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Abstract
In discrete event systems prone to unobservable faults, a diagnoser must eventually detect fault
occurrences. The diagnosability problem consists in deciding whether such a diagnoser exists.
Here we investigate diagnosis issues in a probabilistic framework modelled by partially observed
Markov chains (denoted pLTS). First we study different specifications of diagnosability and es-
tablish their relations both in finite and infinite pLTS. Then we analyze the complexity of the
diagnosability problem for finite pLTS: we show that the polynomial time procedure earlier
proposed is erroneous and that in fact for all considered specifications, the problem is PSPACE-
complete. We also establish tight bounds for the size of diagnosers. Afterwards we consider the
dual notion of predictability which consists in predicting that in a safe run, fault will eventually
occur. Predictability is easier than diagnosability: it is NLOGSPACE-complete. Yet the pre-
dictor synthesis is as hard as the diagnoser synthesis. Finally we introduce and study the more
flexible notion of prediagnoser that generalizes predictor and diagnoser.
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1 Introduction

Diagnosis. In computer science, diagnosis may refer to different kinds of activities. For
instance, in artificial intelligence it can describe the process of identifying a desease from its
symptoms, as performed by the expert system MYCIN [2]). In this work, we concentrate on
diagnosis as studied in control theory, where it is applied to partially observable systems
prone to faults. A sequence of observations of such a system is said to be surely correct
(respectively surely faulty) if all possible runs corresponding to this sequence are correct
(respectively faulty); otherwise the observed sequence is ambiguous. While monitoring the
system, the diagnoser should rule out ambiguities, and in particular detect that a fault
occurred; and the problem of existence of such a diagnoser is refered to as diagnosability [12].
In order to anticipate problems triggered by fault occurrences, one can also be interested
into predictors that detect that fault will eventually occur, and the predictability problem [5]
is concerned with the existence of a predictor.
Diagnosis of discrete event systems. Diagnosability and predictability were first defined
and studied in the framework of finite discrete event systems modelled by labelled transition
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2 Foundation of Diagnosis and Predictability in Probabilistic Systems

systems (LTS), and the problems were shown to be solvable in PTIME (see [7] and [5], re-
spectively). Despite the polynomial time complexity of the decision problems, for diagnosable
(respectively predictable) LTS, the size of the diagnoser (respectively predictor) contructed
by the algorithms may be exponential. Diagnosers as well as predictors must ensure two
requirements: correctness, meaning that the information provided by the diagnoser/predictor
is accurate, and reactivity, ensuring that a fault will eventually be detected.
Diagnosis of probabilistic sytems. Building on the work for LTS, the notion of diagnos-
ability was later extended to Markov chains with labelled transitions, also called probabilitic
labelled transition systems (pLTS) [13]. In a probabilistic context, the reactivity requirement
now requires that a fault will be almost surely eventually detected. Regarding correctness,
two specifications have been proposed: either one sticks to the original definition and requires
that the provided information is accurate, defining A-diagnosability; or one weakens the
correctness by admitting errors in the provided information that should, however, have an
arbitrary small probability when the delay before the diagnostic is long enough, defining
AA-diagnosability. From a computational viewpoint, PTIME algorithms have been proposed
to solve these two specifications of probabilistic diagnosability [3].
In case a system is not diagnosable, one may be able to control it, by forbidding some
controllable actions, so that is becomes diagnosable. This property of active diagnosability
has been studied for probabilistic systems in [1] pursuing the work of [11, 6] for discrete-event
systems. Decidability and complexity issues are considered and optimal size diagnosers are
synthesized. Interestingly the notion of diagnosability in [1] slightly differs from the original
one.
Remaining issues. Some issues remained untouched in the above line of work. First,
diagnosability was only considered with respect to finite faulty runs. It seems as important
to also consider diagnosability of correct runs, and ambiguity can also be defined for infinite
computations. Second, in most work, the complexity of the varied diagnosability problems
and of the diagnosers synthesis were left open. Moreover, optimizing the delay between
the fault occurrence and its detection is an important issue. Yet the search for diagnosers
(or predictors) with optimal reactivity was not even considered. Last predictability and
diagnosability were independently studied while combining them is obviously a fruitful
direction.
Contributions. In this paper, we address the above mentioned gaps, and revisit diagnosab-
ility and predictability for probabilistic systems, from a semantical as well as a computational
perspectives.

In order to give a firm semantical classification of diagnosability notions, we define criteria
for diagnosability in probabilistic systems, depending on (1) whether the information
provided by a diagnoser is related to faulty runs only or to all runs and, (2) whether
ambiguity is defined at the level of infinite runs, or for longer and longer finite subruns.
These two dimensions yield three main specifications: FF-diagnosability defined in [13]
and named A-diagnosability, IA-diagnosability used in [1] and FA-diagnosability, and we
establish the connections between them.
For finite state probabilistic systems, we show that these three notions of diagnosability can
be characterized based on deterministic (finite or Büchi) automata acting as monitors, and
synchronized with the pLTS. We further prove that the complexity of the diagnosability
problem (for all three specifications) is PSPACE-complete, contradicting the polynomial
time result for FF-diagnosability [3], and we indeed establish that their algorithm is
wrong.
Afterwards, we design algorithms for the synthesis of finite-memory diagnosers and prove
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that their size 2Θ(n) (where n is the number of states of the pLTS model) is optimal.
Since predictability is an interesting alternative to diagnosability, we introduce two
possible specifications for predictability in probabilistic systems, and show that in both
cases the predictability problem is NLOGSPACE-complete. Yet, as for diagnosers, the
optimal size of predictors is also in 2Θ(n).
Last, we introduce and study prediagnosability that combines the benefits of predictability
and diagnosability: depending on the current observation, a prediagnoser behaves either as
a diagnoser or as a predictor. Prediagnosability is of interest since generally predictability
is more difficult to achieve than diagnosability, also prediagnosers can be seen as as soon
as possible diagnosers. For the varied notions of prediagnosability we define, we establish
that the prediagnosability problem is PSPACE-complete and design prediagnosers with
optimal size.
Summarizing we provide a full picture of the hierarchy for the different notions and the
border between NLOGSPACE and PSPACE-complete problems.

Organization. In Section 2, we introduce probabilistic LTS, define the possible diagnosab-
ility specifications, establish their connection, and provide characterizations. In Section 3,
we determine the exact complexity of the diagnosability problems. In Section 4, we design
algorithmes for synthesis of diagnosers with optimal size. In Section 5, we study predictability
and prediagnosis, and focus on optimal diagnosers. Finally in Appendix, we show that the
algorithms in [3] are erroneous.

2 Diagnosability specification

2.1 Probabilistic labelled transition systems
In the context of stochastic discrete event systems diagnosis, systems are often modeled using
a labeled transition systems.

I Definition 1. A probabilistic labeled transition system (pLTS) is a tuple A = 〈Q, q0,Σ, T,P〉
where:

Q is a set of states with q0 ∈ Q the initial state;
Σ is a finite set of events;
T ⊆ Q× Σ×Q is a set of transitions;
P is the transition matrix from T to Q>0 fulfilling for all q ∈ Q:∑

(q,a,q′)∈T P[q, a, q′] = 1.

