (messages 7 and 8) the purpose of which is to convince mutually
A and B that they both possess the session key Kab.

Requirements

The protocol must guaranty the secrecy of Kab: in every session, the value
of Kab must be known only by the participants playing the roles of A, B and
S in that session.

The protocol must also ensures mutual authentication of A and B.

References

[KSL92]

Claimed proofs

The authors of the protocol propose in [KSL92] an analysis in the framework
of the BAN logic [BAN89].

http://www.lsv.ens-cachan.fr/spore

Security protocols library 31

Claimed attacks

1. [Low96]: “The repeated authentification part can be used as an en-
crypting oracle”. If the intruder I wants to encrypt some data M with the
session key Kab, he can run:

6. I(A) -> B : M, {Tb, A, Kab}Kbb
7. B -> I(A) : Mb, {M}Kab The ticket {Tb, A,

Kab}Kbb can have been learned by I from the message 4 of a previous key
distribution. After running the two above message, I can send:

I(A) -> B : {M}Kab and B will accept this message as having
been sent by A.

2. The attacks presented in [HLL+95] on the repeated authentication part
of the neumannStubblebine protocol also works here.

This attack concerns the repeated authentication part, assuming Kab has
been recorded in a previous legitimate run of the protocol.

i.6. I(A) -> B : Mi, { Tb, A, Kab}Kbb
i.7. B -> I(A) : Mb, {Mi}Kab
ii.6. I(A) -> B : Mb, {Tb, A, Kab}Kbb
ii.7. B -> I(A) : Mb’, {Mb}Kab
i.8. I(A) -> B : {Mb}Kab

3. [Low96]. In this scenario, two tickets generated by two different agents
contains the same session key Kab, which, according to [Low96], was sup-
posed not to happen in the protocol of [KSL92].

i.1. I(A) -> B : Ni, A
i.2. B -> I(S) : Ni, A, Nb, B
ii.1. I(B) -> A : Nb, B
ii.2. A -> S : Nb, B, Na, A
ii.3. S -> A : {Na, B, Kab}Kas, {Nb, A, Kab}Kbs
ii.4. A -> I(B) : {Nb, A, Kab}Kbs, {Ta, B, Kab}Kaa, Nc, {Nb}Kab
i.3. I(S) -> B : {Nb, A, Kab}Kbs, {Na, B, Kab}Kas
i.4. B -> I(A) : {Na, B, Kab}Kas, {Tb, A, Kab}Kbb, Nc’, {Ni}Kab

The intruder I can then use the two tickets to complete step 5 of both runs
i and ii. In this scenarion, the repeated authentication procedure is used
as an encrypting oracle.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 32

i.6. I(A) -> B : Nc, {Tb, A, Kab}Kbb
i.7. B -> I(A) : Mb, {Nc}Kab
ii.5. I(B) -> A : {Nc}Kab
ii.6. I(B) -> A : Nc’, {Ta, B, Kab}Kaa
ii.7. A -> I(B) : Ma, {Nc’}Kab
i.5. I(A) -> B : {Nc’}Kab

4. [Low96]. The ticket obtained in the first part of the above scenario
also permits I to impersonate A in the repeated authentification part of the
protocol.

i.6. I(A) -> B : Mi, {Tb, A, Kab}Kbb
i.7. B -> I(A) : Mb, {Mi}Kab
ii.6. I(B) -> A : Mb, {Ta, B, Kab}Kaa
ii.7. A -> I(B) : Ma, {Mb}Kab
i.8. I(A) -> B : {Mb}Kab

See also

Kerberos V5, Neumann Stubblebine, Lowe modified KSL.

Lowe modified KSL

Author(s): Gavin Lowe 1996
Last modified December 2, 2002

Summary: Lowe modified version of the KSL protocol to prevent authen-
tication attacks. Distribution of a session key and a ticket and repeated
mutual authentication. Symmetric key cryptography with server.

Protocol specification (in common syntax)

A, B, S : principal
Na, Nb, Nc, Ma, Mb : number
Kas, Kbs, Kab, Kbb : key
Tb : generalizedTimestamp

http://www.lsv.ens-cachan.fr/spore

Security protocols library 33

1. A -> B : Na, A
2. B -> S : Na, A, Nb, B
3. S -> B : {A, Nb Kab}Kbs, {Na, B, Kab}Kas
4. B -> A : {Na, B, Kab}Kas, {Tb, A, Kab}Kbb, Nc, {B, Na}Kab
5. A -> B : {Nc}Kab

6. A -> B : Ma, {Tb, A, Kab}Kbb
7. B -> A : Mb, {Ma, B}Kab
8. A -> B : {A, Mb}Kab

Description of the protocol rules

See KSL.

The version given above has been devised from the following modifications
to KSL advised in [Low96]:

• “change the message 3 so that the two encrypted components have
different forms” (in order to break symmetry),

• “make the encrypted components in 4, 7 and 8 different”,

• “include either A’s or B’s identity in these last three components”.

Requirements

See KSL.

References

[Low96]

See also

KSL

Neumann Stubblebine

Author(s): B. Clifford Neumann and Stuart G. Stubblebine April 1993
Last modified November 8, 2002

http://www.lsv.ens-cachan.fr/spore

Security protocols library 34

Summary: Session key exchange inspired by the Yahalom protocol with
the addition of timestamps, and mutual authentication. Symmetric key
cryptography with server.

Protocol specification (in common syntax)

A, B, S : principal
Na, Ma, Nb, Mb : number
Kas, Kbs, Kab : key
Ta, Tb : time

1. A -> B : A, Na
2. B -> S : B, {A, Na, Tb}Kbs, Nb
3. S -> A : {B, Na, Kab, Tb}Kas, {A, Kab, Tb}Kbs, Nb
4. A -> B : {A, Kab, Tb}Kbs, {Nb}Kab
5. A -> B : Ma, {A, Kab, Tb}Kbs
6. B -> A : Mb, {Ma}Kab
7. A -> B : {Mb}Kab

Description of the protocol rules

The messages 1-4 are the part concerning the generation and exchange of
the session key Kab. The messages 5-7 are the mutual authentification, this
second part of the protocol can be repeated alone several times, until the
ticket {A, Kab, Tb}Kbs expires (it is called repeated authentication).

Requirements

The protocol must guaranty the secrecy of Kab: in every session, the value
of Kab must be known only by the participants playing the roles of A, B and
S in that session.

The protocol must also ensures mutual authentication of A and B.

References

[NS93]

Claimed attacks

1. From [HLL+95], see also BAN simplified version of Yahalom for the first
4 messages, where B accepts the nonce Na has the fresh shared key Kab.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 35

1. I(A) -> B : A, Na
2. B -> I(S) : B, {A, Na, Tb}Kbs, Nb
3. omitted
4. I(A) -> B : {A, Na, Tb}Kbs, {Nb}Na
5. I(A) -> B : Ma, {A, Na, Tb}Kbs
6. B -> I(A) : Mb, {Ma}Na
7. I(A) -> B : {Mb}Na

See Hwang mod-

ified version of Neumann Stubblebine for a modified version preventing this
attack.

2. From [HLL+95]. This attack concerns the repeated authentication part,
assuming Kab has been recorded in a previous legitimate run of the protocol.

i.5. I(A) -> B : Ma, { A, Kab, Tb }Kbs
i.6. B -> I(A) : Mb, {Ma}Kab
ii.5. I(A) -> B : Mb, {A, Kab, Tb}Kbs
ii.6. B -> I(A) : Mb’, {Mb}Kab
i.7. I(A) -> B : {Mb}Kab

3. From [Wei99]. In this attack, the intruder I can get as many ciphers
{A, Kiab, Tb}Kbs as needed to start a known plaintext attack in order to
break Kbs.
a.2. I(B) -> S : B, {A, K0ab, Tb}Kbs, Nb
a.3. S -> I(A) : {B, Na, K1ab, Tb}Kas, {A, K1ab, Tb}Kbs, Nb
b.2. I(B) -> S : B, {A, K1ab, Tb}Kbs, Nb
b.3. S -> I(A) : {B, Na, K2ab, Tb}Kas, {A, K2ab, Tb}Kbs, Nb

etc

See also

Yahalom

Hwang modified version of Neumann Stubblebine

Author(s): T. Hwang and N.Y. Lee and C.M. Li and M.Y. Ko and Y.H.
Chen 1995
Last modified November 11, 2002

Summary: Modified version of the Neumann Stubblebine protocol, to
correct attack of the repeated authentification part.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 36

Protocol specification (in common syntax)

A, B, S : principal
Na, Ma, Nb, Mb : number
Kas, Kbs, Kab : key
Ta, Tb : time

1. A -> B : A, Na
2. B -> S : B, {A, Na, Tb, Nb}Kbs
3. S -> A : {B, Na, Kab, Tb}Kas, {A, Kab, Tb}Kbs, Nb
4. A -> B : {A, Kab, Tb}Kbs, {Nb}Kab
5. A -> B : Ma, {A, Kab, Tb}Kbs
6. B -> A : Mb, {Mb}Kab
7. A -> B : {Mb}Kab

Description of the protocol rules

See Neumann Stubblebine. The messages 1-4 are the part concerning the
generation and exchange of the session key Kab. The messages 5-7 is the
repeated authentication part.

Requirements

See Neumann Stubblebine.

