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In this report we describe the last syntactic and semantic changes to the EVA pro-
tocol specification language [3] as well as the modifications of the EVA translator.
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1 Translator package

The purpose of the translator of the EVA project [3] is to compile a high level specifi-
cation of a security protocol written in the LAEVA language into a model that can be
handled by all the verification tools of the project.

LAEVA has been designed [4] as a common protocol specification language for
all the partners (and developers of verification tools) of the EVA project and follows
the main characteristics of theidealizeddescriptions of protocols found in the papers
concerned with security protocol verification, starting from the BAN logic paper [1].
This description language focuses on the form of the messages exchanged during the
protocol, rather than on the actions of the processes sending and receiving the messages
(we call such a presentationa la BANbelow). While this presentation has the advantage
of conciseness and is generally sufficient for discussions, a specification at a lower
level, with description of the processes, is required for formal automatic verification
of protocols. We call such a low level specification amulti-processpresentation of a
protocol.

The low level language for compiled protocols specifications is CPL ([4]) a syn-
tax a la LISP which permits to describe (non-ambiguously) several communicating
processes representing the principal of a protocol. CPL’s syntax and semantics are
formally defined in [4].

1.1 Main changes to the previous version

The version 6 of the EVA translator offers, to summarize, the following main changes:

• the LAEVA language, also calledconcrete syntaxor input syntax, has been
modified following in particular remarks and demands of the developers of Her-
mes [6, 7] (Section2),

• anabstract syntaxis defined in this version as a collection of abstract data types,
presented in a programming interface, and used to store both the parsed “a la
BAN” and the compiled “multi process” forms of a protocol specification (Sec-
tion 3). Note that in [4], the term abstract syntax is used for CPL; here, we call
CPL (the modified version presented in Section5.2) an output syntax. How-
ever, extracting a CPL program for the abstract syntax is just a matter of pretty
printing.

• the semantics, defined in [4] for CPL is adapted here and defined for theabstract
syntaxin Section4.

The purpose of the “abstraction” of the abstract syntax (compared to CPL) and of
its presentation in a programming interface is to improve the usability of the translator
and its code (see Figure1). From the user point of view, a command line which takes
as input a specification written in LAEVA and prints its translation in CPL is still
possible (see Section1.3, but other output formats can be added as options, and at low
development cost (Section5).

From the developer point of view, it is possible to call the translator from the code
of e.g. a protocol verification tool, using the data types of the abstract syntax, (see
Section1.4for a short description of the translator modules), and this can prevent from
having to write a parser for CPL.

From now on, a protocol specification in abstract syntax is called anabstract spec-
ification.
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Figure 1:Architecture and usage of the EVA translator v.6

1.2 Installation

The package of the EVA translator contains:

• the documented source code of the translator and a makefile,

• the latex source of the translator documentation (in directorydoc ), and scripts to
extract latex file from the some part of source code, like grammars (produce this
document),

• some examples and test files in LAEVA.

To compile the translator and the documentations (refer to the fileREADME) go to
the directory where the translator source where unpacked, and typemake. GNU make
andOCAML v. 3.06 are required for the compilation

To produce the documentation (translator guide and html source documentation),
in the same directory, typemake doc . The guide, in postscript and pdf (EVAtrans6.ps
andEVAtrans6.pdf ) is left in directorydoc , and the html files of the APIs in direc-
tory html . The guide and the APIs documentation can be produced separately by the
respective commandsmake rapport andmake html .

LATEX2ε, dvips anddvipdfm are required in order to produces the translator’s guide
andocamldoc (OCAML v. 3.06) is necessary for building the html documentation of
the sources.

1.3 Command line

The compilation leaves an executableevatrans in the current directory1 which can be
called as follows:

1evatrans is actually a symbolic link to a commandeva2cpl .
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evatrans [options] input.eva

The options are the following:

• -cpl prints the compiled protocol in CPL syntax on the standard output

• -eva pretty-prints the compiled protocol in the LAEVA syntax (with additional
syntax for the multi-process protocols) on the standard output

• -horn pretty-prints the compiled protocol as a set of horn clauses

• -tptp pretty-prints the compiled protocol as a set of horn clauses in TPTP format

• -trace verbose mode (prints debug information)

• -help prints an usage message and exit

The options--eva and --cpl are exclusive, only the last is taken into account. By
default, the compiled protocol is not printed, and the translator only returns an error
message or nothing if the compilation was successful.

1.4 Translator sources and API

We shall describe here briefly the organization of the sources of the translator and its
main functionalities.

• a parser (moduleevaparse ), generated byocamlyacc, reads a protocol specifi-
cation written in LAEVA (Section2) and stores it in a structure of the abstract
syntax (Section3.3.1). Hence, parsing produces a new abstract specification.

• the different kinds of identifiers (e.g. parameters or aliases, see Section3) are
stored in different structures in the abstract syntax, whereas they can not be dis-
tinguished at parse time. Hence, an additional conversion (functioncoerce_spec
of moduletranslator ) is necessary after parsing (see Section3.3.2for more
details).

• the abstract syntax is a strongly typed language. The moduletypes is for type
checking. The type discipline of the LAEVA concrete syntax is slightly differ-
ent from the one of the abstract syntax (see Section4.1). Indeed, the tuples of
elements of various types are allowed in LAEVA and not in the abstract syntax.
Hence, during the compilation of an LAEVA specification in abstract syntax, like
in previous versions [3], some coercion symbols (see Section4.3.3) are added by
the functioncoerce_spec (in moduletranslator ) to the terms to ensure their
weel-typingness.

• some functions (in moduletranslator ) permit to check the non-syntactic re-
strictions on the LEVA language presented in Section2.4.

• The functiontranslate of the moduletranslator converts an abstract speci-
fication of a protocol presented “a la BAN” (all the principal programs presented
in one, see Section3) into an abstract specification with a multi-process presen-
tation of the protocol (list of separate programs, one for each principal). More
details on this module are given in Section3.3.5.
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• several modules*pp are given for pretty printing an abstract specification into
special formats (in particular CPL, see Section5).

When they are chained in the above order (ending with the CPL pretty printer), these
functions of this version of the translator, like in the other versions, print a CPL protocol
specification which is the (multi-process) translation of a LAEVA specification given
in an input file in LAEVA syntax.

1.5 Error messages

A protocol specification given as input to the translator must conform to the LAEVA
syntax and to the additional restrictions described in Section2.5.

Otherwise, the translator will fail with an error message. There is one specific error
message for each of the restrictions (marked with a⇒) of Section2.5.

1.6 Output syntaxes

Several pretty-printing formats have been implemented. The following ones are of
particular interest:

• an extended LAEVA format (Section5.1). This ouput format is proposed for
information and debugging purposes (rather than for an input format for verifi-
cation tools).

• a CPL format with the output syntax of Section5.2,

• set of Horn clauses to be used by first order theorem provers.

The definition of the abstract syntax leaves many other possibilities, like for instance
(conditional) rewrite systems etc.

However, the abstract syntax and the modular architecture of the translator have
been designed to permit to the developers of tools in the EVA project to reuse the
translators modules directly in their code, preventing them from the burden of parsing
CPL files.

2 LAEVA Input Syntax

A protocol specifications in the LAEVA concrete syntax contains, to summarize:

• the declarations of the protocol identifiers,

• a description of the messages exchanges during an execution of the protocol,

• some other declarations more specific to the verification procedures:

– the declarations of the identifiers representing values of domain of the pro-
tocol execution,

– a description of the initial state of the system to be verified (number of
sessions of the protocol in parallel, and initial local state of every principal
in every session),

– the hypothesizes (formulas) concerning the initial state of the of the hostile
environment,

– the security properties to verify.