Observe that a pLTS is a labeled transition system (LTS) equipped with transition
probabilities. The transition relation of the underlying LTS is defined by: q

a−→ q′ for
(q, a, q′) ∈ T ; this transition is then said to be enabled in q. A pLTS is said to be live if in
every state q of the pLTS, a transition is enabled. We assume the pLTS we consider are a
countably branching, i.e., in every state q, only countably many transitions are enabled, so
that the summation

∑
(q,a,q′)∈T P[q, a, q′] is well-defined.

Let us now introduce some important notions and notations that will be used throughout
the paper. A run ρ of a pLTS A is a (finite or infinite) sequence ρ = q0a0q1 . . . such that
for all i, qi ∈ Q, ai ∈ Σ and when qi+1 is defined, qi

ai−→ qi+1. The notion of run can be
generalized, starting from an arbitrary state q. We write Ω for the set of all infinite runs of
A starting from q0, assuming the pLTS is clear from context. When it is finite, ρ ends in a
state q and its length, denoted |ρ|, is the number of actions occurring in it. Given a finite
run ρ = q0a0q1 . . . qn and a (finite or infinite) run ρ′ = qnanqn+1 . . ., we call concatenation of
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ρ and ρ′ and we write ρρ′ the run q0a0q1 . . . qnanqn+1 . . .; the run ρ is then a prefix of ρρ′,
which we denote ρ � ρρ′. The cylinder defined by a finite run ρ is the set of all infinite runs
that extend ρ: C(ρ) = {ρ′ ∈ Ω | ρ � ρ′}. The sequence associated with ρ = qa0q1 . . . is the
word σρ = a0a1 . . ., and we write indifferently q ρ=⇒ or q σρ=⇒ (resp. q ρ=⇒ q′ or q σρ=⇒ q′) for an
infinite (resp. finite) run ρ. A state q is reachable (from q0) if there exists a run such that
q0

ρ=⇒ q, which we alternatively write q0 =⇒ q. The language of pLTS A consists of all infinite
words that label runs of A and is formally defined as Lω(A) = {σ ∈ Σω | q0

σ=⇒}.
Forgetting the labels and merging (and summing the probabilities of) the transitions

with same source and target, a pLTS yields a discrete time Markov chain (DTMC). As usual
for DTMC, the set of infinite runs of A is the support of a probability measure defined by
Caratheodory’s extension theorem from the probabilities of the cylinders:

P(C(q0a0q1 . . . qn)) = P[q0, a1, q1] · · ·P[qn−1, an−1, qn] .

2.2 Partial observation and ambiguity
In order to formalize problems related to fault diagnosis, we partition Σ into two disjoint
sets Σo and Σu, the sets of observable and of unobservable events, respectively. Moreover, we
distinguish a special fault event f ∈ Σu. Let σ be a finite word; its length is denoted |σ|. The
projection of σ onto Σo is defined inductively by: P(ε) = ε; for a ∈ Σo, P(σa) = P(σ)a; and
P(σa) = P(σ) for a /∈ Σo. Write |σ|o for |P(σ)|. When σ is an infinite word, its projection is
the limit of the projections of its finite prefixes. This projection is applicable to runs via their
associated sequence; it can be either finite or infinite. As usual the projection is extended to
languages. With respect to the partition of Σ = Σo ] Σu, a pLTS A is convergent if there is
no infinite sequence of unobservable events from any reachable state: Lω(A) ∩ Σ∗Σω

u = ∅.
When A is convergent, for every σ ∈ Lω(A), P(σ) ∈ Σωo . In the rest of the paper we assume
that pLTS are convergent. We will refer to a sequence for a finite or infinite word over Σ,
and an observed sequence for a finite or infinite sequence over Σo. Clearly, the projection
onto Σo of a sequence yields an observed sequence.

The observable length of a run ρ denoted |ρ|o ∈ N ∪ {∞}, is the number of observable
actions that occur in it: |ρo| = |σρ|o. A signalling run is a finite run whose last action is
observable. Signalling runs are precisely the relevant runs w.r.t. partial observation issues
since each observable event provides an additional information about the execution to an
external observer. In the sequel, SR denotes the set of signalling runs, and SRn the set of
signalling runs of observable length n. Since we assume that the pLTS are convergent, for all
n > 0, SRn is equipped with a probability distribution defined by assigning measure P(ρ)
to each ρ ∈ SRn. Given ρ a finite or infinite run, and n ≤ |ρ|o, ρ↓n denotes the signalling
subrun of ρ of observable length n. For convenience, we consider the empty run q0 to be the
single signalling run, of null length.

Let A be a pLTS. A run ρ is faulty if σρ contains f , otherwise it is correct. W.l.o.g.,
by considering two copies of each state, we assume that the states are partitioned into
correct states and faulty states: Q = Qf ]Qc where Qf are faulty states, and Qc correct
states. Faulty (resp. correct) states are only reachable by faulty (resp. correct) runs. An
observed sequence σ ∈ Σωo is surely correct if P−1(σ) ∩ Lω(A) ⊆ (Σ \ f)ω; it is surely faulty
if P−1(σ) ∩ Lω(A) ⊆ Σ∗fΣω; otherwise, it is ambiguous. For finite sequences, we need to
rely on signalling runs: a finite observed sequence σ ∈ Σ∗o is surely faulty (resp. surely
correct) if for every signalling run ρ with P(σρ) = σ, ρ is faulty (resp. correct); otherwise
it is ambiguous. A (finite signalling or infinite) run ρ is surely faulty (resp. surely correct,
ambiguous) if P(ρ) is surely faulty (resp. surely correct, ambiguous).
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We introduce different kinds of diagnosability and study their connection. In order to do
so we introduce different subsets of infinite runs.

I Definition 2 (Ambiguous runs). Let A be a pLTS and n ∈ N with n ≥ 1. Then:
FAmb∞ is the set of infinite faulty ambiguous runs of A;
CAmb∞ is the set of infinite correct ambiguous runs of A;
FAmbn is the set of infinite runs of A whose signalling subrun of observable length n is
faulty and ambiguous;
CAmbn is the set of infinite runs of A whose signalling subrun of observable length n is
correct and ambiguous.

2.3 Which diagnosis for pLTS?
We propose four possible specifications of diagnosability for probabilistic systems. There are
two discriminating criteria: whether the non ambiguity requirement holds for faulty runs
only or for all runs, and whether ambiguity is defined at the infinite run level or for longer
and longer finite signalling subruns.

I Definition 3 (Diagnosability specifications). Let A be a pLTS. Then:
A pLTS A is IF-diagnosable if P(FAmb∞) = 0.
A pLTS A is IA-diagnosable if P(FAmb∞ ] CAmb∞) = 0.
A pLTS A is FF-diagnosable if lim supn→∞ P(FAmbn) = 0.
A pLTS A is FA-diagnosable if lim supn→∞ P(FAmbn ] CAmbn) = 0.