References

[HLL+95]

Claimed attacks

In [CJ95], Clark and Jacob describe an attack depending on the encryption
method (when cipher block chaining is performed for encryption).

See also

Neumann Stubblebine

http://www.lsv.ens-cachan.fr/spore

Security protocols library 37

Needham-Schroeder Public Key

Author(s): Roger Needham and Michael Schroeder December 1978
Submitted by Ralf Treinen November 4, 2002
Last modified December 9, 2002

Summary: Mutual authentication, using a trusted key server and public
keys.

Protocol specification (in common syntax)

A,B,S : Principal
Na,Nb : Nonce
KPa,KPb,KPs,KSa,KSb,KSs : Key
KPa,KSa : is a key pair
KPb,KSb : is a key pair
KPs,KSs : is a key pair

1. A -> S : A,B
2. S -> A : {KPb, B}KSs
3. A -> B : {Na, A}KPb
4. B -> S : B,A
5. S -> B : {KPa, A}KSs
6. B -> A : {Na, Nb}KPa
7. A -> B : {Nb}KPb

Description of the protocol rules

This protocol has been proposed by [NS78b]. In this protocol description,
KSa (resp. KSb, KSs) is the secret key corresponding to the public key KPa
(resp. KPb, KPs).

Requirements

After completion of the protocol, the two principals A and B should be con-
vinced about the identity of their respective correspondent.

References

[NS78b].

http://www.lsv.ens-cachan.fr/spore

Security protocols library 38

Claimed proofs

Burrows, Abadi and Needham [?] prove the correctness of the protocol in the
sense of their logical framework. However, they point out a possible replay
attack which, according to them, could be avoided by using timestamps.

Claimed attacks

An intruder I may impersonate A, by inciting A to initiate a second session[Low95].
In the following, we ignore the message exchanges with the public key server
and only consider messages between the principals A and B, and the intruder
I. We assume that the intruder I possesses a key pair (KPi, KSi), and we
may also assume that every principal knows the public keys KPa, KPb and
KPi.
i.3. A -> I : {Na,A}KPi
ii.3. I(A) -> B : {Na,A}KPb
ii.6. B -> I(A) : {Na,Nb}KPa
i.6. I -> A : {Na,Nb}KPa
i.7. A -> I : {Nb}KPi
ii.7. I(A) -> B : {Nb}KPb

Remark

It has been proposed to fix the protocol by including the respondent’s iden-
tity in the response [Low95].

See also

Lowe’s fixed version of Needham-Schroder Public Key

Lowe’s fixed version of Needham-Schroder Public
Key

Author(s): Gavin Lowe 1995
Last modified November 6, 2002

Summary: This protocol is an amended version of the Needham-Schroeder
Public Key. Its purpose id mutual authentication, using a trusted keyserver
and public keys.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 39

Protocol specification (in common syntax)

A,B,S : Principal
Na,Nb : Nonce
KPa,KPb,KPs,KSa,KSb,KSs : Key
KPa,KSa : is a key pair
KPb,KSb : is a key pair
KPs,KSs : is a key pair

1. A -> S : A,B
2. S -> A : {KPb, B}KSs
3. A -> B : {Na, A}KPb
4. B -> S : B,A
5. S -> B : {KPa, A}KSs
6. B -> A : {Na, Nb, B}KPa
7. A -> B : {Nb}KPb

Description of the protocol rules

Compared to the original version of the Needham-Schroeder Public Key
protocol, the identity of the responder B has been added in the message 6
to prevent the attack discovered in [Low95].

Requirements

See Needham-Schroeder Public Key.

References

[Low95]

Claimed proofs

It is reported in [Low95] that the technique that permitted to find the Lowe
attack on the Needham-Schroeder Public Key protocol (running FDR on a
CSP presentation of the protocol) found no attack on this protocol.

See also

Needham-Schroeder Public Key

http://www.lsv.ens-cachan.fr/spore

Security protocols library 40

Needham Schroeder Symmetric Key

Author(s): Roger Needham and Michael Schroeder 1978
Last modified November 8, 2002

Summary: Distribution of a shared symmetric key by a trusted server
and mutual authentification. Symmetric key cryptography with server.

Protocol specification (in common syntax)

A, B, S : principal
Na, Nb : nonce
Kas, Kbs, Kab : key
dec : nonce -> nonce

1. A -> S : A, B, Na
2. S -> A : {Na, B, Kab, {Kab, A}Kbs}Kas
3. A -> B : {Kab,A}Kbs
4. B -> A : {Nb}Kab
5. A -> B : {dec(Nb)}Kab

Description of the protocol rules

This protocol establishes the fresh shared symmetric key Kab.

Messages 1-3 perform the distribution of the fresh shared symmetric key
Kab and messages 4-5 are for mutual authentification of A and B.

The operator dec is decrementation.

Requirements

The protocol must guaranty the secrecy of Kab: in every session, the value
of Kab must be known only by the participants playing the roles of A, B and
S in that session.

If the participant playing B accepts the last message 5, then Kab has been
sent in message 3. by A (whose identity is included in the cipher of message
3).

References

[NS78a].

http://www.lsv.ens-cachan.fr/spore

Security protocols library 41

Claimed attacks

Authentication attack by Denning and Sacco [DS81]. Assume that I has
recorded the session i and that Kab is compromised. After the session ii,
B is convinced that he shares the secret key Kab only with A.

i.1. A -> S : A, B, Na
i.2. S -> A : {Na, B, Kab, {Kab, A}Kbs }Kas
i.3. A -> I(B) : {Kab,A}Kbs

assume that Kab is compromised
ii.3. I(A) -> B : {Kab,A}Kbs
ii.4. B -> I(A) : {Nb}Kab
ii.5. I(A) -> B : {dec(Nb)}Kab

See also

Amended Needham Schroeder Symmetric Key, Denning-Sacco shared key,
Kerberos V5.

Amended Needham Schroeder Symmetric Key

Author(s): Roger Needham and Michael Schroeder January 1987
Last modified November 8, 2002

Summary: This is an amended version of Needham Schroeder Symmetric
Key, by the same authors. Distribution of a shared symmetric key by a
trusted server and mutual authentification. Symmetric key cryptography
with server.

Protocol specification (in common syntax)

A, B, S : principal
Na, Nb : number
Kas, Kbs, Kab : key
dec : number -> number

1. A -> B : A
2. B -> A : {A, Nb}Kbs
3. A -> S : A, B, Na, {A, Nb}Kbs
4. S -> A : {Na, B, Kab, {Kab, Nb, A}Kbs}Kas
5. A -> B : {Kab, Nb, A}Kbs
6. B -> A : {Nb}Kab
7. A -> B : {dec(Nb)}Kab

http://www.lsv.ens-cachan.fr/spore

Security protocols library 42

Description of the protocol rules

See Needham Schroeder Symmetric Key. The extra exchange of the nonce Nb
prevents the Denning Sacco freshness attack described in Needham Schroeder
Symmetric Key.

Requirements

See Needham Schroeder Symmetric Key.

References

[NS87].

See also

Needham Schroeder Symmetric Key, Kerberos V5.

Otway Rees

Author(s): D. Otway and O. Rees January 1997
Last modified November 12, 2002

Summary: Distribution of a shared symmetric key by a trusted server.
Symmetric key cryptography with server.

Protocol specification (in common syntax)

A, B, S : principal
M, Na, Nb : nonce
Kas, Kbs, Kab : key

1. A -> B : M, A, B, {Na, M, A, B}Kas
2. B -> S : M, A, B, {Na, M, A, B}Kas , {Nb, M, A, B}Kbs
3. S -> B : M, {Na, Kab}Kas, {Nb, Kab}Kbs
4. B -> A : M, {Na, Kab}Kas

Description of the protocol rules

The nonce M identifies the session number.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 43

Kas and Kbs are symmetric keys whose values are initially known only by A
and S, respectively B and S.

Kab is a fresh symmetric key generated by S in message 3 and distributed to
B, directly in message 3, and to A, indirectly, when B forwards blindly {Na,
Kab}Kas to A in message 4.

Requirements

The protocol must guaranty the secrecy of Kab: in every session, the value
of Kab must be known only by the participants playing the roles of A, B and
S.

When A, resp. B, receives the key Kab in message 3, resp. 2, this key must
have been issued in the same session by the server S with whom B has started
to communicate in message 2.

References

[OR87]

Claimed attacks

Type flaw in [CJ97], where A will accept in last message 4 the triple (M, A,
B) as a fresh key Kab.

1. A -> I(B) : M, A, B, {Na, M, A, B}Kas
2. B -> S : M, A, B, {Na, M, A, B}Kas , {Nb, M, A, B}Kbs
3. S -> B : M, {Na, Kab}Kas, {Nb, Kab}Kbs
4. I(B) -> A : M, {Na, M, A, B}Kas

Schnorr’s Protocol

Author(s): C. P. Schnorr 1991

Summary: The Schnorr protocol is described by R. Cramer, I. Damg̊ard
and B. Schoenmakers in [CDS94].

http://www.lsv.ens-cachan.fr/spore

Security protocols library 44

Protocol specification (in common syntax)

A, B : principal
Na, Nb : fresh number
Sa : private key
Pa = exp(g,Sa) : public key

A chooses Na and computes a = exp(g,Na)

1. A -> B : a

B chooses Nb

2. B -> A : Nb

A computes r = Na + Nb × Sa

3. A -> B : r

B checks that exp(g, r) = a × exp(Pa,Nb)

Description of the protocol rules

A zero-knowledge protocol is designed for convincing the verifier of the va-
lidity of a given statement, without releasing any knowledge beyond the
validity of the statement. This concept was introduced in [GMR85]. An
overview can be found in [Gol01]. We present the Schnorr protocol which is
described by R. Cramer, I. Damg̊ard and B. Schoenmakers in [CDS94] and
which uses this method.