5



2.1 Main changes to the previous version

The main syntactical changes to the LAEVA input language w.r.t. the previous ver-
sion [3] are:

• the addition of a qualifierconstant or parameter for the declaration of identifiers.
See Section4 for their respective meaning,

• extended syntax for the declaration of sessions,

• special and restricted form for the declaration of values which instantiate the
initial states of principals in the sessions declarations,

• syntax of Horn clauses for the formulas, both forassume formulas describing
the initial state of the hostile environment and for theclaim formulas defining the
security properties to verify.

2.2 Identifiers

ID An identifier is a non-empty sequence of letters (’a’ to ’z’ and ’A’ to ’Z’), digits,
and the underscore character ’_’, starting with a letter.

INT A integer literal is a non-empty sequence of digits.

LABEL A label is either a an identifier immediately followed by a dot character (ID.)
or an integer literal immediately followed by a dot character (INT.).

2.3 Keywords

The following character sequences and identifiers are reserved:

( ) { } [ ]
, ; : = ^ *
_ -> => == != :=
% @ "
alias assume asym_algo axiom basetype case
claim constant everybody false fresh hash
honest keypair knows number parameter principal
secret session sym_algo switch value

The characters ’, ’ and ’; ’ are right associative.

2.4 Extra restrictions

Some restrictions on the LAEVA language checked by the translator are not of a syn-
tactical nature. They are marked with a⇒ in the LAEVA grammar given in Section2.5.

If one of such conditions fails, the translator will stop with an appropriate error
message on the standard output.
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2.5 Grammar

2.5.1 Specification

An EVA specification, contains in this order:
a label (the protocol name)
the declaration of the specification identifiers, aliases, base types, principals knowl-
edge, axioms,
a presentation a la BAN of the protocol messages,
the declaration of the identifiers used to construct the sessions values,
the declaration of sessions (principals initial state)
the formulas:assume formulas to define the initial state of the environment andclaim
formulas to be verified

spec ::=

ID declarations block value_declarations sessions statements EOF

2.5.2 Type identifiers

type_id ::=

’principal’

| ’number’

| ’asym_algo’

| ’sym_algo’

| ID

2.5.3 Declarations

reversed list of declarations.
⇒ every symbol declared here must not be declared twice in the sectionsdeclara-

tions andvalue_declarations

declarations ::=

declarations declaration

| ’ ’

declaration

declaration ::=

typing_declaration declaration of first order or functional identifiers
| ’alias’ ID ’=’ atomic_term_or_ciphertext

declaration of global alias

⇒ the ID must be distinct from ’I’ (intruder’s name)
| ids ’;’ ’alias’ ID ’=’ atomic_term_or_ciphertext

declaration of local alias

⇒ the ID must be distinct from ’I’ (intruder’s name)

| ’basetype’ ID declaration of base type
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⇒ the ID must be distinct from ’I’ (intruder’s name)

| ’everybody’ ’knows’ tuple initial knowledge common to every principal

| ID ’knows’ tuple initial knowledge of principalID

⇒ ID must be declared as a first order identifier of type
principal

| ’axiom’ atomic_term_or_ciphertext ’=’ atomic_term_or_ciphertext optional_quantification
global equational axiom

⇒ every leave in theterms must be an variable of the
optional_quantification

⇒ both terms (members of the atom) must have the
same type

quantification for the formulas (assume) andaxiom
⇒ the symbols are bounded, they can be declared elsewhere in adeclaration or

value_declaration
⇒ every (variable) symbol must occur at most once in quantification

optional_quantification ::=

’[’ quantified_vars ’]’

| ’ ’

non-empty reversed list of universally quantified variables

quantified_vars ::=

quantified_var

| quantified_vars ’,’ quantified_var

universally quantified variable with optional type
⇒ the default type isnumber

quantified_var ::=

ID

| ID ’;’ type_id

type declaration for identifiers

typing_declaration ::=

scope ids_decl ’;’ type_id declaration of first order identifiers
| scope ID ’(’ type_list ’)’ ’;’ type_id optional_hash optional_secret

declaration of functional identifier

⇒ the ID must be distinct from ’I’ (intruder’s name)
| scope ’keypair’ optional_encryption_algorithm ID ’,’ ID optional_type_list ’;’ type_id

declaration of a pair of asymmetric keys, bothIDs
can be first order or functional symbols.
note: nohash keyword, every keypair is assumed to be
hash.
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⇒ the two IDs (public and private keys) must be dis-
tinct

⇒ the twoIDs must be distinct of ’I’ (intruder’s name)

non empty reversed list of identifiers

ids ::=

ID

| ids ’,’ ID

non-empty reversed list of identifiers for declaration

ids_decl ::=

id_decl

| ids_decl ’,’ id_decl

first order identifier declared with freshness

id_decl ::=

’fresh’ ID fresh first order identifier:

⇒ the ID must be distinct from ’I’ (intruder’s name)
⇒ the ID must be declared with thescope parameter

| ID non fresh first order identifier:

⇒ the ID must be distinct from ’I’ (intruder’s name)

reversed list of types

type_list ::=

non_empty_type_list

| ’ ’

non-empty reversed list of types

non_empty_type_list ::=

type_id

| non_empty_type_list ’,’ type_id

list of types

optional_type_list ::=

’(’ type_list ’)’

| ’ ’

optional qualifier of one-way functions

optional_hash ::=

’hash’

| ’ ’
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optional qualifier of secret functions

optional_secret ::=

’secret’

| ’ ’

quality of identifier

scope ::=

’constant’ global constant

| ’parameter’ session parameter

invocation of an encryption algorithm
⇒ must have an algorithm type

optional_encryption_algorithm ::=

’ˆ’ atomic_term the atomic_term describes a symmetric or asymmetric
key algorithm

| ’ ’ default symmetric key algorithm

2.5.4 Protocol messages

protocol or sub-protocol

block ::=

’{’ messages ’}’

reversed list of instructions

messages ::=

messages message

| ’ ’

message label

label ::=

LABEL

protocol instruction
everyterm andatomic_term_or_ciphertext in the instruction:
⇒ can contain (at leaves positions) first order symbols, and functional symbols, and

key symbols, declared either withscope constant or parameter
⇒ can contain declared alias symbols
⇒ must not contain located variables
⇒ must not contain identifiers declared as values
⇒ can contain ’%’ (Lowe’s notation)

message ::=

label ID ’->’ ID ’;’ term sending/receiving message
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⇒ the twoID’s (sender and receiver) must be declared
as first order identifiers with typeprincipal

| ID ’;’ ID ’==’ atomic_term_or_ciphertext
equality test

⇒ the firstID must be declared as first order identifier
with typeprincipal

⇒ the secondID must not be known to the firstID (call
it r), i.e. it must not have be assigned in the local
state ofr at this point.

| ID ’;’ ID ’:=’ atomic_term_or_ciphertext
local assignment

⇒ the firstID must be declared as first order identifier
with typeprincipal

⇒ the secondID must not be known to the firstID (call
it r), i.e. it must not have be assigned in the local
state ofr at this point (reassignements are not al-
lowed).