The next theorem summarizes the connections between these definitions.

I Theorem 4. The different kinds of diagnosability for pLTS are related according to
the following table. Moreover, the implications hold for infinite-state pLTS while the non
implications hold already for finite-state pLTS.

Diagnosability All runs Faulty runs

Signalling runs FA ⇒
6⇐ FF

⇓6⇑ ⇓⇑∗

Infinite runs IA ⇒
6⇐ IF

The implication marked with ∗ requires pLTS to be finitely branching.

The rest of this section is devoted to the proof of Theorem 4. It relies on the forthcoming
observations, lemmas and counter-examples. First of all, the implications from left to right
are immediate by definition.

In all following examples, when the probabilities are omitted, we assume an equidistri-
bution between outgoing edges of a state. Consider the pLTS A of Figure 1 where {u, f}
is the set of unobservable events. A faulty run will almost surely produce a b-event that
cannot be mimicked by the single correct run. Thus this pLTS is A-diagnosable. The unique
correct run ρ = q0uq1aq1 . . . has probability 1

2 and its corresponding observed sequence aω is
ambiguous. Thus the pLTS is not AS-diagnosable. This simple example shows that, already
for finite-state pLTS, A-diagnosability does not imply AS-diagnosability.

We now focus on “vertical” implications. To study them, let us introduce new subsets
of infinite runs. C∞ is the set of correct runs (ambiguous or not) and Sf∞ the set of surely
faulty runs. In addition Cn (resp. Sfn) is the set of infinite runs whose signalling subrun of
observable length n is correct (resp. surely faulty).
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q0 f1 f2q1
f au

a ba

Figure 1 A pLTS which is IF-diagnosable but not IA-diagnosable.

I Lemma 5. Let A be a pLTS. Then:

lim
n→∞

P(FAmb∞ \ FAmbn) = 0

If A is finitely branching then:

lim
n→∞

P(FAmbn \ FAmb∞) = 0

Proof. Observe that Ω admits the following partitions Ω = FAmb∞ ] C∞ ] Sf∞ and for
every n ∈ N, Ω = FAmbn ] Cn ] Sfn. Thus, for every n ∈ N,

FAmb∞\FAmbn = (Cn]Sfn)∩FAmb∞ = (Cn]Sfn)\(C∞]Sf∞) ⊆ (Cn\C∞)](Sfn\Sf∞) .

Since for all n, Sfn ⊆ Sf∞, one gets:

FAmb∞ \ FAmbn ⊆ Cn \ C∞ .

{Cn}n∈N is a non increasing family of sets and we claim that C∞ =
⋂
n∈N Cn. Indeed an

infinite run ρ is correct if and only if f does not occur in it if and only if all its signalling
subruns are correct. Thus,

lim
n→∞

P(Cn \ C∞) = 0 implying lim
n→∞

P(FAmb∞ \ FAmbn) = 0 .

Using again the two partitions we obtain:

FAmbn \FAmb∞ = (C∞]Sf∞)∩FAmbn = (C∞]Sf∞)\ (Cn]Sfn) ⊆ (C∞ \Cn)] (Sf∞ \Sfn)

Since for all n, C∞ ⊆ Cn, one gets:

FAmbn \ FAmb∞ ⊆ Sf∞ \ Sfn

Let us show that, under the assumption that A is finitely branching, then Sf∞ ⊆
⋃
n∈N Sfn.

Let ρ /∈ ⋃n∈N Sfn. We build a tree as follows:
Nodes at level n correspond to the correct signalling runs whose observed sequence is
P(ρ↓n);
The node associated with ρ′ is a child of ρ′′ if ρ′′ � ρ′.

Because ρ /∈ ⋃n∈N Sfn, for every n ∈ N, there exist a correct run with observed sequence
P(ρ↓n), so that the above-defined tree is infinite. Since the pLTS is finitely branching and
convergent, the tree is also finitely branching. By König’s lemma, it must contain an infinite
branch, thus there exists an infinite correct run whose observed sequence is P(ρ). As a
consequence ρ is not surely faulty: ρ /∈ Sf∞. This proves that Sf∞ ⊆

⋃
n∈N Sfn. Thus:

lim
n→∞

P(Sf∞ \ Sfn) = 0 implying lim
n→∞

P(FAmbn \ FAmb∞) = 0

which concludes the proof. J
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So we immediately get the following relation between IF-diagnosability and FF-diagnosability.

I Corollary 6. A pLTS A is IF-diagnosable if it is FF-diagnosable. The converse implication
holds when A is finitely branching.

Note that the restriction to finitely branching pLTS is necessary. It is also necessary
for IA-diagnosability to imply FF-diagnosability. Indeed, consider the infinitely branching
pLTS of Figure 2, in which the probabilities on outgoing transitions from q0 are 1/2 to f1
and 1/2i+1 to qi1. It contains no infinite ambiguous sequence, so that it is IA-diagnosable,
and thus IF-diagnosable. Yet, for every n ∈ N, FAmbn has probability 1/2, so that it is not
FF-diagnosable.

q0 q11

q21 q22

f1
...

a, 1/4

a, 1/8

a

f , 1/2
b

b

a

Figure 2 An infinitely branching pLTS that is IA- and IF-diagnosable but not FF-diagnosable.

I Lemma 7. A pLTS A is IA-diagnosable if it is FA-diagnosable.

Proof. In this proof, we use another subset of infinite runs: for n ∈ N, CAmbn,∞ is the set of
correct ambiguous runs that admit an observationally equivalent run which is faulty before its
nth observable event. Observe that {CAmbn,∞}n∈N is a non decreasing sequence of sets and
we claim that CAmb∞ =

⋃
n∈N CAmbn,∞. Indeed, an infinite run ρ is correct and ambiguous

if and only if there is a faulty run whose observed sequence is P(ρ) if and only if there exists
some n ∈ N and some run ρ′ such that ρ′↓n is faulty and such that P(ρ′) = P(ρ). Morevover,
by definition, CAmbn,∞ ⊆ CAmbn. Assume that lim supn→∞ P(CAmbn) = 0. For every ε > 0,
there exists n1 ∈ N such that for all n ≥ n1, P(CAmbn) < ε and thus P(CAmbn,∞) < ε. On
the other hand, there exists n2 ∈ N such that for all n ≥ n2, P(CAmb∞)− P(CAmbn,∞) < ε.
Combining these two inequalities for n = max(n1, n2), one obtains P(CAmb∞) < 2ε, which
concludes the proof. J

Let us look at the pLTS of Figure 3 where {u, f} is the set of unobservable events. Any
infinite faulty run will contain a b-event, and cannot be mimicked by a correct run, therefore
FAmb∞ = ∅. The two infinite correct runs have aω as observed sequence, and cannot be
mimicked by a faulty run, thus CAmb∞ = ∅. As a consequenc, this pLTS is IA-diagnosable.
Consider now the infinite correct run ρ = q0uq1aq1 . . .. It has probability 1

2 , and all its finite
signalling subruns are ambiguous since their observed sequence is an, for some n ∈ N. Thus
for all n ≥ 1, P(CAmbn) ≥ 1

2 , so that this pLTS is not FA-diagnosable.

q0 q2 f1 f2q1
u f au

a bba a

Figure 3 A pLTS that is IA-diagnosable but not FA-diagnosable.
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2.4 Characterizations of diagnosability
In this section, we provide characterizations of the different diagnosability notions we
introduced. Having algorithmic developments in mind, we focus here on finite-state pLTS.
As a consequence, FF-diagnosability and IF-diagnosability coincide, and we stick to IF-
diagnosability in the sequel. For each notion of diagnosability, we proceed similarly. First,
given a pLTS A we design a deterministic automaton that accepts some (finite or infinite)
observed sequences of A. Then we build the synchronized product of this automaton with
A, to obtain another pLTS with the same stochastic behaviour as A but augmented with
additional information about the current run, that will be useful for diagnosability. Finally,
we characterize diagnosability by graph properties on the synchronized product.