The +, × and exp symbols denote respectively addition, multiplication and
modular exponentiation.

Details of the computation done by B at the last step of the protocol:

a × exp(Pa,Nb)
= exp(g,Na) × exp(exp(g,Sa),Nb)
= exp(g,Na) × exp(g,Sa × Nb)
= exp(g,Na + Sa × Nb)
= exp(g, r)

Requirements

A wants to prove his identity to B by showing him that he knows Sa without
revealing it.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 45

References

[CDS94]

Shamir-Rivest-Adleman Three Pass Protocol

Author(s): A. Shamir, R. Rivest, L. Adleman

Summary: The following protocol, described in [CJ97], allows two prin-
cipals to exchange a secret message without sharing any initial secret.

Protocol specification (in common syntax)

A, B : principal
Ka, Kb : symkey
M : fresh number

1. A -> B : {M}Ka
2. B -> A : {{M}Ka}Kb
3. A -> B : {M}Kb

Description of the protocol rules

This protocol assumes that encryption is commutative, i.e.

{{x}y}z = {{x}z}y.

The initiator A encrypts his message M by his secret key Ka, then B encrypts
the message he received by his secret key Kb. Since {{M}Ka}Kb = {{M}Kb}Ka,
the agent A can decr ypt it and send {M}Kb to B. Then, using Kb, B can
retrieve M.

SK3

Author(s): Victor Shoup and Avi D. Rubin 1996
Last modified February 11, 2003

Summary: Symmetric key distribution using Smart Cards, by Shoup and
Rubin.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 46

Protocol specification (in common syntax)

A, B, S, Ca, Cb : principal
Ka, Kb : symkey
Kac, Kbc : symkey
Na, Nb : nonce
0,1,2 : number
alias Kab = {A, 0}Kb
alias Pab = Kab + {B, 1}Ka

1. A -> S : A, B
2. S -> A : Pab, {Pab, B, 2}Ka
3. A -> Ca : A
4. Ca -> A : Na, {Na, 1, 1}Kac
5. A -> B : A, Na
6. B -> Cb : A, Na
7. Cb -> B : Nb, {Nb, 0, 0}Kab, {Na, Nb, 1}Kab, {Nb, 0, 1}Kab
8. B -> A : Nb, {Na, Nb, 1}Kab
9. A -> Ca : B, Na, Nb, Pab, {Pab, B, 2}Ka, {Na, Nb, 1}Kab, {Nb, 0, 1}Kab
10. Ca -> A : {Nb, 0, 0}Kab, {Nb, 0, 1}Kab
11. A -> B : {Nb, 0, 1}Kab

Description of the protocol rules

• the operator {M}K denotes DES encryption.

• the operator + is xor.

• the principal Ca (resp. Cb is a smart card connected to A (resp. B) and
used to store its long term keys.

• NB: the connection between A and Ca (resp. B and Cb) is assumed to
be secure (i.e. no intruder has the capability to listen to this connec-
tion).

• Ka (resp. Kb) is a long term (symmetric) keys associated to the prin-
cipal A (resp. B). It is assumed to be known initially only by Ca (resp.
Cb) and the server S.

• Kac (resp. Kbc) is a secret symmetric key share (and initially only
known by) A and Ca (resp. B and Cb).

• 0, 1, 2 are arbitrary padding constants, known to every principal.

1,2 A requires and obtains from the server S the pair key Pab associed to
A and B. {Pab, B, 2}Ka is a verifier for this value.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 47

3,4 A requires and abtains a nonce Na from her smart card Ca. {Na, 1,
1}Kac is a verifier. In [SR96], it is suggested to use a 8 bytes counter
on Ca to generate Na.

5 A sends the nonce, meaning she request the establishment of a session
symmetric key.

6,7 B obtains the nonce Nb from Cb (same remark as in 3,4 for the coun-
ters). {Nb, 0, 0}Kb is a session key and {Na, Nb, 1}Kab, and {Nb,
0, 1}Kab are verifiers respectively for A and B.

8 B transmits the nonce Nb and A’s verifier to A.

9 the nonce Nb and A’s verifier are transmitted to A.

10 A’s smart card Ca makes the verifications, computes the session key
{Nb, 0, 0}Kb and transmits it to A.

11 A aknowledge to B, who can compare this message to his verifier re-
maining from message 7.

Requirements

The session key {Nb, 0, 0}Kb must remain secret.

References

[SR96]. Some variants and implementation issues are discussed in the up-
date [Sho96]. See also the implementor’s paper [JHC+98].

Claimed proofs

The proof of [SR96] is based on the probabilistic definition of secure key
distribution from Bellare and Rogaway [BR95].

[Bel01] uses a theorem proving approach, following Paulson’s inductive method.

Remark

See [Sho96]. The nonce Na that A obtains from his smart card Ca must
actually be truly random and not implemented by counters as first suggested
in [SR96].

http://www.lsv.ens-cachan.fr/spore

Security protocols library 48

Indeed, if the next value of Na (sent in message 5 of session i) is predictable
(let us call it Na’), then then the intruder I can query B for the verifiers
including Na’ (session ii) and use them to answer the next challenge of A
(hence, authentication error in session iii).

i.5. A -> B : A, Na
ii.5. I(A) -> B : A, Na’
ii.6. B -> Cb : A, Na’
ii.7. Cb -> B : Nb’, {Nb’, 0, 0}Kab, {Na’, Nb’, 1}Kab, {Nb’, 0, 1}Kab
ii.8. B -> A : Nb’, {Na’, Nb’, 1}Kab
iii.5. A -> I(B) : A, Na’
iii.8. I(B) -> A : Nb’, {Na’, Nb’, 1}Kab

According to [Sho96], the nonce Nb may though be a counter.

SmartRight view-only

Author(s): Jean-Pierre Andreaux, Sylvain Chevreau, Eric Diehl 2001
Submitted by Thomas Genet March 6, 2003
Last modified March 6, 2003

Summary: This view-only protocol is part of the SmartRight system
designed by Thomson for copy protection for the Digital Video Broadcasting
technology. Its purpose is to ensure that the digital content broadcasted can
be view only once. It uses symmetric key cryptography with nonces and xor.

Protocol specification (in common syntax)

CC, TC : principal
VoKey, VoR, VoRi, CW : number
Kc : key
h : number -> number

1. CC -> TC : {VoKey, CW+VoR}Kc
2. TC -> CC : VoRi
3. CC -> TC : VoR, {h(VoRi)}VoKey

Description of the protocol rules

The above presentation and these explanations are extracted from [GTTT03]:

The protocol is deployed between two smartcards: CC (Converter Card)
and TC (Terminal Card), respectively in an access device (i.e. a digital
receiver) receiving a scrambled digital content and a presentation device (i.e.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 49

a television) which is supposed to descramble the content before rendering
it. The keys used to scramble the content are called control words CW.

The cards CC and TC share a secret symmetric encryption key Kc.

CC generates first the random values VoKey and VoR, and sends them en-
crypted to TC (in message 1), together with a CW which has been received
(by the access divice) with the scrambled content. The operator + is xor.

TC then sends in return a random challenge VoRi (message 2). The message
3 is the answer of CC to the challenge. After receiving the message 3, TC
checks if the answer is correct, by comparing the hashed value h(VoRi) with
its own value, and if so, it extracts CW and uses it to descramble the content.

Note on memory management:

• After sending the message 3, CC deletes VoR and VoKey from its mem-
ory.

• After receiving and accepting the message 3, TC deletes VoRi from its
memory.

This is very important (with respect to the property below) because of the
control aspects given below.

Note on control: The principal CC and TC switch to the next state only
once they have received the next message expected (and not once they have
send a message as usual). More precisely:

• After sending message 2, TC will continue to accept a (new) message
1 and reply by a (new) VoRi (message 2) until it receives the message
3 and accepts it.

• After sending message 2, TC will process all the messages 3 it shall
receive until it receives a new message 1.

Requirements

cited from [GTTT03]: The control word CW may be extracted by TC only
once at the time where the protocol is played.

References

[Tho01], [GTTT03].

http://www.lsv.ens-cachan.fr/spore

Security protocols library 50

Claimed proofs

The above property is proved in [GTTT03] in an automated way on a term
rewriting model using Timbuk, a verification tool using abstract interpreta-
tion over tree automata domains.

SPLICE/AS

Author(s): Suguru Yamaguchi, Kiyohiko Okayama, and Hideo Miyahara
November 1991
Last modified November 26, 2002

Summary: Mutual authentication protocol. Public key cryptography
with a certification authority signing and distributing public keys.

Protocol specification (in common syntax)

S, C, AS : principal
N1, N2, N3 : nonce
T : timestamp
L : lifetime
pk, sk : principal -> key (keypair)

1. C -> AS : C, S, N1
2. AS -> C : AS, {AS, C, N1, pk(S)}sk(AS)
3. C -> S : C, S, {C, T, L, {N2}pk(S)}sk(C)
4. S -> AS : S, C, N3
5. AS -> S : AS, {AS, S, N3, pk(C)}sk(AS)
6. S -> C : S, C, {S, inc(N2)}pk(C)

Description of the protocol rules

key is the type of public/private keys. The functions pk and sk associate to
a principal’s name its public key, resp. private key.