| block sub-protocol

| ’switch’ atomic_term_or_ciphertext ’{’ cases ’}’
conditional

reversed list of cases

cases ::=

cases case

| ’ ’

conditional branching

case ::=
’case’ atomic_term_or_ciphertext ’;’ block

2.5.5 Terms

term

term ::=

tuple

non-empty reversed list of terms

tuple ::=

atomic_term_or_ciphertext

| tuple ’,’ atomic_term_or_ciphertext

non-empty parenthesized reversed list of terms

non_empty_term_list ::=
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’(’ tuple ’)’

parenthesized reversed list of terms

term_list ::=

’(’ ’)’

| non_empty_term_list

atomic term

atomic_term_or_ciphertext ::=

atomic_term

| ’{’ term ’}’ ’_’ atomic_term optional_encryption_algorithm
ciphertext

| ’[’ term ’]’ ’_’ atomic_term optional_encryption_algorithm
signature

| atomic_term_or_ciphertext ’%’ atomic_term_or_ciphertext
schizo-notation a la Lowe

⇒ ’%’ is not allowed inside the terms

| ID ’@’ ID located term

⇒ for formulasclaim only
⇒ the secondID must be declared as first order identi-

fier with typeprincipal
⇒ the first ID must be declared as first order or func-

tional or key identifier
⇒ the type of the firstID only is considered in type

evaluation

atomic term

atomic_term ::=

ID term_list function call

⇒ ID must be declared as functional symbol or func-
tional member ofkeypair

⇒ the length of theterm_list must match the declared
signature ofID (use parenthezing tuples to apply
function to more arguments).

⇒ the types of terms in theterm_list must match the
declared signature ofID

| ID identifier

⇒ ID must be declared as first order symbol or value

| non_empty_term_list singleton list for optional parenthezing of tuples
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2.5.6 Declaration of values (domain constructors)

reversed list of value declarations for instantiating the sessions
⇒ the value identifiers must not be declared otherwise

value_declarations ::=
value_declarations value_declaration

| ’ ’

non-empty reversed list of values identifiers

values ::=

ID

| values ’,’ ID

declaration of the symbols used to construct the terms of interpretation domain,
they can be used below to instanciate the sessions declared

value_declaration ::=

’value’ values ’;’ type_id declaration of nullary value symbols

| typing_declaration declaration of constructor for values

⇒ it must be a declaration of functional or key identi-
fier (not first order id)

⇒ thescope of declaration must beconstant

2.5.7 Sessions

reversed list of parallel sessions
(initial state of the principals)

sessions ::=

sessions session

| ’ ’

Session definition

session ::=

’session’ ’*’ arbitrary number of sessions over arbitrary domains
| ’session’ ’*’ ’[’ session_constraints ’]’

arbitrary number of sessions with domain satisfying a
constraint

| ’session’ ’*’ ’(’ session_assignments ’)’
arbitrary number of copies of the given session

| ’session’ ’(’ session_assignments ’)’
fixed session

| label ’session’ ’(’ session_assignments ’)’
fixed session with label

non empty reversed list of constraints on domains for instantiating sessions
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session_constraints ::=

session_constraint
| session_constraints ’;’ session_constraint

constraint on domains for session instances

session_constraint ::=

ID ’==’ ID equality constaint

⇒ both IDs must be declared withscope parameter

| ID ’!=’ ID disequality constaint

⇒ both IDs must be declared withscope parameter

| ID ’;’ ’{’ tuple ’}’ membership constraint:
theparameter ID belongs to a finite set of values.

⇒ ID must be declared withscope parameter
⇒ the tuple is a sequence of terms can contain only at

leaves positions: values symbols, first order, func-
tional and key symbols declared withscope con-
stant.

| ID ’;’ predicate domain constraint:
the firstID is in the model of thepredicate.

⇒ ID must be declared withscope parameter

predicate symbol for membership constraints in session declarations

predicate ::=

’secret’ reserved unary predicate "secret"

| ’honest’ reserved unary predicate "honest"

| ID user predicate

⇒ ID, the name of the predicate, must not be a de-
clared identifer. it can only occur as a predicate
symbol in anatom of a statement.

non-empty list of assignments for the parameters of a session

session_assignments ::=

session_assignment

| session_assignments ’;’ session_assignment

instantiation of a parameter for the definition of a session

session_assignment ::=

ID ’=’ atomic_term_or_ciphertext
⇒ the ID must have been declared as a parameter

14



⇒ theatomic_term_or_ciphertext can contain (at leaves
positions) either: value symbols, first order, func-
tional and key symbols declared withscope con-
stant, ’ I’, the name of the intruder, or aliases to
terms of the above form

⇒ theID andatomic_term_or_ciphertext must have the
same type

2.5.8 Formulas

reversed list of hypotheses and properties

statements ::=

statements assumption

| statements claim

| ’ ’

hypothesis on the initial state of the environment

assumption ::=

’assume’ formula optional_quantification

property to prove

claim ::=

’claim’ formula

Horn clause

formula ::=

optional_label atom

| optional_label atoms ’=>’ ’false’

| optional_label atoms ’=>’ atom

optional formula name

optional_label ::=

label

| ’ ’

reversed list of atoms

atoms ::=

non_empty_atom_list

| ’ ’

non-empty reversed list of atoms

non_empty_atom_list ::=
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atom
| non_empty_atom_list ’,’ atom

atomic proposition.

Every term in the folloing atoms must be such that:
⇒ in assume: every leave in theterm must be a protocolconstant, a declaredvalue,

or a quantified variable.
⇒ in claim: every leave in theterm must be a protocolconstant, a declaredvalue,

or a located variable
⇒ in both: theterm must not contain ’%’ (Lowe’s notation)

atom ::=
atomic_term_or_ciphertext ’==’ atomic_term_or_ciphertext

term equality
| atomic_term_or_ciphertext ’!=’ atomic_term_or_ciphertext

term disequality
| ’secret’ ’(’ atomic_term_or_ciphertext ’)’

the intruder ignoresterm

| ’honest’ ’(’ atomic_term_or_ciphertext ’)’
the term is the identifier of an honest principal.

| ID ’(’ tuple ’)’ user defined predicate

⇒ ID, the name of the predicate, must not be an iden-
tifer declared elsewhere

⇒ there must be exactly one argument.

3 Abstract syntax

Theabstract syntaxis a collection of abstract data types used to store a protocol speci-
fication. It is defined exhaustively in Section3.2.

3.1 a la BAN and multi-process specifications

The structures used to store the declarations (dcl in Section3.2), the sessions (session)
and the hypotheses and claims (statement) mimic the corresponding definitions of the
concrete syntax LAEVA described in section2.

Concerning the protocol instructions and messages (typeprotocol) there are two
alternatives in the abstract syntax:

1 the first option is the same as in the concrete syntax, i.e. a presentation calleda la
BAN of all the programs of the different principals in a single list of instructions
and messages.

2 the second option, calledmulti-process protocolis a list of programs, one for
each principal. Every program contains a list of instructions and of send or
received messages. The received messages are patterns which may contain fresh
variables which are not declared in the specification (they correspond to cipher
or hashed text that a receiver cannot read). These variables (calledprivate) are
declared in the program.
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Note that a protocol specification in LAEVA syntax (Section2) can be straightfor-
wardly stored in a typespec, with a componentprotocol of the kind 1 (a la BAN)
above. The compilation procedure of the translator consists in converting this a la
BAN abstract specification into a multi-process abstract specification (see Section3.3).

