
Proving Copyless Message Passing

Jules Villard1 Étienne Lozes1 Cristiano Calcagno2

1LSV, ENS Cachan, CNRS

2Imperial College, London

APLAS'09 Conference
15 December 2009

Outline

Introduction

Programming Language

Contracts

Separation Logic

Conclusion

Language's Speci�cations

We want to model programs with the following features:

▶ Explicit memory manipulation (no garbage collection)
▶ Copyless, asynchronous message passing

∙ Instead of copying the contents of the message, send a pointer
to it and transfer ownership

∙ Assumes a shared memory

1 / 22

What to Prove

We are interested in the following properties:

▶ no memory fault

▶ no races

▶ no memory leaks

▶ safe communications

2 / 22

Proving Copyless Message Passing Programs

▶ We mix separation logic and contracts
∙ separation logic gives us safety properties
∙ contracts give us liveness properties

▶ the combination of the two gives us something more than the
two separately (e.g. no memleaks)

3 / 22

Outline

Introduction

Programming Language

Contracts

Separation Logic

Conclusion

Communication Model

▶ Channels are bidirectional and asynchronous
channel = pair of FIFO queues

▶ Channels are made of two endpoints
similar to the socket model

▶ Endpoints can be allocated, disposed of, and communicated
through channels

similar to the �-calculus

▶ Communications are ruled by user-de�ned contracts
similar to session types

▶ Inspired by Sing#, the language of the Singularity OS
[Fähndrich & al. '06]

4 / 22

Message Passing with copies

e f

x

y

m

send(cell,e,m);

z

w

z→left = receive(cell,f);

5 / 22

Message Passing with copies

e f

x

y

m

send(cell,e,m);

z

w

z→left = receive(cell,f);

5 / 22

Message Passing with copies

e f

x

y

m

m

send(cell,e,m);

z

w

z→left = receive(cell,f);

5 / 22

Message Passing with copies

e f

x

y

m

m

send(cell,e,m);

z

w

z→left = receive(cell,f);

5 / 22

Message Passing with copies

e f

x

y

m

m

send(cell,e,m);

z

w

z→left = receive(cell,f);

5 / 22

Message Passing with copies

e f

x

y

m

send(cell,e,m);

z

wm

z→left = receive(cell,f);

5 / 22

Message Passing with copies

e f

x

y

m

send(cell,e,m);

z

wm

z→left = receive(cell,f);

5 / 22

Copyless Message Passing (shared memory)

e f

x

y

m

send(cell,e,m);

z

w

z→left = receive(cell,f);

6 / 22

Copyless Message Passing (shared memory)

e f

x

y

m

send(cell,e,m);

z

w

z→left = receive(cell,f);

6 / 22

Copyless Message Passing (shared memory)

e f

x

y

m

m

send(cell,e,m);

z

w

z→left = receive(cell,f);

6 / 22

Copyless Message Passing (shared memory)

e f

x

y

m

m

send(cell,e,m);

z

w

z→left = receive(cell,f);

6 / 22

Copyless Message Passing (shared memory)

e f

x

y

m

send(cell,e,m);

z

w

z→left = receive(cell,f);

6 / 22

Copyless Message Passing (shared memory)

e f

x

y

m

send(cell,e,m);

z

w

z→left = receive(cell,f);

6 / 22

Example

message cell

put_get () {

local e,f,x;

(e,f) = open(C);

x = new ();

put(e,x) || get(f);

close(e,f);

}

put(e,x) {

send(cell ,e,x);

}

get(f) {

local y;

y = receive(cell ,f);

dispose(y);

}

7 / 22

Outline

Introduction

Programming Language

Contracts

Separation Logic

Conclusion

Contracts

Contracts dictate which sequences of messages are admissible.

▶ It is a �nite state machine, whose arrows are labeled by a
message's name and a direction: send (!) or receive (?).

▶ Dual endpoints of a channel follow dual contracts
(C̄ = C [?↔!]).

8 / 22

Contract of the Example

message cell

contract C {

initial final state start

{ !cell -> start; }

}

put_get () {

local e,f,x;

(e,f) = open(C);

x = new ();

put(e,x) || get(f);

close(e,f);

}

put(e,x) {

send(cell ,e,x);

}

get(f) {

local y;

y = receive(cell ,f);

dispose(y);

}

C

start

!cell

9 / 22

Contract of the Example

message cell

contract C {

initial state start

{ !cell -> end; }

final state end {}

}

put_get () {

local e,f,x;

(e,f) = open(C);

x = new ();

put(e,x) || get(f);

close(e,f);

}

put(e,x) {

send(cell ,e,x);

}

get(f) {

local y;

y = receive(cell ,f);

dispose(y);

}

C

start end
!cell

9 / 22

Leak-Free Contracts

Leak-Free Contract

A contract is leak-free if for all communications, whenever two
endpoints of a channel following the contract are in the same �nal
state, then the message queues are empty.

