Cosmos 1.0 Input File Grammar

Hilal Djafri

1 Syntax

Generic Syntax Let us start by the grammar of some common symbols before giving the
grammar of each input file.
A natural number <Integer>, a real number <Real> or string type <Str> are defined like this:

(Integer) ::= [0-9]+| [0-9]*
(Real) ::= ([0-9]+| [0-9]*[0-9]+)([eE][-+]?[0-9]+)?
(Str) ::= [a-zA-Z][a-zA-Z_0-9]*

All the symbols finishing by "Tag" refer to a tag of an object. These symbols are string type :
e <IConstTag>: A tag of a natural number constant.

e <RConstTag>: A tag of a real constant.

o <PTag>: A tag of a Petri net place.

o <TTag>: A tag of a Petri net transition.

e <LTag>: A tag of an automaton location.

e <VTag>: A tag of an automaton variable.

It is useful to define some integer constants <IConstant> or real constants <RConstant>
which can be used by other definitions:

(IConstant) ::= "const" "int" (IConstTag) "=" (Integer) ";"
(RConstant) ::= "const" "double" (RConstTag) "=" (Real) ";"

Some numerical attributes (marking values, transitions parameters, arcs multiplicity, vari-
ables rate, etc.) may be introduced as a function of numerical values (real and/or integer),
constants and/or Petri net places. Let us give the grammar of such functions:

The first kind of these function is <RFormula> for real formula. It intervenes numerical
values (integer or real) and constants (integer or/and real).

(RFormula) := (Real) | (RConstTag) | (IFormula) | (RFormula) (ArOP)
(RFormula) | "(" (RFormula) ")"

The second kind is <IFormula> for integer formula. It intervenes numerical values (integer
or real) and constants (integer or/and real) but its value should be always a natural number.

(IFormula) ::= (Integer) | (IConstTag) | (IFormula) (ArOpRes) (IFormula) | "("
(IFormula) ")" | "floor" "(" (RFormula) ")"

The third kind of functions is <MRFormula> for marking real formula. It intervenes numer-
ical values (integer or real), constants (integer or/and real) and Petri places.

(MRFormula) ::= (PTag) | (RFormula) | (MRFormula) (ArOp) (MRFormula) |
"(" (MRFormula) ")"

The last type of functions is <MIFormula> for marking integer formula. It intervenes nu-
merical values (integer or real), constants (integer or/and real) and Petri places but its value
should be always a natural number.

(MIFormula) ::= (PTag) | (IFormula) | (MIFormula) (ArOpRes) (MIFormula) |
"(" (MIFormula) ")" | "floor" "(" (RFormula) ")"

These, functions are defined with this set of arithmetic operators <ArOp> or a its restricted
set <ArOpRes> :

<Arop> = ||+n | n_n | Meptt | u/n | nan

(ArOpRes) == "+

won | "n_n | gt | nan
GSPN Syntax The definition of the Petri net consists of:

(GSPN) ::= {(IConstant) } {(RConstant) } (NT) (NP) (PList) (TList) (InitMarking)
(TransitionsDef) [(InArcs)] [(OutArcs)] [{InhibArcs)]

In the first part, some integer and /or real constants can be declared. The size of the Petri net
(number of transitions and places) must be declared.

(IConstant) ::= "const" "int" (IConstTag) "=" (Integer) ";"
(RConstant) ::= "const" "double" (RConstTag) "=" (Real) ";"
(NT) ::= "NbTransitions" "=" (Integer) ";" | "NbTransitions" "=" (IFormula) ";"
(NP) ::= "NbPlaces" "=" (Integer) ";" | "NbPlaces" "=" (IFormula) ";"
Then, the set of transitions and places must defined:
(PList) ::= "PlacesList" "=" "{" (PTags) "}" "}"
(PTags) ::= (PTag) | (PTags) "," (PTag)
(TList) ::= "TransitionsList" "=" "{" (TTags) "}" "}"
(TTags) ::= (TTag) | (TTags) "," (TTag)

After that, the initial marking is given. By default all the places contain zero token.

(InitMarking) ::= "Marking" "=" "{" (Inits) "}"
(Inits) ::= (Init) | (Init) "," (Inits)
(Init) == "(" (PTag) "," IFormula")"

The next step consists of a complete description of the transitions. Note that transitions
which exponentially distributed will be defined differently from those with other distributions.

(TransitionsDef) ::= "Transitions" "=" "{" (Transitions) "}" ";"
nn

(Transitions) ::= (Transition) | (Transitions) "," (Transition)
(Transition) ::= (Exp) | (NonExp)

A transition with an exponential distribution can be marking dependent parameter. A pri-
ority and a weight will be given. A service policy will be chosen.

(Exp) == "(" (TTag) "," "EXPONENTIAL" "(" (MRFormula) ")" "," (Priority)
"' (Weight) "," (Service) "," (Memory) ")" |"(" (TTag) "," "EXPONENTIAL" "("
(MRFormula) ")" "," (Priority) "," (Weight) "," (Service) ")"

(Service) = "SINGLE" | "INFINITE" | "MULTIPLE" "(" (integer) ")"

(Memory) ::= "ENABLEDMEMORY" | "AGEMEMORY"

A transition with non exponential distribution can’t be marking dependent parameters. A
priority and weight will be given. There is no service policy to chose (the only possible is single
service). Then A memory policy can be chosen, by default the policy is enabled memory:

(NonExp) == "(" (TTag) "," (Dist) "," (Priority) "," (Weight) "," (Memory) ")" |
"(" (TTag) "," (Dist) "," (Priority) "," (Weight) ")"

(Dist) := "IMMEDIATE" | "DETERMINISTIC" "(" (Real) ")" | "UNIFORM" "("
(Real) "" (Real) ")" "ERLANG" "(" (Integer) "," (Real) ")" | "GAMMA" "(" (Real)
"" (Real) ")" | "TRIANGLE" "(" (Real) "' (Real) "" (Real) ")" | "GEOMETRIC"
Vl(” <Real> |l,” <Real> H)” | HLOGNORMALH H(” <Real> Yl,” <Real> ”)”

The final part consists of introducing the different matrices of the net. Note that the arcs
multiplicity can be marking dependent.