3.2 Data types

We give below the complete description of the data types of the abstract syntax. The
typesID andLABEL are defined in Section2.2.
Top level container for a protocol specification in EVA syntax.

spec =

spec(ID, (dcl list), protocol, (dcl list), (session list), (statement list))
contents:

− protocol label

− the declarations of the spec

− the messages of the spec

− declarations of values (for the session domains) in
the spec

− the session defined in the spec

− the hypotheses and formulas in the spec

The label of messages, claims or sessions.

label =

nolabel empty label

| label(LABEL) other label

EVA types

type =

void NULL type

| principal predefined type "principal"

| number predefined type "number"

| aalgo predefined type for asymmetric encryption algo

| salgo predefined type for symmetric encryption algo

| talgo union of the two above

| usertype(ID) type of the specification = subtype of "number"

| basetype(ID) user type of the specification declared as basetype

quality of identifiers

scope =

cst global constant

| param session parameter

| private local variable in some principal ’s program
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value to be assigned to a identifier in a session declaration

value =

intruder special value for the intruder

| value(ID) arbitrary value

term =

term_id(ID) identifier declared as parameter or private variable, can
be a first order symbol or a function symbol or a keypair
symbol

| term_cst(ID) identifier declared as constant, can be a first order symbol
or a function symbol or a keypair symbol

| term_value(value) first order identifier, declared as value constant

| quantified(ID, type) quantified variable, only for axioms and assume formulas

| located(ID, ID) located variable var@role, only for claim formulas

− the firstID is a parameter

− the secondID is a role

| term_alias(ID, term) alias symbol

− name of the identifier

− type declared in quantification (default isnumber)

| cons(term list) tuple of terms

| app(ID, (term list)) application of function symbol

− root symbol

− arguments

| crypt(algo, term, term) cipher text

− algo

− key

− contents

| sign(algo, term, term) signature

− algo

− key

− contents

| p(term) coercion fromprincipal to number

| a(term) coercion fromtalgo to number

| sa(term) coercion fromsalgo to talgo

| aa(term) coercion fromaalgo to talgo

| u(ID, term) coercion from user typeτ to number

| pcent(term, term) Lowe’s notation

name of an encryption algorithm

algo =
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vanilla generic symmetric key algorithm

| algo(term) other algorithm, theterm is restricted to be a constant

description of the initial knowledge of a principal

knowledge =

know_id(ID) first order or functional identifier

| know_term(term) well formed term

declarations in the EVA protocol specification

dcl =
dcl_id((ID, bool) list, scope, type)

declaration of first order identifiers

− list of pairs of (identifier, flag) where the flag is true
iff the identifier is declared to be fresh

− scope common to all the identifiers of the list

− type common all the identifiers of the list

| dcl_fun(ID, scope, type, (type list), bool, bool)
declaration of functional identifier

− name of the function symbol

− scope of the identifier

− domain type

− list of the respective types of the arguments of the
function symbol

− flag true iff the function symbol is declared to be
hash (one-way)

− flag true iff the function symbol is declared to be
secret

| dcl_keypair(algo, ID, ID, scope, type, (type list))
declaration of a pair of asymmetric keys

− associated encryption algorithm

− name of first key

− name of second key

− scope of both keys

− (domain) type of both keys

− list of the respective types of the arguments of both
keys (can be empty)

| dcl_alias(ID, term) declaration of an alias

− name of the alias

− term for replacement

| dcl_localalias((ID list), ID, term)
declaration of local alias

| dcl_basetype(ID) declaration of user base type, specific to verifying tool
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| dcl_know(ID, (knowledge list))
declaration of initial knowledge of a principal,
for initialization of the components of its local state

− principal name
− list of initial knowledge

| dcl_every(term list) declaration of local state of every principal

| dcl_axiom(term, term, ((ID, type) list))
equational axiom

− left term
− right term
− quantified variables with types

| dcl_value((value list), type)
values (for session instantiation)

− list of value identifiers declared
− type common all the identifiers of the list

protocol instruction

instr =

skip do nothing

| msg(label, ID, ID, term) protocol message

− label
− sender
− receiver
− body

| assign( ID, ID, term) assignment of a principal’s local variable

− role
− variable
− value

| comp(ID, ID, term) comparison between two local variables in a principal’s
state

− role
− left variable
− right variable

| block(instr list) block of instructions

| switch(term, ((term, (instr list)) list))
switch case branching

specification of the messages of the protocol

protocol =

mp(instr list) presentation a la BAN of all the programs in one block

| program(ID, (ID list), (instr list)) list
list of programs presented separately.
For each program:
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− the principal to which the program is associated
− list of variables (in messages) private to the pro-

gram
− list of messages, which contain protocol constants

and parameters and program variables

constraints on the session instances

constraint =

eq_constraint(ID, ID) id == id

| neq_constraint(ID, ID) id != id

| membership_constraint(ID, term list)
id in val list

| domain_constraint(ID,ID) first id in the interpration domain of the predicate (second
id)

declaration of a system assignment for verification

session =

BANG
| constrained_sessions(constraint list)

| sessions((ID, value) list) copies of a single session - association list (var = value)

| session(label, ((ID, value) list))
single session

− label
− association list (var = value)

atom =

true

| false

| eq(term, term)
| neq(term, term)
| honest(term)
| secret(term)
| user_predicate(ID, term)

statement =
assume(((ID, type) list), (atom list), atom)

hypothesis

− quantification
− formula
− tail of Horn clause
− head of Horn clause

| claim(label, (atom list), atom)
formula to verify

− optional label
− tail of Horn clause
− head of Horn clause
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3.3 The translation procedure

We summarize here the role w.r.t. abstract specifications of the main functions of the
translator, which are presented in Section1.4.

3.3.1 Parsing

Theparsingstores a protocol specification given in a file in LAEVA syntax into a new
element of typespec of abstract specification. The third component of thespec, of
typeprotocol, has the formmp(instr list) (aka presentation a la BAN).

During parsing, some decorations are added to the data types of the abstract syn-
tax (Section3.2); they contain location information (in the original file containing the
LAEVA spec) and are used for the output error messages to the user.

3.3.2 Conversions

After parsing, every identifieri occurring in a term is stored in aterm_id(i), whatever
its declaration. The translator converts these subterms, according to the declaration of
the identifieri, as described in the following table:

declaration ofi conversion
parameter dcl_id([. . . ,(i,b), . . .],parameter,τ) term_id(i)

constant symbol dcl_id([. . . ,(i,b), . . .],constant,τ) term_cst(i)
value constant symbol dcl_value([. . . , i, . . .],τ) term_value(value(i))

intruder symbol I term_value(value(intruder))
alias dcl_alias(i, t) term_alias(i, t)

quantification in axiom dcl_axiom(t1, t2, [. . . ,(i, type), . . .]) quantified(i, type)
quantification in formula assume([. . . ,(i, type), . . .], . . .) quantified(i, type)

user type type occ. in adcl ERROR

3.3.3 Coercion symbols

As outlined in Section4.1.3, the type discipline for lists of terms, in terms of the form
cons(. . .) andapp(. . .), is not the same in the EVA concrete syntax and in the abstract
syntax, and the translator adds some coercions symbols to cast the terms of these lists
to the typenumber.

While adding coercion symbols, the translator checks whether in the terms of the
form app( f ,(term list)), the types of the arguments of theterm list conform to the sig-
nature in the declarationdcl_fun( f , . . .) of the symbolf .

3.3.4 Basic verifications, typing

After this, the translator performs some additional tests on the abstract specification ob-
tained, including the conformity to the extra restrictions described Section2.5(marked
with ⇒) and typing, following the definition of Section4.1.

3.3.5 Compilation

Then, compilation consists in converting theprotocol of thespec from the formmp(instr list)
(presentation “a la BAN” of the messages) into a list ofprogram(r, [x1, . . . ,xn], [instr1, . . . , instrn])
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(multi-process presentation), wherer is a role (as defined in Section4.2.2), x1,. . . ,xn

are the private variables of the program.
The main functions of thetranslationmodule are similar to the functioncompose

andexpect of CASRUL [2].
Moreover, the Lowe’s constructorspcent are eliminated. In every program (of the

protocol) a pcent(m1,m2) in a message sent is replaced bym1 and apcent(m1,m2) in a
message received is replaced bym2.