2.4.1 IF-diagnosability
The first automaton IF(A), which is a complete automaton, tracks the subset of states reached
by a correct signalling run associated with a given observed sequence. The set of states and
transitions is inductively defined by:

s0 = {q0} is the initial state of IF(A);
Given U a state of IF(A) and any a ∈ Σo, there is a transition U a−→ U ′ where:
U ′ = {q | ∃ρ = qα0a1 . . . akqαk run of A, qα0 ∈ U,∀i < k ai ∈ Σu \ {f}, ak = a, qαk = q}.

Figure 4 illustrates this construction on the pLTS of Figure 3. As long as b is not observed
the current signalling run may be correct leading to either q1 or q2, and once b happens, the
current signalling run is surely faulty.

{q0}
s0

{q1, q2}
s1

∅
s2

a b

b

a, ba

Figure 4 The IF-automaton of pLTS of Figure 3.

We now define the pLTS AIF = A× IF(A) as the product of A and A(A) synchronized
over observed events. Since IF(A) is deterministic and complete, AIF is still a pLTS, with
same stochastic behaviour as A. In addition, the U -component of a state (q, U) of AIF stores
the relevant information w.r.t A-diagnosability of the observed sequence so far. Figure 5
illustrates this construction on the pLTS of Figure 3. Observe that this pLTS has two bottom
strongly connected components (BSCC): the absorbing states (q1, s1) and (f2, s2).

In finite DTMC every run almost surely ends up in a BSCC, and A-diagnosability is
concerned with (faulty) ambiguous infinite runs, so unsurprisingly, our characterization of
diagnosability is based on the BSCC of AIF.

I Proposition 8. Let A be a finite pLTS. Then A is IF-diagnosable if and only if AIF has
no BSCC containing a state (q, U) with q ∈ Qf and U 6= ∅.

Proof. Suppose first that there exists a reachable BSCC C of AIF and a state s = (q, U) in
C such that q ∈ Qf and U 6= ∅. Let ρ be a signalling run leading from the initial state s0 of
AIF to s. Now, for every state s′ = (q′, U ′) ∈ C, necessarily q′ ∈ Qf and U ′ 6= ∅, because C
is strongly connected. So for every signalling run ρ′ that extends ρ, writing s′ = (q′, U ′) for
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q0, s0 q2, s0

q2, s1

f1, s0

f1, s1

f1, s2 f2, s1f2, s2

q1, s0

q1, s1

u f

f

a

a

b

b

a b

u

ba

b

a

a a

Figure 5 The synchronized product of pLTS of Figure 3 and its IF-automaton.

the state ρ′ leads to, there exists a correct signalling run ρ′′ such that P(ρ′′) = P(ρ′) and
q0

ρ′′−→ q′′ with q′′ ∈ U ′. As a consequence the observed sequence P(ρ′′) is ambiguous, and
for every n ≥ |ρ|o, P(FAmbn) ≥ P(ρ), so that A is not IF-diagnosable.

Suppose now that for every state s = (q, U) of a BSCC C, either q ∈ Qc, or U = ∅. This
property is in fact uniform by BSCC: for every BSCC C, either for every state (q, U) ∈ C,
q ∈ Qc, or, for every state (q, U) ∈ C, U = ∅. This is a straightforward consequence of
C being strongly connected. Moreover, q ∈ Qc and U = ∅ cannot hold at the same time,
since there is at least one state q′ reached by an observed event corresponding to some
state (q′, U ′) in AIF with q′ ∈ U ′ implying that U 6= ∅. Therefore in AIF the BSCC are
partitioned in non-faulty ones, in case all q- components of states in C are non-faulty, and
faulty ones, in case all U - components of states in C are empty ensuring non ambiguity
of faulty runs ending in a BSCC. Thus an infinite faulty ambiguous run must only visit
transient states. Since almost surely runs leave the transient states in a finite DTMC, this
implies that P(FAmb∞) = 0. J

Based on the previous characterization, we establish that our definition of IF-diagnosability
is equivalent to the original so-called A-diagnosability presented in [13] for finite pLTS.

I Theorem 9. Let A be a finite pLTS. A is IF-diagnosable if and only if ∀ε > 0, ∃N ∈ N,
for every faulty signalling run ρ and every n ≥ N

P({ρ′ ∈ FAmbn+|ρ|o | ρ � ρ′}) < εP(ρ) (1)

Proof. Assume first that ∀ε > 0, ∃N ∈ N, for every faulty signalling run ρ and every n ≥ N ,
P({ρ′ | ρ′ ∈ FAmbn+|ρo|, ρ � ρ′}) < εP(ρ). Let us fix ε > 0, and N ∈ N corresponding to ε in
the hypothesis. Using both statements of Lemma 5, there exists n0 such that for all n ≥ n0

P(FAmbn∆FAmb∞) < ε

where ∆ stands for the symmetric difference: for sets A and B, A∆B = (A \B) ∪ (B \A).
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So for n, n′ ≥ n0 one has P(FAmbn∆FAmbn′) < 2ε. Now, for every n ≥ N

P(FAmbn+n0 ∩ FAmbn0) = P(
⋃

ρ∈FAmbn0

{ρ′ ∈ FAmbn+n0 | ρ � ρ′})

=
∑

ρ∈FAmbn0

P({ρ′ ∈ FAmbn+n0 | ρ � ρ′})

< ε
∑

ρ∈FAmbn0

P(ρ)

= εP(FAmbn0) ≤ ε .

Thus P(FAmbn) < 3ε for all n ≥ N + n0. This proves that A is IF-diagnosable.
Assume now that A is IF-diagnosable, and let ε > 0. Select N such that for all (q, U) with
q ∈ Qf , the probability that a signalling run of observable length greater or equal than N ,
starting from (q, U) stays in a transient state is less than ε.
Consider any faulty signalling run ρ of A. In AIF, this run reaches some state (q, U) with
q ∈ Qf . Since A is IF-diagnosable and using Proposition 8, one gets for every n ≥ N

P({ρ′ ∈ FAmbn+|ρ|o | ρ � ρ′})

≤ P({ρ′ ∈ SRn+|ρ|o | ρ � ρ′ ∧ s0
ρ′=⇒ s with s transient state in AIF}) < εP(ρ) .