We assume that initially, the client C and the server S only know their own
public and private key, and that the authority AS known the function pk,
i.e. he knows everyone’s public key.

{AS, C, N1, pk(S)}sk(AS) (in message 2) and {AS, S, N3, pk(C)}sk(AS)
(in message 5) are certificates signed and distributed by the authority AS,
for the respective public keys pk(S) and pk(C).

http://www.lsv.ens-cachan.fr/spore

Security protocols library 51

After a successfull run of the protocol, the value of N2 can be used by C and
S as a symmetric key for secure communications.

Requirements

The protocol must guaranty the secrecy of N2: in every session, the value of
N2 must be known only by the participants playing the roles of C, S.

The protocol must also ensure C that S has received N2 and S that the N2
he has received in message 3 originated from C.

References

[YOM91]

Claimed attacks

1. In an attack described in [HC95], the intruder I can impersonate the
client C and obtain N2 in a single session (i.e. without even running a parallel
session).

1. I -> AS : I, S, N1
2. AS -> I : AS, {AS, I, N1, pk(S)}sk(AS)
3. I(C) -> S : C, S, {C, T, L, {N2}pk(S)}sk(I)
4. S -> I(AS) : S, C, N3
4. I(S) -> AS : S, I, N3
5. AS -> S : AS, {AS, S, N3, pk(I)}sk(AS)
6. S -> I(C) : S, C, {S, inc(N2)}pk(I)

In

message 5, the server S accepts the certificate {AS, S, N3, pk(I)}sk(AS)
from AS as a certificate of the public key of C (note that the certificates do
not contain the name of the owner of public keyx in this protocol) and hence
crypts the data in the last message 6 with the public key of I.

2. In this second (symmetric) attack from [HC95], the intruder I can im-
personate the server S and obtain N2.

1. C -> I(AS) : C, S, N1
1. I(C) -> AS : C, I, N1
2. AS -> C : AS, {AS, C, N1, pk(I)}sk(AS)
3. C -> I(S) : C, S, {C, T, L, {N2}pk(I)}sk(C)
4. I -> AS : I, C, N3
5. AS -> I : AS, {AS, S, N3, pk(C)}sk(AS)
6. S -> C : S, C, {S, inc(N2)}pk(C)

http://www.lsv.ens-cachan.fr/spore

Security protocols library 52

3. Lowe outlined (see [CJ97]) that a malicious C can replay the message 3
(the first message concerning S) several times, with new values of T and L,
to restart authentication with an old value of N2.

See also

Hwang and Chen modified SPLICE/AS, Clark and Jacob modified Hwang
and Chen modified SPLICE/AS.

Hwang and Chen modified SPLICE/AS

Author(s): Tzonelih Hwang and Yung-Hsiang Chen 1995
Last modified November 11, 2002

Summary: This modified version correct two flaws in SPLICE/AS. Mu-
tual authentication protocol with public key cryptography with a certifica-
tion authority signing and distributing public keys.

Protocol specification (in common syntax)

S, C, AS : principal
N1, N2, N3 : nonce
T : timestamp
L : lifetime
pk, sk : principal -> key (keypair)

1. C -> AS : C, S, N1
2. AS -> C : AS, {AS, C, N1, S, pk(S)}sk(AS)
3. C -> S : C, S, {C, T, L, {N2}pk(S)}sk(C)
4. S -> AS : S, C, N3
5. AS -> S : AS, {AS, S, N3, C, pk(C)}sk(AS)
6. S -> C : S, C, {S, inc(N2)}pk(C)

Description of the protocol rules

See SPLICE/AS. Note that the name of the owner of the public key is
included in certificate to overcomes the flaws of SPLICE/AS presented in
[HC95] (i.e. a certificate for the public key pk(S) is here {AS, C, N1, S,
pk(S)}sk(AS) rather than {AS, C, N1, pk(S)}sk(AS) in SPLICE/AS).

http://www.lsv.ens-cachan.fr/spore

Security protocols library 53

Requirements

See SPLICE/AS.

References

[HC95].

Claimed attacks

[CJ95]. Only the messages 3 and 6 are relevant in this attack, in which the
intruder I learn the secret N2. This attack concerns both the secrecy of N2
and its authenticity.

1. C -> AS : C, S, N1
2. AS -> C : AS, {AS, C, N1, S, pk(S)}sk(AS)
3. C -> I(S) : C, S, {C, T, L, {N2}pk(S)}sk(C)
3. I -> S : I, S, {I, T, L, {N2}pk(S)}sk(I)
4. S -> AS : S, I, N3
5. AS -> S : AS, {AS, S, N3, I, pk(I)}sk(AS)
6. S -> I : S, I, {S, inc(N2)}pk(I)
1. I -> AS : I, C, N1’
2. AS -> I : AS, {AS, I, N1’, C, pk(C)}sk(AS)
6. I(S) -> C : S, C, {S, inc(N2)}pk(C)

See also

SPLICE/AS, Clark and Jacob modified Hwang and Chen modified SPLICE/AS.

Clark and Jacob modified Hwang and Chen modi-
fied SPLICE/AS

Author(s): 1995
Last modified November 11, 2002

Summary: This modified version corrects a flaws in Hwang and Chen
modified SPLICE/AS. Mutual authentication protocol with public key cryp-
tography with a certification authority signing and distributing public keys.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 54

Protocol specification (in common syntax)

S, C, AS : principal
N1, N2, N3 : nonce
T : timestamp
L : lifetime
pk, sk : principal -> key (keypair)

1. C -> AS : C, S, N1
2. AS -> C : AS, {AS, C, N1, S, pk(S)}sk(AS)
3. C -> S : C, S, {T, L, {C, N2}pk(S)}sk(C)
4. S -> AS : S, C, N3
5. AS -> S : AS, {AS, S, N3, C, pk(C)}sk(AS)
6. S -> C : S, C, {inc(N2)}pk(C)

Remark

This protocol is an optimised version of the following modification of Hwang
and Chen modified SPLICE/AS:

1. C -> AS : C, S, N1
2. AS -> C : AS, {AS, C, N1, S, pk(S)}sk(AS)
3. C -> S : C, S, {C, T, L, {C, N2}pk(S)}sk(C)
4. S -> AS : S, C, N3
5. AS -> S : AS, {AS, S, N3, C, pk(C)}sk(AS)
6. S -> C : S, C, {S, inc(N2)}pk(C)

The

messages 3 and 6 are optimised by suppressing some redundancies: the
redundant C is not included in the signed part of message 3 and S in not
included in the cipher of message 6

Description of the protocol rules

See SPLICE/AS. The difference with Hwang and Chen modified SPLICE/AS
is in messages Note that the name of the owner of the public key is included
in certificate to overcomes the flaws of SPLICE/AS presented in [HC95] (i.e.
a certificate for the public key pk(S) is here {AS, C, N1, S, pk(S)}sk(AS)
rather than {AS, C, N1, pk(S)}sk(AS) in SPLICE/AS).

Requirements

See SPLICE/AS.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 55

References

[CJ95].

Claimed attacks

Lowe [Low97] demonstrate a multiplicity attack on this protocol, where I
impersonates C in a new session ii, by replaying message 3 of session i. I
does however not learn N2.
i.1. C -> AS : C, S, N1
i.2. AS -> C : AS, {AS, C, N1, S, pk(S)}sk(AS)
i.3. C -> S : C, S, {T, L, {C, N2}pk(S)}sk(C)
i.4. S -> AS : S, C, N3
i.5. AS -> S : AS, {AS, S, N3, C, pk(C)}sk(AS)
i.6. S -> C : S, C, {inc(N2)}pk(C)
ii.3. I(C) -> S : C, S, {T, L, {C, N2}pk(S)}sk(C)
ii.4. S -> AS : S, C, N’3
ii.5. AS -> S : AS, {AS, S, N’3, C, pk(C)}sk(AS)
ii.6. S -> I(C) : S, C, {inc(N2)}pk(C)

Lowe suggests in [Low97] to add a nonce challenge to prevent this attack.

See also

SPLICE/AS, Hwang and Chen modified SPLICE/AS.

TMN

Author(s): M. Tatebayashi, N. Matsuzaki, and D.B. Newman 1989
Last modified January 16, 2003

Summary: Distribution of a fresh symmetric key and authentication.
Symmetric keys, trusted server and public keys (only the public key of the
server is used).

Protocol specification (in common syntax)

A, B, S : principal
Ka, Kb : key
PK, SK : principal -> key (keypair)

http://www.lsv.ens-cachan.fr/spore

Security protocols library 56

1. A -> S : B, {Ka}PK(S)
2. S -> B : A
3. B -> S : A, {Kb}PK(S)
4. S -> A : B, {Kb}Ka

Description of the protocol rules

We assume that both A and B initially know the public key PK(S) of S.

Ka, Kb are session symmetric keys freshly created by A, resp. B.

In message 4, Kb is encrypted using a symmetric key algorithm with the key
Ka. Hence, the encryption operators used in 4 on one hand and in 1 and 3
on the other hand differ (though the notation is the same).