3.3.6 Printing

The translator can then dump the abstract specification obtained in a required abstract
syntax.

3.4 Restrictions

As explained above, a protocol specifications in LAEVA syntax given as input to the
translator, must conform to the restrictions described in Section2.4.

After translation, the abstract multi-process specification obtained fulfills the same
restrictions (translated from concrete to abstract syntax) and additional ones:

• all the restrictions described in Section2.5 for the terms in a protocol a la BAN
are still valid for the terms in a multi-process protocol,

• in the terms of the formcons(term list) andapp( f , term list), all the components
of the term lists must have the typenumber (as defined in Section4.1). Hence,
the declared signature of the function symbols is obsolete in the abstract syntax,
but it is checked at compilation (see Section3.3.3).

• the terms in a multi-process protocol contain no constructorpcent.

These conditions can be assumed safely by each program which uses an abstract spec-
ification produced by the translator functions.

4 Semantics

We propose in this section an adaptation of the semantics defined in [3] to the new
version of the abstract syntax. This operational semantics is defined by a infinite states
/ transitions model for a given protocol w.r.t. declared values.

We assume given a protocol specification in abstract syntax in multi-process form
(see Section3), conforming to the restrictions of Section3.4.

We shall define first a type discipline (Section4.1) and a domain of interpretation
for the specified protocol (Section4.3.4), as a multi-sorted term algebra defined essen-
tialy with the function symbols presented in Sections3.2. The states and transitions of
our model are presented in the respective Sections4.4and4.5. Finally, in Section4.6
we define the satisfiability of a claim formula in a given state.

4.1 Types

We shall define here a type system for an interpretation of the protocol specified.
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4.1.1 Reserved types

The typesprincipal, number, sym_algo, asym_algo andalgo are predefined in the ab-
stract syntax.

4.1.2 User and base types

The other types occurring in the protocol specification (type ’type_id’ in Section3.2)
are calleduser types. Every user type is a subtype ofnumber. Thebase typesare the
user types declared with the special declarationdcl_basetype.

4.1.3 Types of lists

The type of lists (tuples) ofnumbers isnumber. No other tuples are allowed in the ab-
stract syntax. Note though that polymorphic tuples are allowed in the LAEVA syntax.
The translator adds some coercions functions symbols (given in Section3.2) in order
to transform these tuples into tuples ofnumbers (see also Sections1.4, 3.3.4and4.3.6).

4.1.4 Types of functions

We assume that every function symbolf declared in the protocol abstract specification
with a declaration (see Section3.2):

dcl_fun( f ,scope,τ, type_list,h_flag,s_flag)

whereτ is a type of Sections4.1.1and4.1.2, takes a single argument which is a tuple of
numbers. Hence, the functionf has signaturenumber→ τ. This type is abbreviated by
τnumber, when f is declared has not one-way and not secret (h_flag= s_flag= false).
The typesτhnumber, τsnumber, τhsnumber are for functions declared respectively
as one-way and not secret (h_flag= true, s_flag= false), not one-way and secret
(h_flag= false, s_flag= true), one-way and secret (h_flag= s_flag= true). The dis-
tinction between these types is used below to define intruder decomposition rules (Sec-
tion 4.5.2).

4.1.5 Types of keys

We define another type denotedτkp for the two function symbolsf1, f2 declared with
typeτ in a key pair declaration of the protocol abstract specification:

dcl_keypair(algo, f1, f2,scope,τ, type_list)

The role of this type is explained in Section4.3.2below.

4.2 Protocol variables

Let X be the set of protocol variables defined in Sections4.2.1and4.2.1and4.2.4
below.
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4.2.1 Variables identifiers

A variable symbol is associated to each identifierx, f or k,k′ declared in the abstract
protocol specification with one of the following declarations (see Section3.2):

dcl_id((. . . ,(x, fresh_flag), . . .),scope,τx)
dcl_fun( f ,scope,τ f , type_list,h_flag,s_flag)
dcl_keypair(algo,k,k′,scope,τk, type_list)

wherescope6= CST. Indeed, see Section4.3.1, the identifiers of scopecst are consid-
ered as values of the interpretation domain. The types of the above protocol variables
areτx for x, τnumber

f , τhnumber
f , τsnumber

f or τhsnumber
f for f , according to the re-

spective values ofh_flagands_flag(see section4.1.4), τkp
k for k, k′ (see section4.1.5).

A variable symbol is also associated to each of theprivatevariablesx1,. . . ,xn in a
programprogram(r, [x1, . . . ,xn], [instr1, . . . , instrn]) of theprotocol part of thespec. The
type of every private variable isnumber.

4.2.2 Roles

Let us consider the following declaration of aprotocol in an abstract specification (see
Section3.2):

[
program(r1, [x1,1, . . .], [instr1,1, . . .]), . . . ,program(rn, [xn,1, . . .], [instrn,1, . . .])

]

Each identifier ofr1,. . . ,rn is called aroleof the protocol. Each element(r j , [x j,1, . . .], [instr j,1, . . .])
(1≤ j ≤ n) is called theprogramof the roler j (it is unique thanks to a restriction of
Section3.4).

4.2.3 Located variables

For each protocol variablex of Section4.2.1, and each roler of Section4.2.2, we
consider a unique new protocol variable denoted ’x@r ’.

4.2.4 Fresh variables

Finally we assume a infinite setX _freshor fresh variables disjoint from the variables
of Section4.2.1and4.2.1.

4.2.5 Aliases

The alias symbols are not protocol variables.
An alias symbola occurring in a subterm is understood as its syntactic replacement

by the aliased term (as defined in the corresponding declarationdcl_alias(a, t)). More
precisely, a the subtermterm_alias(a, t) in an abstract specification is interpreted ast
(see Section4.3.6).

4.3 Interpretation domain

The execution domain in our operational semantics is defined as a set of ground terms
built with the following function symbols. Almost all these symbols are declared in the
abstract specification, except two constructors for lists and coercions symbols.
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4.3.1 Declared constants function symbols

We associate a setC of constants (nullary function symbols) to the abstract specifica-
tion.

For each predefined or user typeτ (see Sections4.1.1and4.1.2), let values(τ) be
the set of identifiersi declared as values of typeτ in the abstract specification, with a
declaration (the fourth component of protocol specificationspec is reserved for values
declarations, see Section3.2):

dcl_value((. . . , i, . . .),τ)

Note thatdcl_value allow only to declare first order identifiers of a predefined or user
type (Sections4.1.1and4.1.2), but no functions, or keys symbols (Sections4.1.4,4.1.5).
Every constant ofvalues(τ) has typeτ.

Moreover, for each typeτ, letconstants(τ) be the set of identifiersi (andi′) declared
with typeτ by one of the declarations (kinddcl in Section3.2):

dcl_id((. . . ,(i, fresh_flag), . . .),cst,τ)
dcl_fun( f ,cst,τ, type_list,h_flag,s_flag)
dcl_keypair(algo, i, i′,cst,τ, type_list)

(thescope component must be equal tocst).
Note that the restrictions (Section3.4) on the specification ensure that the sets

values(τ) andconstants(τ) are pairwise disjoint. The constants ofconstants(τ) may
have typeτ (dcl_id) or τnumber, τhnumber, τsnumber, τhsnumber (dcl_fun, see sec-
tion 4.1.4) or τkp (dcl_keypair, section4.1.5).