J

Note that in the latter theorem, finitess of pLTS is crucial for the proof of necessity.
Consider the pLTS of Figure 6. Almost surely a faulty run eventually produces a b-event, that
cannot be mimicked by the single correct run. Thus this pLTS is IF-diagnosable. For the faulty
signalling run ρ = q0ff1a . . . fkaf

′
k, for every n ≤ k, P({ρ′ ∈ FAmbn+|ρ|o | ρ � ρ′}) = P(ρ).

This implies that given any 0 < ε < 1, there cannot exist N ∈ N such that for every faulty
signalling run and every n ≥ N , Equation (1) holds.

q0

f ′0

f1 f2 . . . fk fk+1 . . .

f ′1 f ′2 . . . f ′k f ′k+1 . . .

q1
f a a

a a a

u

a a a a
ba

Figure 6 An infinite IF-diagnosable pLTS.

2.4.2 FA-diagnosability
The automaton FA(A) tracks the subsets of possible states reached by a correct and a faulty
signalling run associated with an observed sequence, at the same time. It resembles the
on-the-fly determinization of A viewing unobserved events as silent transitions, yet, in view of
the forthcoming characterization, the subsets of correct and faulty states are kept separately.
Note also that this construction only considers signalling runs. Formally, the states and
transitions of FA(A) are inductively defined by:

s0 = ({q0}, ∅) is the initial state of FA(A);
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Given (U, V ) a state of FA(A) and a ∈ Σo, there is a transition (U, V ) a−→ (U ′, V ′) if:
1. E = {ρ = qα0a1 . . . akqαk | ρ is a run of A, qα0 ∈ U ∪ V,∀i < k ai ∈ Σu, ak = a} 6= ∅
2. U ′ = {q | ∃ρ = qα0a1 . . . akqαk correct run of E, qα0 ∈ U, qαk = q},
3. V ′ = {q | ∃ρ = qα0a1 . . . akqαk run of E, qα0 ∈ V, qαk = q} ∪
{q | ∃ρ = qα0a1 . . . akqαk faulty run of E, qα0 ∈ U, qαk = q}.

Figure 7 illustrates this construction on the pLTS of Figure 3. As could be expected, the
FA-automaton is a refinement of the IF-automaton: the U -component of a state in FA(A)
corresponds to a state in IF(A). For instance, state s2 of Figure 4 is split into s2, s3 and s4 .

{q0}, ∅
s0

{q1, q2}, {f2}
s1

∅, {f1, f2}
s2

∅, {f1}
s3

∅, {f2}
s4

a b a
b

ab

bb

a

Figure 7 The FA-automaton of pLTS of Figure 3.

We now define the pLTS AFA = A× FA(A) as the product of A and FA(A) synchronized
over observed events. AFA is still a pLTS with same stochastic behaviour as A augmented
with the relevant information of the observed sequence w.r.t FA-diagnosability. Figure 8
shows this synchronized product for the pLTS of Figure 3.

As before our characterization of FA-diagnosability is based on the BSCC of AFA.

q0, s0 q2, s0

q2, s1

f1, s0

f1, s1 f1, s2

f1, s3

f2, s1 f2, s2 f2, s4

q1, s0

q1, s1

u f

f

a

a

b

u b

b

a

a

a b b

b

b

a

a a

Figure 8 The synchronized product of pLTS of Figure 3 and its FA-automaton.

I Proposition 10. Let A be a finite pLTS. A is FA-diagnosable if and only if AFA has no
BSCC that:

either contains a state (q, U, V ) with q ∈ Qf and U 6= ∅;
or contains a state (q, U, V ) with q ∈ Qc and V 6= ∅.

Note that the characterization of FA-diagnosability is symmetric for correct states and V set
(resp. faulty states and U set). This reflects that the definition of FA-diagnosability itself is
symmetric.

Proof. Suppose first that there exists a reachable BSCC C of AFA and a state s = (q, U, V )
in C such that q ∈ Qf and U 6= ∅. Let ρ be a signalling run leading from the initial state s0 of
AFA to s. Now, for every state s′ = (q′, U ′, V ′) ∈ C, necessarily q′ ∈ Qf and U ′ 6= ∅, because
C is strongly connected. So for every signalling run ρ′ that extends ρ, writing s′ = (q′, U ′, V ′)
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for the state ρ′ leads to, there exists a correct signalling run ρ′′ such that P(ρ′′) = P(ρ′) and
q0

ρ′′−→ q′′ with q′′ ∈ U ′. As a consequence the observed sequence P(ρ′′) is ambiguous, and
for every n ≥ |ρ|o, P(FAmbn) ≥ P(ρ), so that A is not FA-diagnosable.
Suppose now that there exists a reachable BSCC C of AFA and a state s = (q, U, V ) in C
such that q ∈ Qc and V 6= ∅. Since the pair (U, V ) is unchanged by unobservable transitions,
w.l.o.g we assume that s is the successor of some state of C by an observable event and we
denote C ′ the set of such states.
Observe that a signalling run that reaches s is ambiguous. Denote πi(s′) the probability
that a random path visits a state s′ at instant i. In a finite DTMC, for every state s′ of
a BSCC the Cesaro-limit π∞(s′) = limn→∞ 1

n+1
∑n
i=0 πi(s′) exists and is greater than 0.

For s′ ∈ C ′ denote by ps′,s the probability of an observable transition from s′ to s. Then
0 <

∑
s′∈C′ π∞(s′)ps′,s ≤ lim infn→∞ 1

n+1
∑n
i=0 αi(s) where αi(s) is the probability that a

random path at time i is a signalling run visiting s. From time 0 to time n, a run can be a
signalling run at most n+ 1 times. Thus:

1
n+ 1

n∑

i=0
αi(s) ≤

1
n+ 1

n∑

i=0
P(CAmbi)

which implies that

0 < lim inf
n→∞

1
n+ 1

n∑

i=0
P(CAmbi) ≤ lim sup

n→∞
P(CAmbn)

This shows that A is not FA-diagnosable.
The proof of proposition 8 has established that a signalling run reaching a BSCC C where
for every state s = (q, U, V ) q is faulty and U = ∅ is surely faulty. Similarly a signalling run
that reaches a BSCC where for every state s = (q, U, V ) q is correct and V = ∅ is surely
correct. Thus an signalling run must only visit transient states. Since a run almost surely
leaves the transient states in a finite DTMC, this implies that:

lim sup
n→∞

P(FAmbn) + P(CAmbn) = 0 .

