Proving Copyless Message Passing

Jules Villard® Etienne Lozes! Cristiano Calcagno?

115V, ENS Cachan, CNRS

2|mperial College, London

APLAS'09 Conference
15 December 2009

Introduction

Programming Language

Contracts

Separation Logic

Conclusion

Qutline

Language’s Specifications

We want to model programs with the following features:
» Explicit memory manipulation (no garbage collection)

» Copyless, asynchronous message passing

e Instead of copying the contents of the message, send a pointer
to it and transfer ownership
e Assumes a shared memory

1/ 22

v

v

What to Prove

are interested in the following properties:

no memory fault
no races
no memory leaks

safe communications

2 /22

Proving Copyless Message Passing Programs

» We mix separation logic and contracts

e separation logic gives us safety properties
e contracts give us liveness properties

» the combination of the two gives us something more than the
two separately (e.g. no memleaks)

3 /22

Qutline

Programming Language

v

v

v

v

Communication Model

Channels are bidirectional and asynchronous
channel = pair of FIFO queues

Channels are made of two endpoints
similar to the socket model

Endpoints can be allocated, disposed of, and communicated
through channels
similar to the m-calculus

Communications are ruled by user-defined contracts
similar to session types

Inspired by Sing#, the language of the Singularity OS
[Fahndrich & al. '06]

4 /22

Message Passing with copies

\<

send(cell,e,m);

5
i
v

z—left = receive(cell,f);

Message Passing with copies

\<

send(cell,e,m);

5
i
v

z—left = receive(cell,f);

Message Passing with copies

send(cell,e,m);

5
i
v

z—left = receive(cell,f);

Message Passing with copies

send(cell,e,m);

5
i
v

z—left = receive(cell,f);

Message Passing with copies

send(cell,e,m);

5
i
v

z—left = receive(cell,f);

Message Passing with copies

send(cell,e,m);

\
o/] W

z—left = receive(cell,f);

Message Passing with copies

/

£

\

N

send(cell,e,m);

/ \
o

z—left = receive(cell,f);

Copyless Message Passing (shared memory)

5
[
K2

\

send(cell,e,m);

z—left = receive(cell,f);

Copyless Message Passing (shared memory)

5
[
K2

\

send(cell,e,m);

z—left = receive(cell,f);

Copyless Message Passing (shared memory)

5
[
K2

\

send(cell,e,m); z—left = receive(cell,f);

Copyless Message Passing (shared memory)

5
[
K2

\

send(cell,e,m); z—left = receive(cell,f);

Copyless Message Passing (shared memory)

send(cell,e,m);

z—left = receive(cell,f);

DA

6 /22

Copyless Message Passing (shared memory)

send(cell,e,m);

z—left = receive(cell,f);

DA

6 /22

Example

message cell put(e,x) {
send(cell,e,x);
put_get () { }
local e,f,x;
(e,f) = open(C);

x = new(); get (£) {
put(e,x) || get(f); local y;
close(e,f); y = receive(cell,f);
} dispose(y);
}

7 /22

Qutline

Contracts

Contracts

Contracts dictate which sequences of messages are admissible.

» It is a finite state machine, whose arrows are labeled by a
message's name and a direction: send (!) or receive (7).

» Dual endpoints of a channel follow dual contracts

(C = C[? +1)).

8 /22

Contract of the Example

message cell
contract C {
initial final state start
{ 'cell -> start; }

put_get () {
local e,f,x;
(e,f) = open(C);
x = new();
put(e,x) || get(£f);
close(e,f);

put (e,x) {

}

send(cell,e,x);

get (£) {

}

local y;
y = receive(cell ,f);
dispose(y);

C

lcell

J

9 /22

Contract of the Example

message cell put (e,x) {
contract C { send(cell,e,x);

initial state start ¥

{ 'cell -> end; }

final state end {} get (£) {

} local y;
y = receive(cell ,f);

put_get O { dispose(y);

local e,f,x; }

(e,f) = open(C);

x = new(); C

put(e,x) || get(£f);

lcell
close(e,f); m

9 /22

Leak-Free Contracts

Leak-Free Contract

A contract is leak-free if for all communications, whenever two
endpoints of a channel following the contract are in the same final
state, then the message queues are empty.

» Determining whether a given contract is leak-free or not is
undecidable.

» We rely on simple sufficient conditions for a contract to be
leak-free.