Remark

The binary operator {Kb}Ka in the last message can be intepreted either by
a xor operator or by another symmetric key encryption algorithm, according
to the implementation of the protocol.

This choice may be important, as the attack 4. below shows.

Requirements

The protocol must guaranty the secrecy of the new shared key Kb: in every
session, the value of Kb must be known only by the participants playing the
roles of A and B in that session.

The protocol must guaranty the secrecy of the auxiliary fresh key Ka: in
every session, the value of Ka must be known only by the participants playing
the roles of A and S in that session.

References

[TMN89], see also [LR97].

Claimed attacks

1. [LR97]. Authentication and secrecy failure: the intruder I impersonates
A, and uses a session auxiliary key Ki of his choice to learn the established
session key Kb in the last message.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 57

1. I(A) -> S : B, {Ki}PK(S)
2. S -> B : A
3. B -> S : A, {Kb}PK(S)
4. S -> I(A) : B, {Kb}Ki

Note that this is a very

simple attack without parallel session or replay.

2. [LR97]. Authentication failure: the intruder I impersonates B and es-
tablishes a new session key Ki of his choice.

1. A -> S : B, {Ka}PK(S)
2. S -> I(B) : A
3. I(B) -> S : A, {Ki}PK(S)
4. S -> I(A) : B, {Ki}Ka

This attack demonstrates

actually more than an authentication flaw, because the established session
key is known to the intruder. With the following additional fifth message
representing further communications between A and B using the new estab-
lished shared key Kb:

5. A -> B : {X}Kb the protocol would not guaranty the se-
crecy of X as expected.

3. [LR97]. Parallel session and replay attack combining the above attacks
1 and 2. Secrecy and authentication failure: at the end of the second session,
the intruder knows the established session key Kb.

i.1. I(A) -> S : B, {Ki}PK(S)
i.2. S -> B : A
i.3. B -> S : A, {Kb}PK(S)
i.4. S -> I(A) : B, {Kb}Ki
ii.1. A -> S : B, {Ka}PK(S)
ii.2. S -> I(B) : A
ii.3. I(B) -> S : A, {Kb}PK(S)
ii.4. S -> I(A) : B, {Kb}Ka

Note that after this at-

tack, A and B shall communicate with the compromised session key Kb. This
was not the case with attacks 1 and 2, because during these attacks, the
authentication had been performed only with one honest principal.

4. The following secrecy attack, described in [Sim88, Sim94], see also [TMN89],
doesn’t rely on an authentication failure but on algebraic properties of the
encryption method.

It assumes that the symmetric key encryption is performed by a operator +
such that:

http://www.lsv.ens-cachan.fr/spore

Security protocols library 58

(x+y)+y = x (1)
x+(x+y) = y (1’)

Hence, the protocol reads:

1. A -> S : B, {Ka}PK(S)
2. S -> B : A
3. B -> S : A, {Kb}PK(S)
4. S -> A : B, Kb + Ka

We A, knowing Ka, receives the

message 4, he can obtain Kb by (1).

Let * be a multiplication operator such that the public key encryption al-
gorithm verifies, for all public key PK(U):

{x * {y}PK(U)}PK(U) = {x*y}PK(U) (2)

Moreover, we assume a partial division operator (associated to *).

These hypotheses are satisfied e.g. if the following choices are made for the
operators:

• + is xor,

• {x}n is x^3 mod n (with x < n),

• * is integer multiplication.

The attack is then the following. The intruder I has learned the message
3 from a first session i, and will use the server S as an oracle in a second
session ii to learn the key Kb. D is the identity of an honest principal (which
can be A or B or anyone else).

i.3. B -> I(S) : A, {Kb}PK(S)
ii.1. I -> S : D, {Ki * {Kb}PK(S)}PK(S) (= {Ki*Kb}PK(S) by (2))
ii.2. S -> I(D) : I
ii.3. I(D) -> S : I, {Kd}PK(S)
ii.4. S -> I : D, Kd + (Ki * Kb)

Ki and Kd are arbitrary values chosen by I.

After receiving ii.4, I can compute Ki * Kb = Kd + (Kd + (Ki * Kb)),
using (1’), and hence Kb.

Note that in this attack, the server S cannot detect the replay of {Kb}PK(S)
in message ii.1 because it is multiplied with the arbitrary value Ki.

Comment sent by Ralf Treinen (13/01/2003)

Ralf Treinen has submitted the above claimed attack number 4.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 59

Wired Equivalent Privacy Protocol

Author(s):

Summary: The Wired Equivalent Privacy (WEP) protocol, described
in [80299], is used to protect data during wireless transmission.

Protocol specification (in common syntax)

A, B : principal
Kab : symkey
RC4 : message, symkey -> message
C : message -> message

1. A -> B : v, ((M,C(M)) xor RC4(v,Kab))

Description of the protocol rules

To encrypt the message M, A applies the operator xor to RC4(v,Kab) and
(M,C(M)) where C(M) is the integrity checksum of the message M and RC4 is a
function modeling the RC4 algorithm which is used to generate a keystream
(i.e. a long sequence of pseudo-random bytes) from the initial vector v
and the secret key Kab shared between A and B. To decrypt the received
message, B computes RC4(v,Kab) and after applying exclusive or, he obtains
(M,C(M)) and can verify that the checksum is correct.

The properties of exclusive or are:

x xor (y xor z) = (x xor y) xor z (E1)
x xor y = y xor x (E2)
x xor 0 = x (E3)
x xor x = 0 (E4)

References

[80299]

http://www.lsv.ens-cachan.fr/spore

Security protocols library 60

Claimed attacks

We present below attacks given in [BGW01] that require the following prop-
erties:

C(x xor y) = C(x) xor C(Y) (E5)
(x1,y1) xor (x2,y2) = (x1 xor x2,y1 xor y2) (E6)

According to [BGW01], (E5) is a general property of CRC checksum.

The first attack uses the fact that encrypting two messages P1 and P2 with
the same initial vector v and with the same key k can reveal information.
Indeed, we have the following equalities between the ciphers C1 and C2 and
their associated plain text P1 and P2:

C1 xor C2 = ((P1,C(P1)) xor RC4(v,k)) xor ((P2,C(P2)) xor RC4(v,k))
= ((P1,C(P1)) xor (P2,C(P2))) xor (RC4(v,k)xor RC4(v,k)) (E1)(E2)
= (P1,C(P1)) xor (P2,C(P2)) (E3)(E4)

This allows an intruder who knows a plain text P1 and its cipher C1 to
decrypt any cipher C2. Indeed, thanks to this equality, the intruder can
easily get (P2,C(P2)) and obtain the plaintext P2.

The second attack allows the intruder controlled modifications to a cipher
text without disrupting the checksum. Assume that the intruder has in-
tercepted (M,C(M))xor RC4(v,Kab) and knows D. He can now obtain the
cipher text associated to the message Mxor D by computin g:

((M,C(M)) xor RC4(v,Kab)) xor (D,C(D)) = RC4(v,Kab)xor((M,C(M)) xor (D,C(D))) (E1)(E2)
= RC4(v,Kab) xor (M xor D,C(M) xor C(D)) (E6)
= RC4(v,Kab) xor (M xor D,C(M xor D)) (E5)

Notice that this attack can be applied without full knowledge of M. For
example, to flip the first bit of M, the attacker can set D = 100...0. Now,
if the intruder knows the plaintext M (and its associated cipher) he can
generate the ciphertext associated to any message he wants.

Wide Mouthed Frog

Author(s): Michael Burrows 1989
Last modified November 20, 2002

Summary: Distribution of a fresh shared key. Symmetric key cryptogra-
phy with server and timestamps.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 61

Protocol specification (in common syntax)

A, S : principal
Kas, Kbs, Kab : symkey
Ta, Ts : timestamp

1. A -> S : A, {Ta, B, Kab}Kas
2. S -> B : {Ts, A, Kab}Kbs

Description of the protocol rules

Some explanations quoted from [BAN89]:

”It is assumed that the encryption is done in such a way that
we know the whole message was sent at once. If two separate
encrypted sections are included in one message, we treat them
as though they arrived in separate messages. A message cannot
be understood by a principal who does not know the key (or, in
the case of public-key cryptography, by a principal who does not
know the inverse of the key); the key cannot be deduced from
the encrypted message. Each encrypted message contains suffi-
cient redundancy to allow a principal who decrypts it to verify
that he has used the right key. In addition, messages contain
sufficient information for a principal to detect (and ignore) his
own messages.”

”A sends a session key to S, including a timestamp Ta. S checks
that the first message is timely, and if it is, it forwards the mes-
sage to B, together with its own timestamp Ts. B then checks
that the timestamp from S is later than any other it has received
from S.”

Requirements

The protocol must guaranty the secrecy of the new shared key Kab: in every
session, the value of Kab must be known only by the participants playing
the roles of A and B and S.

The protocol must guaranty the authenticity of Kab: in every session, on
reception of message 2, B must be ensured that the key Kab in the message
has been created by S in the same session on behalf of A.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 62

References

[BAN89]

Claimed proofs

[BAN89]

Claimed attacks

1. [AN95]. By replaying the second message within an appropriate time
window, the intruder I can make the server S update the timestamp of an
non-fresh key Kab. This way, he can extend the life time of a (possibly
compromised) key Kab as wanted, whereas A and B think that it has expired
and has been destroyed.

i.1. A -> S : A, {Ta, B, Kab}Kas
i.2. S -> B : {Ts, A, Kab}Kbs
ii.1. I(B) -> S : B, {Ts, A, Kab}Kbs
ii.2. S -> A : {T’s, B, Kab}Kas
iii.1. I(A) -> S : A, {T’s, B, Kab}Kas
iii.2. S -> B : {T’’s, A, Kab}Kbs
....