J

2.4.3 IA-diagnosability
The IA-automaton is the deterministic Büchi automaton introduced in [6]. It refines the
FA-automaton by splitting the set V into two disjoints subsets V and W of possible faulty
states. The decomposition between V and W reflects the fact that the IA-automaton tries to
resolve the ambiguity between U and W (when both are non empty), while V corresponds
to a waiting room of states reached by faulty runs that will be examined when the current
ambiguity is resolved. Formally, states and transitions of IA(A) is defined inductively by:

s0 = ({q0}, ∅, ∅) is the initial state of IA(A);
Given (U, V,W ) a state of IA(A) and a ∈ Σo, there is a transition (U, V,W ) a−→ (U ′, V ′,W ′)
if:
1. E = {ρ = qα0a1 . . . akqαk | ρ is a run of A, qα0 ∈ U ∪ V ∪W, ∀i < k ai ∈ Σu, ak =
a} 6= ∅

2. U ′ = {q | ∃ρ = qα0a1 . . . akqαk correct run of E, qα0 ∈ U, qαk = q},
3. If W = ∅ then V ′ = ∅ and
W ′ = {q | ∃ρ = qα0a1 . . . akqαk run of E, qα0 ∈ V, qαk = q} ∪
{q | ∃ρ = qα0a1 . . . akqαk faulty run of E, qα0 ∈ U, qαk = q},
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4. If W 6= ∅ then W ′ = {q | ∃ρ = qα0a1 . . . akqαk run of E, qα0 ∈ W, qαk = q} and
V ′ =

(
{q | ∃ρ = qα0a1 . . . akqαk run of E, qα0 ∈ V, qαk = q} ∪

{q | ∃ρ = qα0a1 . . . akqαk faulty run of E, qα0 ∈ U, qαk = q}
)
\W ′.

The set F of accepting states consists of all triples (U, V,W ) with U = ∅ or W = ∅. When
U = ∅, the current signalling run is surely faulty as for the IF-automaton and the FA-
automaton. When W = ∅ the current signalling run may be ambiguous (if V 6= ∅) but the
“oldest” possible faulty runs have been discarded. Hence, any infinite observed sequence of
A passing infinitely often through F is not ambiguous (ambiguities are resolved one after
another).

Figure 9 shows the IA-automaton of the pLTS depicted in Figure 3. Observe that the
state s1 of its FA-automaton (see Figure 7) has been split into two states s1 and s′1 with
s′1 ∈ F . Thus aω which is indeed unambiguous is accepted by the IA-automaton.

{q0}, ∅, ∅
s0

{q1, q2}, ∅, {f2}
s1

{q1, q2}, {f2}, ∅
s′1

∅, {f1}, {f2}
s2

∅, ∅, {f1, f2}
s′2

∅, ∅, {f1}
s3

∅, ∅, {f2}
s4

∅, {f2}, ∅
s′4

a b

b

a

b

a

a

b
b

b

b

b

aa

Figure 9 The IA-automaton of pLTS of Figure 3.

The next proposition recalls the property of this automaton.

I Proposition 11 ([6]). Let A be a finite pLTS. Then the deterministic Büchi automaton
IA(A) accepts the infinite unambiguous observed sequences of A.

IA(A) is thus sufficient to characterize IA-diagnosability for A.
As before, to come up with a characterization, one builds AIA = A× IA(A), the product

of A and IA(A) synchronized over observed events. Figure 10 shows the synchronized product
corresponding to the pLTS depicted in Figure 3. Among the BSCC, all the faulty ones (i.e.
the ones reached after a faulty event) have U = ∅, while {(q1, s1), (q1, s

′
1)}, the single one

that is reached by a correct run, has a state (q1, s
′
1) with W = ∅.

I Proposition 12. Let A be a finite pLTS. A is IA-diagnosable if and only if AIA has no
BSCC such that:

either, all its states (q, U, V,W ) fulfill q ∈ Qf and U 6= ∅;
or all its states (q, U, V,W ) fulfill q ∈ Qc and W 6= ∅.

Proof. Assume first that AIA has a BSCC with (at least) some state (q, U, V,W ) with q ∈ Qf
and U 6= ∅. Using Proposition 8, A is not IF-diagnosable and thus not IA-diagnosable either.
If now some BSCC C of AIA has all its states (q, U, V,W ) with q ∈ Qc and W 6= ∅. In
particular none of these states are accepting for the deterministic Büchi automaton IA(A).
Let ρ be a finite signalling run that hits C. By Proposition 11, any infinite run ρ′ that
extends ρ is ambiguous. From q ∈ Qc we deduce that P(CAmb∞) ≥ P(ρ) > 0. Therefore A
is not IA-diagnosable.
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q0, s0 q2, s0

q2, s1

q2, s
′
1

f1, s0

f1, s3

f1, s1 f1, s2

f1, s
′
1 f1, s

′
2

f2, s1

f2, s
′
1 f2, s

′
2

f2, s2

q1, s0

q1, s1

q1, s
′
1 f2, s4

f2, s
′
4

u f

f

f

a

a

b

b

u

b

b

a

a

b

b

a

a
b

b

a

aa aa

a

b

b b

b

Figure 10 The synchronized product of pLTS of Figure 3 and its IA-automaton.

Assume now AIA has no BSCC such that either, all its states (q, U, V,W ) fulfill q ∈ Qf and
U 6= ∅, or all its states (q, U, V,W ) fulfill q ∈ Qc and W 6= ∅. First observe that in case some
BSCC of AIA contains some state (q, U, V,W ) with q ∈ Qf and u 6= ∅, then all its states
satisfy the same constraints. Moreover, if some state (q, U, V,W ) of a BSCC has q ∈ Qc,
then all states of this BSCC have their q-component in Qc. Therefore, the condition can be
reformulated as follows: all BSCC C of AIA satisfy:

either all states (q, U, V,W ) of C fulfill q ∈ Qf and U = ∅;
or all states (q, U, V,W ) of C fulfill q ∈ Qc and some state (q, U, V,W ) of C fulfills W = ∅.

Whatever the case, all contain (at least) an accepting state for the Büchi condition of IA(A).
Since every run almost surely ends up in a BSCC and visits each of its states infinitely
often, using Proposition 11, almost all runs of AIA are unambiguous. This proves that A is
IA-diagnosable. J

3 Complexity of diagnosability

In this section we prove the diagnosability problem to be PSPACE-complete, for all variants
that we introduced.

3.1 Complexity of IF-diagnosability
IF-diagnosability coincides with A-diagnosability, introduced in [13] and further studied in [3]
where a PTIME decision procedure is provided.

I Fact 13. The decision procedure of [3] for A-diagnosability is erroneous.

In Appendix A, we describe their algorithm, give an example of pLTS on which it is not
sound, and explain where the error lies in their correctness proof.

In order to establish a lower bound for the complexity of IF-diagnosability, we introduce
a variant of language universality. A language L over an alphabet Σ is said eventually
universal if there exists a word v ∈ Σ∗ such that v−1L = Σ∗. Recently, several variants of
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the universality problem were shown to be PSPACE-complete [10] but, to the best of our
knowledge, eventual universality has not been considered.

Because of our diagnosis framework, we focus on live non deterministic finite automata
(NFA). Similarly to pLTS, an NFA is live if from every state there is at least one outgoing
transition. The language of an NFA A, denoted L(A), is defined as the set of finite words
that are accepted by A.

We reduce the universality problem for NFA, which is known to be PSPACE-complete [9]
to the eventual universality problem.