<II‘1> = uInArCSH n_n n{u (InAI‘CS> n}n IV;H

(InArcs) ::= (InArc) | (InArcs) "," (InArcs)

(InArc) ::= "(" (PTag) "," (TTag) ")" | "(" (PTag) "," (TTag) "," (MIFormula) ")"
(Out) == "OutArcs" "=" "{" (OutArcs) "}" ";"

(OutArcs) ::= (OutArc) | (OutArcs) "," (OutArcs)

(OutArc) == "(" (TTag) "," (PTag))" | "(" (TTag) "" (PTag) "," (MIFormula)
H)”

(Inhib) ::= "InhibArcs" "=" "{" (InhibArcs) "}" ";"
(InhibArcs) ::= (InhibArc) | (InhibArcs) "," (InhibArcs)
(InhibArc) =:= "(" (PTag) "," (TTag))" | "(" (PTag) "," (TTag) "," (MIFormula) ")"

HASL Syntax The definition of the HASL formula consists of:

(HASL) ::= {(IConstant) } {{RConstant) } (NL) (NV) (LList) (VList) (Expression)
(InitLoc) (FinalLoc) (LocDef) [(Edges)]

In the first part some constants can be declared. The number of locations and variables must
be given.

(IConstant) ::= "const" "int" (IConstTag) "=" (Integer) ";"

(RConstant) ::= "const" "double" (RConstTag) "=" (Real) ";"

(NL) ::= "NbLocations" "=" (Integer) ";" | "NbLocations" "=" (IFormula) ";"
(NV) == "NbVariables" "=" (Integer) ";" | "NbVariables" "=" (IFormula) ";"

Then set of locations and variables will be declared:

(LList) ::= "LocationsList" "=" "{" (LTags) "}" ""
(LTags) ::= (LTag) | (LTags) "," (LTag)

(VList) ::= "VariablesList" "=" "{" (VTags) "}" "}"
(VTags) ::= (VTag) | (VTags) "," (VIag)

Then the hasl expression will be introduced:

(ExpectExp) ::= "AVG" "(" () ")" "}
(F) == (H) | (F) '/ (RFormula) | (F) ™" (RFormula) | (F) (ArOp) (F) | "min"

)) max ¢ (E) " (E))
(H> m= "Last" "(" (LX))" | "Min" "(" (LX) ")" | "Max" "(" (LX) ")" | "Integral"
"Mean" "(" (LX) ")" | "Var" "(" (LX) ")"

(LX))"
(X) = (term) | (term) "+" (term) | (term) (term)
(term) == (VTag) | (Real) ™" (VTag) | "(" (MRFormula) ")" "™*" (VTag)

"o

The set of initial and final locations will be given:

(InitLoc) ::= "InitialLocations" "=" "{" (LTags) "}" "}"
(FinalLoc) ::= "FinalLocations" "=" "{" (LTags) "}" "}"

Then, the locations will be completely described. Each location is tagged with <LTag> and
satisfies a property on the marking of the Petri net. At each location, the rates of the variables
are given. By default rates are set to zero.

(LocDef) ::= "Locations" "=" "{" (Ldefs) "}" ";"
(Ldefs) ::= (Ldef) | (Ldefs) "," (Ldef)
(Ldef) ::= "(" (LTag) "," (MLFormula) "," "(" (Vrates) ")" ")"

(MLFormula) ::= "TRUE" | (MRFormula) (CompOp) (MRFormula) | (MLFormula)
(LogOp) (MLFormula) | "" "(" (MLFormula) ")"

(CompOp) == "=" | ">" | "<" | ">=" | "<="

(LogOp) == "&" | "I"

(Vrates) ::= (Vrate) | (Vrates) "," (Vrate)
(Vrate) ::= (VTag) """ MRFormula

Finally, the edges will be defined. An edge relies a location source to a location target (
<LTag>, <LTag>). Each edge is associated to a set of Petri net transitions <Actions>. If the edge
is synchronized with all Petri transitions then <Actions> will take value "ALL". If the edge is
not synchronized with the Petri net (i.e an autonomous edge) then <Actions> will take value

"#". Each edge is associated to a set of linear constraints on automaton variable <Constraints>.
If the edge is not subject to any constraint then <Constraints> will take value "#". Each edge
is also associated to a set of variable updates <Ups>. If no update is required then <Ups> will
take value "#".

(Edges) ::= "Edges" "=" "{" (Edefs) "}" "}"

(Edefs) ::= (Edef) | (Edefs) "," (Edef)

(Edef) :="(""(" (LTag) "," (LTag) ")" "," (Actions) "," (Constraints) "," (Updates)
")V

(Actions) ::= "#” | {" (PTags) "}" | "ALL" "
""" (PTags) "}
(Constramts) ="#"| Constra1nt| Constraint "&" Constramts

(Constraint) ::= (LX) "=" (MRFormula) | (LX) ">=" (MRFormula) | (LX) "<=
(MRFormula)

(Updates) == "{" (Ups) "}" "}"

(Ups) == (Up) "" (Ups)

(Up) ::= (VTag) "=" (VMRFormula) | (VMRFormula) ::= (VTag) | (MRFormula)
| (VMRFormula) (ArOp) (VMRFormula)