10 / 22

Properties of Contracts

Properties of Contracts

Properties of Contracts

Properties of Contracts

Qutline

Separation Logic

Separation Logic

Assertion Language

Syntax
E = x|neN expressions
A= E=EKE|E#E stack predicates
| empy, | E1 — Ep | list(E) heap predicates
| 3x.A| A1 ANAx | 2A | AL x Ay formulas
Semantics

(S, h) = E1 = E2 iff [[El]]s = [[Ez]]s
(s,h) E empy iff dom(h) =10
(s,h) E Ey— Ey iff dom(h) = {[E1]s} & h([Ei]s) = [E2]s

list(E) £ (E =0 Aempy) V (3x. E — x * list(x))

13 /22

Assertion Language

Syntax
E = x|neN expressions
A= E=EKE|E#E stack predicates
| empy, | E1 — Ep | list(E) heap predicates
| 3x.A| A1 ANAx | 2A | AL x Ay formulas
Semantics

(S,h) E A AA iff (S, h)lZAl & (S, h)':Az
(s,h)E —A iff (s,h) A
(S, h) E A x Ay iff dhq, ho. dom(hl) N dom(hg) =0
& h=h1Uhy
& (S, hl) = A1 & (S, h2) E A2

13 /22

Assertion Language (extension)

Syntax (continued)

A = ...
| emp,, | E¥5(C{a}, E')

Intuitively E%5(C{a}, E’') means :
» E is an allocated endpoint

> its peer is E’

v

it is ruled by contract C

v

it currently is in contract state a

endpoint predicates

14 / 22

Message Annotation

» We have to know the contents of messages

» Each message m appearing in a contract is described by a
formula I, of our logic.

» |, may refer to two special variables:

e val will denote the location of the message in memory
e src will denote the location of the sending endpoint

> Im(x, f) 2 Ip[vale—x, srce—f]

15 / 22

Proof System of Standard Separation Logic

Standard Hoare Logic

{Ayp{A}Y {A} P {B}
{A} p;p’ {B}

Local Reasoning Rules

{A} p {B} {A}p{B} {A} P {B}
{AxF} p{Bx*F} {Ax A’} p||p’ {Bx* B’}

Small Axioms
{A} x = E {A[x+xX] A x = E[x+X']}

{emp} x = new() {Iv.x — v}

16 / 22

Proof System (extended)

Small Axioms for Communications

Open and Close rules:

i = init(C)
{emp} (e,f) = open(C) {e®¥(C{i},f) x FES(C{i},e)}

a € finals(C)
{e™5(C{a}, f)* F=¥(C{a},e)} close(e,f) {emp}

18 / 22

Small Axioms for Communications

Receive rule:

a-"beC
{e™5(C{a}, f)} x = receive(m, e) {eF5(C{b},) * Im(x,)}

18 / 22

Small Axioms for Communications

Send rules:

a-"pbeC
{e¥5(C{a}, =) * In(E, e)} send(m,e,E) {EXS(C{b},—)}

a-"pbeC
{eB5(C{a}, =) * (e¥5(C{b},—) = Im(E,e€))} send(m,e,E) {emp}

18 / 22

Soundness

Theorem 6 (Soundness for Copyless Message Passing)

If a Hoare triple {A} p {B} is provable and the contracts are leak
free, then if the program p starts in a state satisfying A,

1.

@ o o> 0

contracts are respected

p does not fault on memory accesses

p does not leak memory

if p terminates, the final states satisfy B
there is no race

no communication error occur

19 / 22

Soundness

Theorem 6 (Soundness for Copyless Message Passing)

If a Hoare triple {A} p {B} is provable and the contracts are leak
free, then if the program p starts in a state satisfying A,

1.

@ o o> 0

contracts are respected

p does not fault on memory accesses

p does not leak memory thanks to contracts!
if p terminates, the final states satisfy B

there is no race

no communication error occur thanks to contracts!

19 / 22

heaps that hop!

[TACAS'10] Tracking Heaps that Hop with Heap-Hop

http://www.lsv.ens-cachan.fr/"villard/heaphop/

http://www.lsv.ens-cachan.fr/~villard/heaphop/

Qutline

Conclusion

Conclusion

In this Talk

» Formalization of heap-manipulating, message passing programs
with contracts

» Contracts help us to ensure the absence of memory leaks
» Proof system

» Tool to prove specifications: Heap-Hop

21/ 22

Conclusion

In this Talk

» Formalization of heap-manipulating, message passing programs
with contracts

v

Contracts help us to ensure the absence of memory leaks

v

Proof system

v

Tool to prove specifications: Heap-Hop

v

Not in this talk: Semantics, based on abstract separation logic

21/ 22

Conclusion

In this Talk

» Formalization of heap-manipulating, message passing programs
with contracts

v

Contracts help us to ensure the absence of memory leaks

v

Proof system

v

Tool to prove specifications: Heap-Hop

v

Not in this talk: Semantics, based on abstract separation logic

In a Future Talk

» Contracts help us to ensure the absence of deadlocks
» Enrich contracts with counters, non determinism, . ..

» Tackle “real” case studies: MPI, cache coherence protocols, ...

21/ 22

	Introduction
	Programming Language
	Contracts
	Separation Logic
	Conclusion
	Semantics