2. [Low97]. In this attack, B thinks that A has established two sessions
with him, when A thinks he has established only one session.

i.1. A -> S : A, {Ta, B, Kab}Kas
i.2. S -> B : {Ts, A, Kab}Kbs
ii.2. S -> B : {Ts, A, Kab}Kbs

[Low97] proposes a cor-

rection of the protocol which is described in Lowe modified Wide Mouthed
Frog.

Comment sent by Martin Abadi (November 18, 2002)

The [AN95] and [Low97] ”attacks” fail, because of the protocol features
described in the quotations above. The ”attacks” may work only against
(deliberately or unintentionally) weakened variants of the protocol.

See also

Lowe modified Wide Mouthed Frog

http://www.lsv.ens-cachan.fr/spore

Security protocols library 63

Lowe modified Wide Mouthed Frog

Author(s): Gavin Lowe 1997
Last modified November 20, 2002

Summary: An modified version of Wide Mouthed Frog. Exchanged of a
fresh shared key. Symmetric key cryptography with server and timestamps.

Protocol specification (in common syntax)

A, S : principal
Kas, Kbs, Kab : symkey
Nb : nonce
Ta, Ts : timestamp
suc : nonce -> nonce

1. A -> S : A, {Ta, B, Kab}Kas
2. S -> B : {Ts, A, Kab}Kbs
3. B -> A : {Nb}Kab
4. A -> B : {succ(Nb)}Kab

Description of the protocol rules

Two messages have been appened to Wide Mouthed Frog for mutual au-
thentification of A and B (nonce handshake).

Remark

The two final messages were added by Lowe to the Wide Mouthed Frog
protocol to prevent an attack claimed in [Low97] which actually fails against
the complete original specification of the protocol in [BAN89], see Wide
Mouthed Frog.

Requirements

See Wide Mouthed Frog.

References

[Low97]

http://www.lsv.ens-cachan.fr/spore

Security protocols library 64

See also

Wide Mouthed Frog

Woo and Lam Mutual Authentication

Author(s): T.Y.C Woo and S.S. Lam 1994
Last modified November 10, 2002

Summary: Key distribution and mutual authentication with trusted
server and symmetric keys.

Protocol specification (in common syntax)

P, Q, S : principal
Kps, Kqs, Kpq : key
N1, N2 : number

1. P -> Q : P, N1
2. Q -> P : Q, N2
3. P -> Q : {P, Q, N1, N2}Kps
4. Q -> S : {P, Q, N1, N2}Kps, {P, Q, N1, N2}Kqs
5. S -> Q : {Q, N1, N2, Kpq}Kps, {P, N1, N2,Kpq}Kqs
6. Q -> P : {Q, N1, N2, Kpq}Kps, {N1, N2}Kpq
7. P -> Q : {N2}Kpq

Description of the protocol rules

Kpq is a fresh symmetric key created at message 5 by the server S.

N1 and N2 are nonces.

Kps and Kqs are symmetric keys whose values are initially known only by P
and S, respectively P and S.

Requirements

The protocol must guaranty the secrecy of Kpq: in every session, the value
of Kpq must be known only by the participants playing the roles of P, Q and
S.

The protocol must also ensures mutual authentication of P and Q.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 65

References

[WL94]

Claimed attacks

1. Parallel session replay attack, [CJ], and [CJ97]. In this attack, the
intruder I initiates a session ii in order to make P accept a non-fresh key.

i.1. P -> I : P, N1
ii.1. I -> P : I, N1
ii.2. P -> I : P, N2
i.2. I -> P : I, N2
i.3. P -> I : {P, I, N1, N2}Kps
i.4. I -> S : {P, I, N1, N2}Kps, {P, I, N1, N2}Kis
i.5. S -> I : {I, N1, N2, Kpi}Kps, {P, N1, N2, Kpi}Kis
i.6. I -> P : {I, N1, N2, Kpi}Kps, {N1, N2}Kpi
i.7. P -> I : {N2}Kpi
ii.3. I -> P : {I, P, N1, N2}Kis
ii.4. P -> I(S) : {I, P, N1, N2}Kis, {I, P, N1, N2}Kps
ii.5. I(S) -> P : {I, N1, N2, Kpi}Kis, {I, N1, N2, Kpi}Kps
ii.6. P -> I : {P, N1, N2, Kpi}Kis, {N1, N2}Kpi
ii.7. I -> P : {N2}Kpi

2. [Low96]. bit-string represent an arbitrary number.

i.1. I(P) -> Q : P, Q
i.2. Q -> I(P) : Q, N2
i.3. I(P) -> Q : bit-string
i.4. Q -> I(S) : bit-string, {P, Q, Q, N2}Kps
ii.1. I(P) -> Q : P, N2
ii.2. Q -> I(P) : Q, N3
ii.3. I(P) -> Q : bit-string’
ii.4. Q -> I(S) : bit-string’, {P, Q, N2, N3}Kps
i.5. I(S) -> Q : bit-string’’, {P, Q, N2, N3}Kps
i.6. Q -> I(P) : bit-string’’, {Q, N2}N3
i.7. I(P) -> Q : {N2}N3

Woo and Lam Pi

Author(s): Woo, Lam 1994
Last modified October 27, 2001

http://www.lsv.ens-cachan.fr/spore

Security protocols library 66

Summary: One way authentification protocol with public keys and trusted
server, simplification of Woo and Lam Pi 3, Woo and Lam Pi 2, Woo and
Lam Pi 1, and Woo and Lam Pi f.

Protocol specification (in common syntax)

A, B, S : principal
Nb : nonce
Kas, Kbs : skey

1.. A -> B : A
2.. B -> A : Nb
3.. A -> B : {Nb}Kas
4.. B -> S : {A, {Nb}Kas}Kbs
5.. S -> B : {Nb}Kbs

Requirements

see Woo and Lam Pi f.

References

[WL94], [CJ97].

Claimed attacks

See also

Woo and Lam Pi f, Woo and Lam Pi 1, Woo and Lam Pi 2, Woo and Lam
Pi 3.

Woo and Lam Pi 1

Author(s): Woo, Lam 1994
Last modified October 27, 2001

Summary: One way authentification protocol with public keys and trusted
server, simplification of Woo and Lam Pi f.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 67

Protocol specification (in common syntax)

A, B, S : principal
Nb : nonce
Kas, Kbs : skey

1.. A -> B : A
2.. B -> A : Nb
3.. A -> B : {A,B,Nb}Kas
4.. B -> S : {A, B, {A, B, Nb}Kas}Kbs
5.. S -> B : {A, B, Nb}Kbs

Requirements

see Woo and Lam Pi f.

References

[WL94], [CJ97].

See also

Woo and Lam Pi f, Woo and Lam Pi 2, Woo and Lam Pi 3, Woo and Lam
Pi.

Woo and Lam Pi 2

Author(s): Woo, Lam 1994
Last modified October 27, 2001

Summary: One way authentification protocol with public keys and trusted
server, simplification of Woo and Lam Pi 1 and Woo and Lam Pi f.

Protocol specification (in common syntax)

A, B, S : principal
Nb : nonce
Kas, Kbs : skey

http://www.lsv.ens-cachan.fr/spore

Security protocols library 68

1.. A -> B : A
2.. B -> A : Nb
3.. A -> B : {A,Nb}Kas
4.. B -> S : {A, {A, Nb}Kas}Kbs
5.. S -> B : {A, Nb}Kbs

Requirements

see Woo and Lam Pi f.

References

[WL94], [CJ97].

See also

Woo and Lam Pi f, Woo and Lam Pi 1, Woo and Lam Pi 3, Woo and Lam
Pi.

Woo and Lam Pi 3

Author(s): Woo, Lam 1994
Last modified October 27, 2001

Summary: One way authentification protocol with public keys and trusted
server, simplification of Woo and Lam Pi 2, Woo and Lam Pi 1, and Woo
and Lam Pi f.

Protocol specification (in common syntax)

A, B, S : principal
Nb : nonce
Kas, Kbs : skey

1.. A -> B : A
2.. B -> A : Nb
3.. A -> B : {Nb}Kas
4.. B -> S : {A, {Nb}Kas}Kbs
5.. S -> B : {A, Nb}Kbs

http://www.lsv.ens-cachan.fr/spore

Security protocols library 69

Requirements

see Woo and Lam Pi f.

References

[WL94], [CJ97].

See also

Woo and Lam Pi f, Woo and Lam Pi 1, Woo and Lam Pi 2, Woo and Lam
Pi.

Woo and Lam Pi f

Author(s): Woo, Lam 1994
Last modified October 27, 2001

Summary: One way authentification protocol with public keys and trusted
server.