The setC of constants associated to the abstract specification is the union of the
above sets, plus a reserved constantI, of typeprincipal, for the intruder’s name:

C :=
]

τ
values(τ)]constants(τ)]{I}

4.3.2 Other function symbols

We have the following other function symbols:

empty_list, nullary, of typenumber

cons, binary, of typenumber→ number→ number

oneappτ, binary, of typeτnumber → number → τ, for each predefined or user type
(of sections4.1.1 and 4.1.2). Similarly, we havehappτ of type τhnumber →
number→ τ, sappτ of typeτsnumber→ number→ τ, hsappτ of typeτhsnumber→
number→ τ,

oneappkeyτ, binary, of typeτkp → number→ τ,

crypt, ternary, of typealgo → number → number → number. The first argument is
the encryption algorithm, the second is the encryption key (note that it can be an
arbitrary term) and the third is the plain text to be encrypted.

For sake of simplicity, all the symbolsappτ, happτ, sappτ, hsappτ, appkeyτ are denoted
app below.
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4.3.3 Coercions symbols

In addition we have some unary symbols to perform types coercions (see remark in
Section4.1.3):

p of typeprincipal→ number,

a of typealgo→ number,

sa of typesym_algo→ algo,

aa of typeasym_algo→ algo,

uτ of typeτ→ number for each user typeτ of the abstract specification.

4.3.4 Domain

Lets callF the set of the above function symbols (of Sections4.3.1, 4.3.2, 4.3.3). The
domain of interpretation of the given protocol (abstract specification), w.r.t. to the given
set of values (see Section4.3.1) is the setT (F ) of well typed ground terms build on
the above signature.

We shall also consider below the terms ofT (F ,X ) with containing variables of
Section4.2.1.

4.3.5 Axioms

The domain is considered modulo the axioms declared withdcl_axiom (see Section3.2),
Note that the coercions functions are added by the translator to the terms of the

axioms too.

4.3.6 Terms of domain and abstract syntax

The translation betweentermsof the abstract syntax (i.e. elements of the data typeterm
in Section3.2) and terms of the above domainT (F ,X ) is straithforward. One only
need to encode lists ofterms by terms of the domain using the constructorsempty_list
andcons, and interprete located variables and aliases as expected.

More precisally, this coding is performed by the following recursive interpretation
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t of an abstractterm t into a term ofT (F ,X ):

term_id(x) := x∈ X
term_cst(c) := c∈ C

term_value(intruder) := I ∈ C
term_value(value(v)) := v∈ C

quantified(x, t) := xfresh∈ Xfresh

located(x, r) := x@r ∈ X
alias(x, t) := t

cons(t1, . . . , tn) := cons(t1,cons(. . .cons(tn,empty_list)))
app( f ,(t1, . . . , tn)) := app( f ,cons(t1,cons(. . .cons(tn,empty_list))))

crypt(a,k, t) := crypt(a,k, t)
sign(a,k, t) := crypt(a,k, t)

p(t) := p(t)
a(t) := a(t)

sa(t) := sa(t)
aa(t) := aa(t)
uτ(t) := uτ(t)

Note that there is no interpretation of the terms of the formpcent(t1, t2) since it is
assume (Section3.4) that there is no such terms in the abstract specifications.

4.4 States

4.4.1 Substitutions

Due to some syntactic constructions in LAEVA, we shall use a special notion of substi-
tutions in the definition of states below. Indeed, we call a substitution a mapping from
terms ofT (F ,X ) to terms ofT (F ,X ) (and not only from variables ofX to terms).
The reason is that terms are allowed in the declarationsdcl_know and that these decla-
rations are used in the construction of initial states (see Section4.4.6). The definition
domain of a substitutionσ is denoteddom(σ). The applicationtσ of a substitutionσ
to a termt ∈ T (F ,X ) is recursively defined by:

• tσ := σ(t) if t ∈ dom(σ),

• f (t1, . . . , tn)σ := f (t1σ, . . . , tnσ) otherwise.

Moreover, we consider only substitution which respect types, in the sens thatt andtσ
must have the same type, according to the definitions of Sections4.1, 4.2and4.3.

4.4.2 Processes

A processis a tuple made of:

• a unique session identifier, which is aLABEL in the sense of the LAEVA syntax
(see Section2),

• a role,

• a program counter, which is an index in the list of instructions ((instr list) in
Section3.2) of the program associated to the role in the abstract specification,
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• a substitution (well typed) from a finite subset ofT (F ,X ) into the protocol
interpretation domainT (F ) (as defined in Section4.3).

4.4.3 Predicates

The predicatesof the protocol are the predicates identifiers occuring in the formulas
(akastatement) of the abstract specification. They can be eithereq, neq, honest, secret,
or a user predicate symbolp occurring in an atom of the formuser_predicate(p, t).

4.4.4 States

A protocolstateis a pair(S ,I ) where:

• S is a set of processes,

• I is an interpretation of the predicates of the protocol: to each predicatep, it
associates a subset of the interpretation domainpI ⊆ T (F ).

4.4.5 Initial state: environment

We define the second part of an initial state as an interpretationI0 which satisfies every
assume formula of the abstract specification. Such an interpretation defines in partic-
ular a set of honest principalsI honest

0 , and a set of data initially known to the intruder
T (F )\ I secret

0 .
In order to fix a uniqueI0 from a given abstract specification, we make the follow-

ing assumptions on theassume formulas:

• every equality atom has the formeq(x,y) or eq(x,a) or eq(x, f (y,z)) wherex, y,
zare protocol variables anda, f are function symbols ofF (respectively nullary
and binary),

• every disequality atom has the formneq(x, t) wherex is a protocol variable and
t is a ground term.

With these restrictions, the setA of assume formulas can be transformed (by elimina-
tion of eq() andneq()) into a equivalent setA ′ of Horn clauses all the atom of which
are build with unary predicates. Hence,Io is defined as the smallest Herbrand model
of A ′.

4.4.6 Initial state: processes

Let P be a fixed infinite set of processes such that:

• for all (i, r, pc,σ) ∈ P , r is a role of the protocol,pc is 0 (the index of the first
instruction (instr in Section3.2) in the program ofr), the substitutionσ takes its
values in the protocol interpretation domainT (F ) and its definition domain is
exactly the set of terms of the list of terms` in the initial knowledge declaration
for the roler, dcl_know(r, `), in the abstract specification. According to the re-
strictions on the specification (Section3.4), there is at most one such declaration.
If there is no such declaration, then the domain ofσ is empty.

• P contains an infinite number of processes(i, r, pc,σ) (with different session
identifiers) for each triple(r, pc,σ) as above,
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• every two distinct processes(i1, r1, pc1,σ1),(i2, r2, pc2,σ2) ∈ P have different
session identifiers (i1 6= i2).

• freshness constraint: given any two distinct processes ofP , of respective substi-
tutionsσ1 andσ2, and for each protocol variablex declared asfreshin the spec-
ification, with a declaration of the form:dcl_id((. . . ,(x, true), . . .),parameter,τ),
if x ∈ dom(σ1)∩ dom(σ2), thenxσ1 6= xσ2 (the “nonce generator” is collision
free).