▶ Determining whether a given contract is leak-free or not is
undecidable.

▶ We rely on simple su�cient conditions for a contract to be
leak-free.

10 / 22

Properties of Contracts

De�nition 1 (Determinism)

Two distinct edges in a contract must be labeled by di�erent
messages.

a
b

c

!m

!m

a
b

c

!m

!m′
a

b

c

!m

?m

De�nition 2 (Uniform choice)

De�nition 3 (Synchronizing state)

11 / 22

Properties of Contracts

De�nition 1 (Determinism)

De�nition 2 (Uniform choice)

All outgoing edges from a same state in a contract must be either
all sends or all receives.

a
b

c

!m1

?m2

a
b

c

!m1

!m2

De�nition 3 (Synchronizing state)

11 / 22

Properties of Contracts

De�nition 1 (Determinism)

De�nition 2 (Uniform choice)

De�nition 3 (Synchronizing state)

A state s is synchronizing if every cycle that goes through it
contains at least one send and one receive.

a b

!m1

!m2

a b

!m1

?m2

11 / 22

Properties of Contracts

De�nition 1 (Determinism)

De�nition 2 (Uniform choice)

De�nition 3 (Synchronizing state)

Lemma 4 (Half-Duplex)

1 & 2⇒ communications are

half-duplex.

Lemma 5 (Leak-free)

�nal states are synchronizing and

communications are half-duplex

⇒ contract is leak-free

11 / 22

Outline

Introduction

Programming Language

Contracts

Separation Logic

Conclusion

Separation Logic

Separation Logic [Reynolds 02, O'Hearn 01, . . .]

▶ An assertion language to describe states

▶ An extension of Hoare Logic

12 / 22

Assertion Language

Syntax

E ::= x ∣ n ∈ ℕ expressions
A ::= E1 = E2 ∣ E1 ∕= E2 stack predicates

∣ emph ∣ E1 7→ E2 ∣ list(E) heap predicates
∣ ∃x .A ∣ A1 ∧ A2 ∣ ¬A ∣ A1 ∗ A2 formulas

Semantics

(s, h) ⊨ E1 = E2 i� JE1Ks = JE2Ks
(s, h) ⊨ emph i� dom(h) = ∅
(s, h) ⊨ E1 7→ E2 i� dom(h) = {JE1Ks} & h(JE1Ks) = JE2Ks

list(E) ≜ (E = 0 ∧ emph) ∨ (∃x .E 7→ x ∗ list(x))

13 / 22

Assertion Language

Syntax

E ::= x ∣ n ∈ ℕ expressions
A ::= E1 = E2 ∣ E1 ∕= E2 stack predicates

∣ emph ∣ E1 7→ E2 ∣ list(E) heap predicates
∣ ∃x .A ∣ A1 ∧ A2 ∣ ¬A ∣ A1 ∗ A2 formulas

Semantics

(s, h) ⊨ A1 ∧ A2 i� (s, h) ⊨ A1 & (s, h) ⊨ A2

(s, h) ⊨ ¬A i� (s, h) ⊭ A

(s, h) ⊨ A1 ∗ A2 i� ∃h1, h2. dom(h1) ∩ dom(h2) = ∅
& h = h1 ∪ h2
& (s, h1) ⊨ A1 & (s, h2) ⊨ A2

13 / 22

Assertion Language (extension)

Syntax (continued)

A ::= . . .
∣ empep ∣ E

peer7→(C{a},E ′) endpoint predicates

Intuitively E
peer7→(C{a},E ′) means :

▶ E is an allocated endpoint

▶ its peer is E ′

▶ it is ruled by contract C

▶ it currently is in contract state a

14 / 22

Message Annotation

▶ We have to know the contents of messages

▶ Each message m appearing in a contract is described by a
formula Im of our logic.

▶ Im may refer to two special variables:
∙ val will denote the location of the message in memory
∙ src will denote the location of the sending endpoint

▶ Im(x , f) ≜ Im[val←x , src←f]

15 / 22

Proof System of Standard Separation Logic

Standard Hoare Logic

{A} p {A′} {A′} p′ {B}
{A} p; p′ {B} . . .