Protocol specification (in common syntax)

A, B, S : principal
shared : (principal, principal):key
Nb : nonce

1.. A -> B : A
2.. B -> A : Nb
3.. A -> B : {A,B,Nb}shared(A, S)
4.. B -> S : {A, B, Nb, {A, B, Nb}shared(A, S)}shared(B, S)
5.. S -> B : {A, B, Nb}shared(B, S)

Description of the protocol rules

shared(A, S) is a long term symmetric key shared by A and S. Initially, A
only knowns shared(A, S) and the name of B, B only knowns shared(B,
S) and S knowns all shared keys, i.e. S given any principal’s name X, S
knowns shared(X, S), or in other terms, S knows the “function” shared.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 70

Requirements

Woo and Lam give in [WL94] the following definition of correctness for this
protocol:

whenever the principal B finishes the execution of the protocol, the initiator
of the protocol execution is in fact the principal A claimed in message 1.

References

[WL94], [CJ97].

Claimed proofs

[WL94]

Claimed attacks

No known attacks.

See also

Woo and Lam Pi 1, Woo and Lam Pi 2, Woo and Lam Pi 3, Woo and Lam
Pi.

Yahalom

Author(s): Yahalom 0, 1988
Last modified October 4, 2002

Summary: Distribution of a fresh symmetric shared key by a trusted
server and mutual authentication. Symmetric keys and trusted server.

Protocol specification (in common syntax)

A, B, S : principal
Na, Nb : number fresh
Kas, Kbs, Kab : key

http://www.lsv.ens-cachan.fr/spore

Security protocols library 71

A knows : A, B, S, Kas
B knows : B, S, Kbs
S knows : S, A, B, Kas, Kbs

1. A -> B : A, Na
2. B -> S : B, {A, Na, Nb}Kbs
3. S -> A : {B, Kab, Na, Nb}Kas, {A, Kab}Kbs
4. A -> B : {A, Kab}Kbs, {Nb}Kab

Description of the protocol rules

The fresh symmetric shared key Kab is created by the server S and sent
encrypted, in message 3 both to A (directly) and to B (indirectly).

Requirements

The protocol must guaranty the secrecy of Kab: in every session, the value
of Kab must be known only by the participants playing the roles of A, B and
S.

A must be also properly authentified to B.

References

This version of the Yahalom protocol is the one found in [BAN89] (cited as
personal communication in this paper).

It is also presented in [CJ97].

Claimed proofs

[BAN89], [Pau01]

See also

BAN simplified version of Yahalom,
Paulson’s strengthened version of Yahalom.

BAN simplified version of Yahalom

Author(s): Burrows Abadi Needham 0, 1989
Last modified October 9, 2002

http://www.lsv.ens-cachan.fr/spore

Security protocols library 72

Summary: An amended version of the Yahalom protocol, presented in
the BAN logic paper. Symmetric keys and trusted server.

Protocol specification (in common syntax)

A, B, S : principal
Na, Nb : number fresh
Kas, Kbs, Kab : key

A knows : A, B, S, Kas
B knows : B, S, Kbs
S knows : S, A, B, Kas, Kbs

1. A -> B : A, Na
2. B -> S : B, Nb, {A, Na}Kbs
3. S -> A : Nb, {B, Kab, Na}Kas, {A, Kab, Nb}Kbs
4. A -> B : {A, Kab, Nb}Kbs, {Nb}Kab

Description of the protocol rules

Compared to the original version of the Yahalom protocol, the nonce Nb is
added to the second cipher of message 3, to prevent a malicious A to reuse
an old value of Kab.

Also, Nb is sent in cleartext in message 2, which makes possible the attacks
below.

Requirements

See Yahalom.

References

This simplified version of the Yahalom protocol was proposed in [BAN89].

Claimed proofs

[BAN89]

Claimed attacks

Replay attack with interleaving and type error in [Syv94].

http://www.lsv.ens-cachan.fr/spore

Security protocols library 73

i.1. A -> I(B) : A, Na
i.2. B -> I(S) : B, Nb, {A, Na}Kbs
ii.1. I(A) -> B : A, Na, Nb
ii.2. B -> I(S) : B, Nb, {A, Na, Nb}Kbs
i.3. Omitted
i.4. I(A) -> B : {A, Na, Nb}Kbs, {Nb}Na

In the mes-

sage 1 of session ii, the pair Na, Nb is used as a nonce N’a, and in the last
message of session i, Na is used as the key Kab.

A second replay attack is described in the same paper [Syv94].

i.1. A -> I(B) : A, Na
ii.1. I(B) -> A : B, Na
ii.2. A -> I(S) : A, N’a, {B, Na}Kas
iii.1. Omitted
iii.2. I(A) -> S : A, Na, {B, Na}Kas
iii.3. S -> I(B) : Na, {A, Kab, Na}Kbs, {B, Kab, Na}Kas
i.2. Omitted
i.3. I(S) -> A : Ni, {B, Kab, Na}Kas, {A, Kab, Na}Kbs
i.4. A -> I(B) : {A, Kab, Na}Kbs, {Ni}Kab

See also

Yahalom,
Paulson’s strengthened version of Yahalom.

Lowe’s modified version of Yahalom

Author(s): Paulson 0, 2001
Last modified October 4, 2002

Summary: Lowe’s modified version of the Yahalom protocol. Symmetric
keys and trusted server.

Protocol specification (in common syntax)

A, B, S : principal
Na, Nb : number fresh
Kas, Kbs, Kab : key

A knows : A, B, S, Kas
B knows : B, S, Kbs
S knows : S, A, B, Kas, Kbs

http://www.lsv.ens-cachan.fr/spore

Security protocols library 74

1. A -> B : A, Na
2. B -> S : {A, Na, Nb}Kbs
3. S -> A : {B, Kab, Na, Nb}Kas
4. S -> B : {A, Kab}Kbs
5. A -> B : {A, B, S, Nb}Kab

Remark

This version of the Yahalom protocol is presented in [Low98] to illustrate a
verification technique by model checking.

Requirements

See Yahalom.

References

[Low98]

Claimed proofs

[Low98]

See also

Yahalom,
BAN simplified version of Yahalom,
Paulson’s strengthened version of Yahalom.

Paulson’s strengthened version of Yahalom

Author(s): Paulson 0, 2001
Last modified October 4, 2002

Summary: Paulson’s modified version of the Yahalom protocol. Symmet-
ric keys and trusted server.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 75

Protocol specification (in common syntax)

A, B, S : principal
Na, Nb : number fresh
Kas, Kbs, Kab : key

A knows : A, B, S, Kas
B knows : B, S, Kbs
S knows : S, A, B, Kas, Kbs

1. A -> B : A, Na
2. B -> S : B, Nb, {A, Na}Kbs
3. S -> A : Nb, {B, Kab, Na}Kas, {A, B, Kab, Nb}Kbs
4. A -> B : {A, B, Kab, Nb}Kbs, {Nb}Kab

Description of the protocol rules

To prevent the attacks [Syv94] of to BAN simplified version of Yahalom
protocol, the name of B has been added to the cipher sent by S in message
3 and transmitted by A in message 4.

Requirements

See Yahalom.

References

[Pau01]

Claimed proofs

[Pau01]

See also

Yahalom,
BAN simplified version of Yahalom

http://www.lsv.ens-cachan.fr/spore

Security protocols library 76

Citations

[80299] IEEE 802.11 Local and Metropolitan Area Networks: Wireless
LAN Medium Acess Control (MAC) and Physical (PHY) Spec-
ifications, 1999.

[AN95] R. Anderson and R. Needham. Programming satan’s computer,
1995.

[AN96] Mart́ın Abadi and Roger Needham. Prudent engineering prac-
tice for cryptographic protocols. IEEE Transactions on Software
Engineering, 22(1):6–15, January 1996.

[BAN89] Michael Burrows, Martin Abadi, and Roger Needham. A logic of
authentication. Technical Report 39, Digital Systems Research
Center, february 1989.

[Bel01] Giampaolo Bella. Mechanising a protocol for smart cards. In
Proc. of e-Smart 2001, international conference on research in
smart cards, LNCS. Springer-Verlag, september 2001.

[BGW01] N. Borisov, I. Goldberg, and D. Wagner. Intercepting mobile
communications: The insecurity of 802.11. In Proc. 7th An-
nual International Conference on Mobile Computing and Net-
working (MOBICOM’01), pages 180–188, Rome (Italy), 2001.
ACM Press.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier
based on prolog rules. In IEEE, editor, 14th IEEE Computer
Security Foundations Workshop (CSFW-14), june 2001.

[BMS02] Scott Bradner, Allison Mankin, and Jeffrey I. Schiller. A frame-
work for purpose built keys (PBK). Internet draft, November
2002.

[BO97] J. Bull and D. J. Otway. The authentication protocol. Techni-
cal Report DRA/CIS3/PROJ/CORBA/SC/1/CSM/436-04/03,
Defence Research Agency, 1997.

[BR95] Mihir Bellare and Phillip Rogaway. Provably secure session key
distribution– the three party case. In Proceedings 27th Annual
Symposium on the Theory of Computing, ACM, pages 57–66,
1995.

[CCI87] CCITT. The directory authentification framework. Draft Rec-
ommendation X.509, 1987. Version 7.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 77

[CDS94] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of par-
tial knowledge and simplified design of witness hiding proto-
cols. In Proc. 14th Annual International Cryptology Conference
(CRYPTO’94), volume 963 of LNCS, pages 174–187, Santa Bar-
bara (California, USA), 1994. Springer-Verlag.