To each declarationd of kind session in the abstract specification (see Section3.2)
we associate a set of processesproc(d), defined as follows:

proc(bang) := P
proc(constrained_sessions(`)) :=

T
c∈` constrained(c)

constrained(eq_constraint(x1,x2)) :=
{(i, r, pc,σ) ∈ P

∣∣ if x1σ,x2σ are defined thenx1σ = x2σ}
constrained(neq_constraint(x1,x2)) :=

{(i, r, pc,σ) ∈ P
∣∣ if x1σ,x2σ are defined thenx1σ 6= x2σ}

constrained(membership_constraint(x,v)) :=
{(i, r, pc,σ) ∈ P

∣∣ if xσ is defined thenxσ ∈ v}
constrained(domain_constraint(x, pred)) :=

{(i, r, pc,σ) ∈ P
∣∣ if xσ is defined thenxσ ∈ I pred

0 }
proc(sessions(σ) := {(i, r, pc,σ′) ∈ P

∣∣ σ′ ⊆ σ}
proc(session(label,σ)) := {(i1, r1, pc,σ1), . . . ,(in, rn, pc,σn)

∣∣
every(i j , r j , pc,σ j) ∈ P , σ j ⊆ σ, r1, . . . , rn are the roles of the protocol}

In these definitions,σ′ ⊆ σ meansdom(σ′)⊆ dom(σ) andσ|dom(σ′) = σ′.
Note thatproc(session(label,σ)) is finite, whereasproc(sessions(σ)) is infinite, it is
an infinite set of copies of the processes inproc(session(label,σ)).

The initial set of processesS0 (first component of the initial state of the system)
is defined as the union of all the setsproc(d) for everysession declarationd in the
abstract specification.

4.5 Transitions

4.5.1 Inverse key

The inversek−1 of a termk (representing a cryptographic key) is defined as follows:

if k = app(i, `) andi is a symbol of typeτkp, for some typeτ, which was declared by:
dcl_keypair(algo, i, i′,scope,τ, type_list), thenk−1 = app(i′, `).

if k = app(i′, `) and i′ is a symbol of typeτkp, for some typeτ, which was declared
by: dcl_keypair(algo, i, i′,scope,τ, type_list), thenk−1 = app(i, `).

if k = cons(t,empty-list), thenk−1 = cons(t−1,empty-list).

otherwise,k−1 = k (k is a symmetric key).
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4.5.2 Intruder’s deductions

We assume that in each reachable stateS ,I ) of the protocol, the intruder’s knowledge
T (F )\I secret is saturated with the classical deduction rules of the Dolev-Yao model,
formalized by the following inferences. Each inference means that the conclusion, if
well typed, is added toE provided that the premises belong toE and are well-typed
terms.

a,m,k
Encrypt

crypt(a,k,m)
Empty

empty-list

m1,m2
Pair

cons(m1,m2)

m
Apply

app( f ,m)

In the ruleApply, the termf must have a type of the formτnumber or τhnumber (but
notτsnumber or τhsnumber). Hence, like in the previous version [3], the intruder is as-
sumed to be able to perform every non secret functions (including one way functions).

cons(m1,m2)
Unpair_L

m1

cons(m1,m2)
Unpair_R

m2
crypt(a,k,m),a,k−1

Decrypt
m

app( f ,m)
Invert

m

The ruleInvert applies only if the termf has a type of the formτnumber or τsnumber

(notτhnumber or τhsnumber). Hence, the intruder is assumed to be able to invert every
non-hash functions.

Extensions. Hence, the EVA project is restricted to the model of Dolev and Yao but
we may consider in the future some inference systems which entends the one above to
new capacities of the intruder.

4.5.3 Transitions

A transition from a state(S ,I ) of the protocol to a state(S ′,I ′) is possible iff there
is a process(i, r, pc,σ) ∈ S , and we are in one of the following cases concerning the
instruction (instr in Section3.2) at indexpc in the program of the principalr in the
abstract specification:

skip: I ′ = I , S ′ is obtained fromS by incrementingpc in the process(i, r, pc,σ) (see
below the procedure)

msg(l , r,x,m) (r sends a message):I ′ is defined asT (F ) \K ′ where K ′ is ob-
tained fromK := (T (F )\ I secret)∪{mσ} by saturation with the rules of Sec-
tion 4.5.2. S ′ is obtained fromS by incrementingpc in the process(i, r, pc,σ).
The translator ensures that if the abstract specification is obtained by a successful
compilation of a protocol in LAEVA syntax, thenmσ is ground.

msg(l ,x,x,m) (r receives a message) if there exists a ground termt ∈ T (F )\I secret

and a ground matchingσ′ of mσ by t (mσσ′ = t): S ′ is obtained fromS by
replacing(i, r, pc,σ) by (i, r, pc,σ]σ′) and incrementingpc in this process,I ′ =
I .

assign(r,x,m): I ′ = I , S ′ is obtained fromS by replacing(i, r, pc,σ) by (i, r, pc,σ]
{x 7→mσ}) and incrementingpc in this process.
The translator ensures that if the abstract specification is obtained by a successful
compilation of a protocol in LAEVA syntax, thenmσ is ground andx /∈ dom(σ).
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comp(r,x,m): I ′ = I , if xσ = mσ thenS ′ is obtained fromS by incrementing thepc
in the process(i, r, pc,σ). Otherwise, the process is deleted from§, giving S ′.

block(`): I ′ = I , S ′ is obtained fromS by incrementing thepc in the process(i, r, pc,σ)
to the index of the first instruction of the list`.

switch(t,((t1, `1), . . . ,(tn, `n))): I ′ = I , S ′ is obtained fromS as follows. Leti be the
smallest integer≤ n such thattσ = tiσ. If such i exists, thenpc is incremented
in the process(i, r, pc,σ) to the first instruction of the list̀i . Otherwise,pc is
changed to the first instruction following theswitch, if any, otherwise, the process
(i, r, pc,σ) is simply deleted from§.

Incrementation of the program counter: In a process(i, r, pc,σ), incrementing the
countermeans:

• if the instruction at indexpc is the last instruction of the program ofr, then the
process is deleted (from§ to obtainS ′).

• if the instruction at indexpc in the program ofr is the last instruction of an
instruction list in ablock, thenpc is changed to the index of the first instruction
following the block, if any. If there is no such instruction (theblock is the last
instruction of the program), then the process is deleted.

• if the instruction at indexpc in the program ofr is the last instruction of a case
of aswitch, thenpc is changed to the first instruction following theswitch, if any.
If there is no such instruction (theswitch is the last instruction of the program),
then the process is deleted.

• in any other case, thepc is incremented to the index of the next instruction in the
containing list (which can be an instruction list of ablock or an instruction list in
a case of aswitch, or the program itself).

Note that in these transitions, we do not care whether it is possible for a principal to
compose a message to send or to read a received message, according to the knowledge
he has gain in former steps and to the “one-way” or “secret” characteristics of functions
etc. All these issues are treated by the translator and at compile time and incorporated
in the programs of the abstract specification of the protocol (see [2]).

Extensions. In the EVA semantics, every transition(S ,I )→ (S ′,I ′) only affects the
interpretation of the predicatesecret (complement of intruder’s knowledge) inI . In
the future, we may wish to define semantics in which other predicates are modified
in transition. In particular, changes onhonest may be usefull for the verification of
tripartite electronic protocols.

4.6 Correctness of claim formulas

We define first the satisfaction of a formula of typeclaim by a process(i, r, pc,σ) and
an interpretationI .

According to Section2.5, the leaves of terms in literal ofclaim formulas can be pro-
tocol identifiers declared as constants, or declared values (hence in both cases constant
function symbols of the protocol interpretation domain, according to Section4.3.1), or
located variables (located(x, r) in Section3.2). The idea to define satisfiability w.r.t.
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process(i, r, pc,σ) and interpretationI . is to instanciate first the located variables in
the terms in the literal of the formula usingσ, and, if the terms obained are all ground,
to check the satisfaction of the formula obtained inI . But, as defined in Section4.3.6,
the located variables have the form ’x@r ’ and do not belong to the domain of any pro-
cess substitution. Hence, given a process(i, r, pc,σ), we define a subtitutionσr whose
domain is the set of located variables of Section4.2.3: for each located variable ’x@p’
such thatp = r andx∈ dom(σ), σr(x@p) = σ(x).