I Proposition 14. Let A be a live NFA where all states are terminal. Then deciding whether
L(A) is eventually universal is PSPACE-hard.

Proof. LetA = (Q,Σ, T, q0, F ) be an NFA. FromA we define the NFAA′ = (Q′,Σ′, T ′, q0, Q
′)

where Σ′ = Σ ] {]}, Q′ = Q ] {s}, and

T ′ = T ∪ {(q, ], q0) | q ∈ F} ∪ {(s, a, s) | a ∈ Σ} ∪ {(q, a, s) | a ∈ Σ, q 6→A} .

Assume first that L(A) = Σ∗. Any word w over the alphabet Σ′ can be decomposed into
w = w0]w1] . . . ]wn with wi ∈ Σ∗. For each factor wi, since A is universal, there exists a run
ρi on w ending in some terminal state qi in A. Therefore w is accepted in A′ by the run
ρ0]ρ1] . . . ]ρn. Hence A′ is universal, and thus eventually universal: ε−1L(A′) = Σ′∗.
Assume that A′ is eventually universal and let v ∈ Σ′∗ be such that v−1L(A′) = Σ′∗. Given
w ∈ Σ∗, we consider the word w′ = v]w]. Since A′ is eventually universal with witness
v, w′ ∈ L(A′) and an accepting run can be decomposed as: ρ]ρ′]q0 where run ρ′ which
corresponds to word w has q0 as initial state, ends in a final state of A, and only uses
transitions of A. So ρ′ is a run of A that accepts w. Therefore w ∈ L(A), and A is
universal. J

I Proposition 15. The IF-diagnosability problem is PSPACE-hard.

Proof. The proof is by reduction from the eventual universality problem, and relies on the
characterization of Proposition 8. Let A be a live NFA over Σ, in which all states are final.
From A, one builds a live pLTS A′ as depicted in Figure 11. In A′, the set of events is

q′0 f0q0
f

Σ

u
A

Figure 11 A reduction for PSPACE-hardness of IF-diagnosability.

Σ ] {u, f}, and u and f are the unobservable events. Under this construction, we will show
that A is eventually universal if and only if A′ is not IF-diagnosable.
Let us have a closer look to the product pLTS A′IF. For w ∈ Σ+, if fw leads to some state
(f0, U) in A′IF, by contruction of A′, U corresponds to the subset of states reachable in A
after reading w. Otherwise stated, either w ∈ L(A) and the non empty set U consists of the
on-the-fly determinization of A, or w /∈ L(A) and U = ∅.
Assume first that A′ is not IF-diagnosable. By Proposition 8, A′IF contains a reachable BSCC
C with some state s = (f0, U) ∈ C such that U 6= ∅. In fact, since C is a BSCC, and because
f0 is a sink state in A′ where all events are enabled, for every state s′ of C there exists U ′ 6= ∅
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such that s′ = (f0, U
′). As a consequence, for any v ∈ Σ∗ such that fv leads from the initial

state to s ∈ C in A′A, we must have v−1L(A) = Σ∗. Therefore, A is eventually universal.
Conversely assume that there exists a word v ∈ Σ∗ such that v−1L(A) = Σ∗. Of course, any
word extending v is also a witness that A is eventually universal. Let v′ ∈ Σ∗ be such that,
in A′A, the run reading fvv′ ends in a BSCC C. Since (vv′)−1L(A) = Σ∗, all states of C are
of the form (f0, U) with U 6= ∅. Therefore, by Proposition 8, A′ is not IF-diagnosable. J

I Proposition 16. The IF-diagnosability problem is in PSPACE.

Proof. We use the characterization of IF-diagnosability given in Proposition 8 without
building explicitely the product pLTS AIF. Given two states s, s′ of AIF, we can in polynomial
space check whether one is reachable from the other. Using this procedure, we can check
whether a state s is not in a BSCC by guessing another state s′ such that s′ is reachable
from s but s is not reachable from s′ (here we use Savitch theorem).
Thus the procedure which decides whether A is not IF-diagnosable consists in guessing a
state s = (q, U) with q ∈ Qf and U 6= ∅ and checking whether s is in a BSCC (here again,
we use Savitch theorem). J

Propositions 15 and 16 determine the precise complexity of IF-diagnosability, as summar-
ized below:

I Theorem 17. The IF-diagnosability problem is PSPACE-complete.

3.2 Complexity of FA-diagnosability
I Proposition 18. The FA-diagnosability problem is PSPACE-hard.

Proof. The proof is again by reduction from the eventual universality problem. Let A be an
NFA and A′ the pLTS built from A as depicted in Figure 12. For any n ∈ N, the probability

q′0 f0q0qq]
f

Σ

u]

]
]

A

Figure 12 A reduction for PSPACE-hardness of FA- and IA-diagnosability.

of ambiguity can be decomposed as:

lim sup
n→∞

PA′(CAmbn ∪ FAmbn) =

lim sup
n→∞

PA′({q′0uq0ρ | q′0uq0ρ ∈ CAmbn}) + PA′({q′0ff0ρ | q′0ff0ρ ∈ FAmbn})

Observe that an infinite run starting by q′0uq0 almost surely contains a ] event. On the
other hand, an ambiguous signalling run ρ ∈ SRn starting by q′0uq0 must not contain a ]
event. Thus the probability that such runs are ambiguous is decreasing and tends to 0, when
n goes to infinity. We deduce

lim sup
n→∞

PA′(CAmbn ∪ FAmbn) = lim sup
n→∞

PA′(FAmbn)

and therefore, A′ is FA-diagnosable if and only if it is FF- (or IF-)diagnosable.
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Since the faulty runs never contain a ], only runs that do not contain ] are relevant for
ambiguity of faulty runs. We are thus is the same position as in the proof of Proposition 15,
and A′ is not IF-diagnosable if and only if A is eventually universal. J

I Proposition 19. The FA-diagnosability problem is in PSPACE.

Proof. We use the characterization of FA-diagnosability given in Proposition 10 without
explicitely building the product pLTS AFA. Similarly to the proof of Proposition 16, we
heavily use Savitch theorem here. First given a state (q, U, V ) of AFA we can check in
polynomial space whether it belongs to a BSCC (as in the proof of Proposition 16). We can
also check in polynomial space whether it can be reached from some state (q′, U ′, V ′) with
U ′ = ∅ or V ′ = ∅ by guessing such a state. Combining the two, this provides a polynomial
space algorithm to check whether (q, U, V ) belongs to a BSCC in which no state (q′, U ′, V ′)
fulfills U ′ 6= ∅ and V ′ 6= ∅.
Thus the procedure that decides whether A is not FA-diagnosable consists in guessing a state
s = (q, U, V ), checking that it is reachable from s0 and belongs to a BSCC where all states
(q′, U ′, V ′) of the BSCC fulfill U ′ 6= ∅ and V ′ 6= ∅. J

Propositions 18 and 19 determine the precise complexity of FA-diagnosability, as sum-
marized below:

I Theorem 20. The FA-diagnosability problem is PSPACE-complete.