[CJ] John Clark and Jeremy Jacob. Freshness is not enough : Note
on trusted nonce generation and malicious principals. attack on
a mutual authentification protocol by Woo and Lam.

[CJ95] John A Clark and Jeremy L Jacob. On the security of recent
protocols. Information processing Letters, 56:151–155, 1995.

[CJ97] John Clark and Jeremy Jacob. A survey of authentication pro-
tocol literature, November 1997.

[CKS01] R. Chadha, M.I. Kanovich, and A. Scedrov. Inductive methods
and contract-signing protocols. In P. Samarati, editor, 8-th ACM
Conference on Computer and Communications Security, pages
176–185. ACM Press, November 2001.

[DH76] W. Diffie and M. Helman. New directions in cryptography. IEEE
Transactions on Information Society, 22(6):644–654, november
1976.

[DS81] D. Denning and G. Sacco. Timestamps in key distributed pro-
tocols. Communication of the ACM, 24(8):533–535, 1981.

[GJM99] J. A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free opti-
mistic contract signing. In Advances in Cryptology: Proceedings
of Crypto’99, volume 1666 of Lecture Notes in Computer Science,
pages 449–466. Springer-Verlag, 1999.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof-systems. In Proc. 17th annual
ACM Symposium on Theory of Computing, pages 291–304. ACM
Press, 1985.

[Gol01] O. Goldreich. Foundations of Cryptography. Cambridge Univer-
sity Press, 2001.

[Gon89] Li Gong. Using one-way functions for authentication. Computer
Communication Review, 19(5):8–11, october 1989.

[GTTT03] Thomas Genet, Yan-Mei Tang-Talpin, and Valérie Viet Triem
Tong. Verification of copy-protection cryptographic protocol
using approximations of term rewriting systems. In Proc. of
WITS’03, Workshop on Issues in the Theory of Security, 2003.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 78

[HC95] Tzonelih Hwang and Yung-Hsiang Chen. On the security of
splice/as : The authentication system in wide internet. Infor-
mation Processing Letters, 53:97–101, 1995.

[HLL+95] Tzonelih Hwang, Narn-Yoh Lee, Chuang-Ming Li, Ming-Yung
Ko, and Yung-Hsiang Chen. Two attacks on neumann-
stubblebine authentication protocols. Information Processing
Letters, 53:103 – 107, 1995.

[Hui98] Christian Huitema. IPv6 The New Internet Protocol. Prentice
Hall PTR, 1998.

[JHC+98] Rob Jerdonek, Peter Honeyman, Kevin Coffman, Kim Rees, and
Kip Wheeler. Implementation of a provably secure, smartcard-
based key distribution protocol. In In Proceedings of the Third
Smart Card Research and Advanced Application Conference,
1998.

[KC95] I Lung Kao and Randy Chow. An efficient and secure authentica-
tion protocol using uncertified keys. Operating Systems Review,
29(3):14–21, 1995.

[KR02] Steve Kremer and Jean-François Raskin. Game analysis of
abuse-free contract signing. In Steve Schneider, editor, 15th
Computer Security Foundations Workshop, pages 206–220, Cape
Breton, Nova Scotia, Canada, June 2002. IEEE Computer Soci-
ety.

[KSL92] Axel Kehne, Jürgen Schönwälder, and Horst Langendörfer. Mul-
tiple authentications with a nonce-based protocol using general-
ized timestamps. In Proc. ICCC ’92, Genua, 1992.

[lM90] Colin l’Anson and Chris Mitchell. Security defects in the ccitt
recomendation x.509 - the directory authentication framework.
Computer Communication Review, 20(2):30–34, april 1990.

[Low95] Gavin Lowe. An attack on the Needham-Schroeder public
key authentication protocol. Information Processing Letters,
56(3):131–136, November 1995.

[Low96] Gavin Lowe. Some new attacks upon security protocols. In IEEE
Computer Society Press, editor, In Proceedings of the Computer
Security Foundations Workshop VIII, 1996.

[Low97] Gavin Lowe. A family of attacks upon authentication proto-
cols. Technical Report 1997/5, Department of Mathematics and
Computer Science, University of Leicester, 1997.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 79

[Low98] Gavin Lowe. Towards a completeness result for model checking
of security protocols. Technical Report 1998/6, Dept. of Math-
ematics and Computer Science, University of Leicester, 1998.

[LR97] G. Lowe and A. W. Roscoe. Using CSP to detect errors in the
TMN protocol. Software Engineering, 23(10):659–669, 1997.

[MC02] G. Montenegro and C. Castelluccia. Statistically Unique and
Cryptographically Verifiable (SUCV) identifiers and addresses.
In Network and Distributed Systems Security Symposium. Inter-
net Society, February 2002.

[Nik01] Pekka Nikander. Denial-of-service, address ownership, and early
authentication in the IPv6 world. In B. Christianson, B. Crispo,
J. A. Malcolm, and M. Roe, editors, Security Protocols, number
2467 in Lecture Notes in Computer Science. Springer, 2001.

[NS78a] R. Needham and M. Schroeder. Using encryption for authenti-
cation in large networks of computers. Communications of the
ACM, 21(12), December 1978.

[NS78b] Roger Needham and Michael Schroeder. Using encryption for au-
thentification in large networks of computers. Communications
of the ACM, 21(12), December 1978.

[NS87] R. Needham and M. Schroeder. Authentication revisited. Oper-
ating Systems Review, 21(7), January 1987.

[NS93] B. Clifford Neumann and Stuart G. Stubblebine. A note on
the use of timestamps as nonces. Operating Systems Review,
27(2):10–14, april 1993.

[NT94] B. Clifford Neuman and Theodore Ts’o. Kerberos : An au-
thentication service for computer networks. Technical Report
ISI/RS-94-399, USC/ISI, 1994.

[NYW03] Pekka Nikander, Yukka Ylitalo, and Jorma Wall. Integrating
security, mobility and multi-homing in a HIP way. In Network
and Distributed Systems Security Symposium, 2003.

[OR87] D. Otway and O. Rees. Efficient and timely mutual authentica-
tion. Operating Systems Review, 21(1):8–10, 1987.

[OR01] Greg O’Shea and Michael Roe. Child-proof authentication for
MIPv6 (CAM). Computer Communications Review, April 2001.

[Pau01] Lawrence C. Paulson. Relations between secrets: Two formal
analyses of the yahalom protocol. J. Computer Security, 2001.

http://www.lsv.ens-cachan.fr/spore

Security protocols library 80

[RAOA02] M. Roe, T. Aura, G. O’Shea, and J. Arkko. Authentication of
mobile IPv6 binding updates and acknowledgments. Internet
draft, February 2002.

[RS98] P. Y. A. Ryan and S. A. Schneider. An attack on a recursive au-
thentication protocol: A cautionary tale. Information Processing
Letters, 65(1):7–10, 1998.

[Sat89] M. Satyanarayanan. Integrating security in a large distributed
system. ACM Transactions on Computer Systems, 7(3):247–280,
1989.

[Sho96] Victor Shoup. A note on session key distribution using smart
cards. http://www.shoup.net/papers/update.ps, july 1996.

[Sim88] Gustavus J. Simmons. An impersonation-proof identity verifica-
tion scheme. In Advances in Cryptology: Proceedings of Crypto
87, volume 293 of LNCS, pages 211–215. Springer-Verlag, 1988.

[Sim94] Gustavus J. Simmons. Cryptoanalysis and protocol failure.
Communications of the ACM, 37(11):56–65, November 1994.

[SM01] Vitaly Shmatikov and John Mitchell. Finite-state analysis of two
contract signing protocols. Special issue of Theoretical Computer
Science on security, 2001. Accepted for publication.

[SMB90] Michael Merritt Steven M. Bellovin. Limitations of the ker-
beros authentication system. Computer Communication Review,
20(5):119–132, october 1990.

[SR96] Victor Shoup and Avi Rubin. Session key distribution using
smart cards. In In Proceedings of Advances in Cryptology, EU-
ROCRYPT’96, volume 1070 of LNCS. Springer-Verlag, 1996.

[Syv94] Paul Syverson. A taxonomy of replay attacks. In Proceedings of
the 7th IEEE Computer Security Foundations Workshop, pages
131–136. IEEE Computer Society Press, 1994.

[Tho01] Thomson. Smartright technical white paper v1.0. Technical
report, Thomson, october 2001. http://www.smartright.org.

[TMN89] M. Tatebayashi, N. Matsuzaki, and D.B. Newman. Key distri-
bution protocol for digital mobile communication systems. In
Advance in Cryptology — CRYPTO ’89, volume 435 of LNCS,
pages 324–333. Springer-Verlag, 1989.

[Wei99] Christoph Weidenbach. Towards an automatic analysis of secu-
rity protocols. In Harald Ganzinger, editor, Proceedings of the

http://www.lsv.ens-cachan.fr/spore

Security protocols library 81

16th International Conference on Automated Deduction, volume
1632 of LNAI, pages 378–382. Springer, 1999.

[WL94] T. Y. C. Woo and S. S. Lam. A lesson on authentication protocol
design. Operating Systems Review, 1994.

[YOM91] Suguru Yamaguchi, Kiyohiko Okayama, and Hideo Miyahara.
The design and implementation of an authentication system for
the wide area distributed environment. IEICE Transactions on
Information and Systems, E74(11):3902–3909, November 1991.

http://www.lsv.ens-cachan.fr/spore