We say that a process(i, r, pc,σ) is compatible with aclaim formula iff for every
literal A of the formula, of the formatom_eq(t1, t2), or atom_neq(t1, t2), or pred(t1) for
some other unary predicate symbolpred:

• every located variablex@p in t1 or t2 belongs todom(σr),

• and botht1σr andt2σr are ground.

The satisfaction of the literals by a compatible process(i, r, pc,σ) and an interpre-
tationtI is defined as follows:

(i, r, pc,σ),I |= atom_eq(t1, t2) iff t1σr = t2σr

(i, r, pc,σ),I |= atom_neq(t1, t2) iff t1σr 6= t2σr

(i, r, pc,σ),I |= pred(t1) iff t1σr ∈ I pred

We say that an abstract specification of a protocol is correct iff for allclaim for-
mula φ of the specification, for all state(S ,I ) reachable (by transitions defined in
Section4.5.3) from the initial state (defined in Sections4.4.6and4.4.5), for all process
(i, r, pc,σ) ∈ S compatible withφ, we have(i, r, pc,σ),I |= φ.

5 Output syntaxes

5.1 Extended LAEVA syntax

This syntax reuses the syntax defined in Section2, with an additional syntax for the
multi-process presentations of protocols.

5.2 CPL

The new version of CPL [3] proposed here can be seen as a concrete syntax for the
abstract syntax of Section3, restricted to multi-process presentation of protocols (list
of repeat-process in CPL syntax).

We give below the grammar for this new version.
Une spécification CPL, d’abord, est la donnée de déclarations d’identificateurs

(Types), d’alias globaux (Values), d’axiomes (Axioms), d’hypothèses sur les connais-
sances initiales de l’intrus (Assumptions), de formules à prouver (Claims), et d’un en-
semble de processus (System).

Spec = protocole EVA, syntaxe CPL
compiled-spec(Types, Values, Axioms, System, Assumptions, Claims)

Types =
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types(Type-declaration∗) déclarations d’identificateurs

Type-declaration =

type(id, Scope, Type) déclaration d’identificateur
type(id, Scope, Type, "fresh")

déclaration d’identificateur frais
| type-shared(id, Scope, Type)

déclaration d’identificateur partagé (not used)

| value-type(id, Type) déclaration de valeur pour instances de sessions

Scope =

"constant"

| "parameter"

| "private"

| "quantified"

Values =

values(Alias∗) déclarations d’alias

Alias =

alias(id, Term) déclaration d’alias

Axioms =

axioms(Axiom∗) listes d’axiomes

Axiom =
axiom(Term, Term, Type, Type-declaration∗)

axiome, (lhs, rhs, type, variables quantifiées)

System =

system(Process∗) Le système (composition paralléle de processus)

Assumptions =

assume(Formula∗) Hypothèses

Claims =

claim(Formula∗) Formules à prouver

Type =

"principal" type d’ordre 1

| "number" type d’ordre 1

| "asym_algo" type d’ordre 1

| "sym_algo" type d’ordre 1

| "*algo*" type d’ordre 1

| id user type or basetype d’ordre 1

| function(id, id∗) type de fonction (inversible, non secrete)
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| one-way-function(id, id∗) type de fonction one-way

| secret-function(id, id∗) type de fonction secrète

| secret-one-way-function(id, id∗)
type de fonction secrète et one-way

Note: there is no type for the keypairs declared. Instead, as described in [3], we declare
a unique identifier associated to both keys of the pair, and we refer to aliases using
functionslambda-pubk andlambda-privk for the application of the keys.

Un processus PEVA peut être soit un processus simple, décrit par un graphe de
transitions, soit un processus en multi-session parallèle, qui est un nombre non borné
de processus simples décrits par le même graphe de transitions (lescopies), mis en
parallèle. Les transitions sont données comme une liste de triplets (source, cible, ac-
tion). Les actions sont décrites plus bas. Dans le cas de processus en multi-session
parallèle, Privates contient la liste des identificateurs qui contiennent des valeurs possi-
blement différentes d’une copie à l’autre; les autres identificateurs sont partagés entre
les copies. Finalement, chaque processus vient avec une liste de connaissances (Know),
qui sert à faire le lien entre expressions LAEVA et identificateurs correspondants à ces
expressions dans les processus PEVA.

Process =
process(id, state, Know, Transition∗)

processus simple (nom, label de départ, connaissances,
transitions)

| repeat-process(Privates, id, state, Know, Transition∗)
processus en multi-session parallèle (vars privées, role,
départ, connaissances, transitions)

Transition =

trans(state, state, Action) transition (source, cible, action)

state =

label état visible

| ‘%’ label état interne

Know =

knows(As∗) connaissances

As =

as(Term, Term) terme connu sous la forme: terme

Privates =

private(id∗) liste de variables privées

Action =

new(Pattern) création de nonce (unused in this version)

| let(Pattern, Term) pattern-matching (unused in this version)

| recv(Pattern) réception de message

| send(Term) émission de message
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| comp()

| assign()

| skip() action nulle

Term =

id variable

| crypt(Term, Term, Term) chiffrement (algo, texte, clé)

| tuple(Term∗) n-uplet

| p(Term) coercion principal→ number

| a(Term) coercion *algo*→ number

| sa(Term) coercion sym_algo→ *algo*

| aa(Term) coercion asym_algo→ *algo*

| vanilla() algorithme symétrique par défaut

| apply(id, Term∗) application de fonction définie

| hash-apply(id, Term∗) application de fonction one-way

| secret-apply(id, Term∗) application de fonction secrète

| hash-secret-apply(id, Term∗)
application de fonction secrète one-way

| apply-pubk(Term, id, Term∗)
appl. de constructeur de clé publique (algo, constructeur,
arguments) (not used, all key functions are assumed one-
way)

| hash-apply-pubk(Term, id, Term∗)
appl. de constructeur de clé publique one-way (algo, con-
structeur, arguments)

| apply-privk(Term, id, Term∗)
appl. de constructeur de clé privée (algo, constructeur,
arguments) (not used, all key functions are assumed one-
way)

| hash-apply-privk(Term, id, Term∗)
appl. de constructeur de clé privée one-way (algo, con-
structeur, arguments)

| lambda-pubk(Term, id) partie publique de clé (algo, clé)

| lambda-privk(Term, id) partie privée de clé (algo, clé)

| located(label, id, Term) terme vu par session/principal (label not significant in
this version)

Pattern =

id variable

| exact(Term) constante littérale

| crypt(Term, Pattern, Term) déchiffrement (algo, texte, clé)

| apply(id, Pattern∗) application de constructeur
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| secret-apply(id, Pattern∗) application de constructeur secret

| tuple(Pattern∗) n-uplet

| p(Pattern) extraction number→ principal

| a(Pattern) extraction number→ *algo*

| sa(Pattern) extraction *algo*→ sym_algo

| aa(Pattern) extraction *algo*→ asym_algo

| vanilla() algorithme symétrique par défaut

| apply-pubk(Term, id, Pattern∗)
appl. de constructeur de clé publique (algo, constructeur,
arguments)

| apply-privk(Term, id, Pattern∗)
appl. de constructeur de clé privée (algo, constructeur,
arguments)

Formula =

clause(Atom∗, Atom) Horn clause

| negative(Atom∗) negative Horn clause

Atom =

secret(Term)

| honest(Term)

| eq(Term, Term)

| neq(Term, Term)
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