Local Reasoning Rules

{A} p {B}
{A ∗ F} p {B ∗ F}

{A} p {B} {A′} p′ {B ′}
{A ∗ A′} p∣∣p′ {B ∗ B ′}

Small Axioms

{A} x = E {A[x←x ′] ∧ x = E [x←x ′]}

{emp} x = new() {∃v . x 7→ v} . . .

16 / 22

Proof System (extended)

Standard Hoare Logic

Unchanged.

Local Reasoning Rules

Unchanged.

Small Axioms

Small axioms added for new commands.

17 / 22

Small Axioms for Communications

Open and Close rules:

i = init(C)

{emp} (e, f) = open(C) {e peer7→(C{i}, f) ∗ f peer7→(C̄{i}, e)}

a ∈ �nals(C)

{e peer7→(C{a}, f) ∗ f peer7→(C̄{a}, e)} close (e, f) {emp}

18 / 22

Small Axioms for Communications

Receive rule:

a
?m−→ b ∈ C

{e peer7→(C{a}, f)} x = receive(m, e) {e peer7→(C{b}, f) ∗ Im(x , f)}

18 / 22

Small Axioms for Communications

Send rules:

a
!m−→ b ∈ C

{e peer7→(C{a},−) ∗ Im(E , e)} send(m,e,E) {E peer7→(C{b},−)}

a
!m−→ b ∈ C

{e peer7→(C{a},−) ∗ (e
peer7→(C{b},−) −−∗ Im(E , e))} send(m,e,E) {emp}

18 / 22

Soundness

Theorem 6 (Soundness for Copyless Message Passing)

If a Hoare triple {A} p {B} is provable and the contracts are leak

free, then if the program p starts in a state satisfying A,

1. contracts are respected

2. p does not fault on memory accesses

3. p does not leak memory

thanks to contracts!

4. if p terminates, the �nal states satisfy B

5. there is no race

6. no communication error occur

thanks to contracts!

19 / 22

Soundness

Theorem 6 (Soundness for Copyless Message Passing)

If a Hoare triple {A} p {B} is provable and the contracts are leak

free, then if the program p starts in a state satisfying A,

1. contracts are respected

2. p does not fault on memory accesses

3. p does not leak memory thanks to contracts!

4. if p terminates, the �nal states satisfy B

5. there is no race

6. no communication error occur thanks to contracts!

19 / 22

heaps that hop!

[TACAS'10] Tracking Heaps that Hop with Heap-Hop

http://www.lsv.ens-cachan.fr/~villard/heaphop/

http://www.lsv.ens-cachan.fr/~villard/heaphop/

Outline

Introduction

Programming Language

Contracts

Separation Logic

Conclusion

Conclusion

In this Talk

▶ Formalization of heap-manipulating, message passing programs
with contracts

▶ Contracts help us to ensure the absence of memory leaks

▶ Proof system

▶ Tool to prove speci�cations: Heap-Hop

▶ Not in this talk: Semantics, based on abstract separation logic

In a Future Talk

▶ Contracts help us to ensure the absence of deadlocks

▶ Enrich contracts with counters, non determinism, . . .

▶ Tackle �real� case studies: MPI, cache coherence protocols, . . .

21 / 22

Conclusion

In this Talk

▶ Formalization of heap-manipulating, message passing programs
with contracts

▶ Contracts help us to ensure the absence of memory leaks

▶ Proof system

▶ Tool to prove speci�cations: Heap-Hop

▶ Not in this talk: Semantics, based on abstract separation logic

In a Future Talk

▶ Contracts help us to ensure the absence of deadlocks

▶ Enrich contracts with counters, non determinism, . . .

▶ Tackle �real� case studies: MPI, cache coherence protocols, . . .

21 / 22

Conclusion

In this Talk

▶ Formalization of heap-manipulating, message passing programs
with contracts

▶ Contracts help us to ensure the absence of memory leaks

▶ Proof system

▶ Tool to prove speci�cations: Heap-Hop

▶ Not in this talk: Semantics, based on abstract separation logic

In a Future Talk

▶ Contracts help us to ensure the absence of deadlocks

▶ Enrich contracts with counters, non determinism, . . .

▶ Tackle �real� case studies: MPI, cache coherence protocols, . . .

21 / 22

	Introduction
	Programming Language
	Contracts
	Separation Logic
	Conclusion
	Semantics