3.3 Complexity of IA-diagnosability
I Proposition 21. The IA-diagnosability problem is PSPACE-hard.

Proof. The proof is again by reduction from the eventual universality problem. Let A be an
NFA and consider again the pLTS A′ depicted in Figure 12. The probability of ambiguity
can be decomposed as:

PA′(CAmb∞ ∪ FAmb∞) =
PA′({q′0uq0 · ρ | q′0uq0 · ρ ∈ CAmb∞}) + PA′({q′0ff0 · ρ | q′0ff0 · ρ ∈ FAmb∞}) .

Observe that an infinite run starting with q′0uq0 almost surely contains a ] event. Thus
the probability that such runs are ambiguous is null and we obtain:

PA′(CAmb∞ ∪ FAmb∞) = PA′(FAmb∞)

and therefore, A′ is IA-diagnosable if and only if it is IF-diagnosable. Now, we exploit the
end of the proof of Proposition 18 to obtain that A′ is not IF-diagnosable if and only if A is
eventually universal. J

I Proposition 22. The IA-diagnosability problem is in PSPACE.

Proof. We use the characterization of IA-diagnosability given in Proposition 12 without
building explicitely AIA. First, given a state (q, U, V,W ) of AIA, we can check in polynomial
space that it belongs to a BSCC (as in the proof of Proposition 16). We can also check in
polynomial space whether it is coreachable from a state (q′, U ′, V ′,W ′) that fulfills U ′ = ∅
or W ′ = ∅ by guessing such a state (we use Savitch theorem here). Combining the two
procedures, we can check in polynomial space whether (q, U, V,W ) belongs to a BSCC where
all states (q′, U ′, V ′,W ′) of the BSCC fulfill U ′ 6= ∅ and W ′ 6= ∅.
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Thus the procedure that decides whether A is not IA-diagnosable consists in guessing a state
s = (q, U, V,W ), checking that it is reachable from s0 and belongs to a BSCC where all
states (q′, U ′, V ′,W ′) of the BSCC fulfill U ′ 6= ∅ and W ′ 6= ∅. J

Propositions 21 and 22 determine the precise complexity of IA-diagnosability, as summar-
ized below:

I Theorem 23. The IA-diagnosability problem is PSPACE-complete.

4 Diagnoser construction

In this section we focus on the construction of diagnosers. A diagnoser is a function
D : Σ∗o → {?,>,⊥} assigning to every finite observation sequence a verdict. Informally when
a diagnoser outputs ? it does not provide any information, while > ensures that a fault is
certain and ⊥ that some information about correctness has been provided. We consider the
natural partial order ≺ on these values defined by ? ≺ > and ? ≺ ⊥.

A finite memory diagnoser is given by a tuple (M,Σ,m0, up, Dfm) where M is a finite
set of memory states, m0 ∈M is the initial memory state, up : M × Σo →M is a memory
update function, and finally Dfm : M → {?,>,⊥} is a diagnoser function. The mapping
up is extended into a function up : M × Σ∗o →M defined inductively by up(m, ε) = m and
up(m,wa) = up(up(m,w), a). A finite memory diagnoser is not a diagnoser as defined above,
yet it induces the diagnoser defined by D(w) = Dfm(up(m0, w)).

Diagnosers we define in the sequel will have two important properties: soundness and
reactivity. Soundness ensures that the information provided is accurate and reactivity
specifies which pieces of information the diagnoser must provide. The precise soundness
and reactivity requirements will depend on the considered diagnosability notion. Moreover,
we only consider diagnosers that, once they output >, never change their verdict in the
future. Note that any sound diagnoser can be turned into one that is sound and satisfies this
commitment property.

4.1 IF-diagnoser
We start with IF-diagnoser, that performs diagnosis of IF-diagnosable pLTS. In the sequel we
fix A a finite pLTS.

I Definition 24. An IF-diagnoser for A is a function D : Σ∗o → {>, ?} such that,
soundness For every w ∈ Σ∗o, if D(w) = >, then w is surely faulty.
reactivity For every finite faulty run ρ, P({ρ′ ∈ Ω | ρ � ρ′ ∧D(P(ρ′)) =?}) = 0 where for

w ∈ Σωo , D(w) = limn→∞D(w≤n).
Note that in the above definition the limit is well-defined because we assumed that the
diagnoser commits to >.

I Proposition 25. A finite pLTS is IF-diagnosable if and only if it admits an IF-diagnoser.

Proof. Let A be a pLTS, and assume there exists an IF-diagnoser D for A.
Let ε > 0. Using Lemma 5, first select n0 such that for all n ≥ n0

P(FAmbn∆FAmb∞) < ε ,

where ∆ stands for the symmetric difference. So for n ≥ n0 one has P(FAmbn∆FAmbn0) < 2ε.
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Since D is sound, for any signalling faulty run ρ ∈ SRn0 , and for any n ≥ n0

{ρ′ ∈ FAmbn | ρ � ρ′} ⊆ {ρ′ ∈ SRn | ρ � ρ′ ∧D(P(ρ′)) =?} .

By the reactivity condition, D almost surely detects faults, and because the number of
signalling runs of fixed observable length is finite (since A is convergent by hypothesis), there
exists N ∈ N such that for every n ≥ N + n0 and every signalling faulty run ρ ∈ SRn0 ,
P({ρ′ ∈ SRn | ρ � ρ′ ∧D(P(ρ′)) =?}) < ε · P(ρ).
Thus for every n ≥ N + n0,

P(FAmbn ∩ FAmbn0) = P
( ⊎

ρ∈FAmbn0

{ρ′ | ρ ∈ FAmbn, ρ � ρ′}
)

=

∑

ρ∈FAmbn0

P({ρ′ | ρ ∈ FAmbn, ρ � ρ′}) < ε
∑

ρ∈FAmbn0

P(ρ) = εP(FAmbn0) ≤ ε .

Thus P(FAmbn) < 3ε for every n ≥ N + n0, which proves that A is IF-diagnosable.
Assume that A is IF-diagnosable. We define the function D : Σ∗o → {>, ?} by D(w) = > if
and only if w is a surely faulty observed sequence. Let us check that D is an IF-diagnoser.
Since D(w) = > iff w is a surely faulty sequence, D is sound. Now, let ρ be a faulty run.

P({ρ′ ∈ Ω | ρ � ρ′ ∧D(P(ρ′)) =?}) = lim
n→∞

P({ρ′ ∈ FAmbn+|ρ|o | ρ � ρ′}) .

For every n ∈ N, {ρ′ ∈ FAmbn+|ρ|o | ρ � ρ′} ⊆ FAmbn+|ρ|o and limn→∞ P(FAmbn) = 0.
Therefore P({ρ′ ∈ Ω | ρ � ρ′ ∧D(P(ρ′)) =?}) = 0 and D is reactive. J

I Proposition 26. If A is an IF-diagnosable pLTS with n correct states, one can build an
IF-diagnoser with at most 2n memory states where n = |Qc|.

Proof. For an IF-diagnosable pLTS A with IF(A) = (Q∗,Σo, T ∗, {q0}) its deterministic and
complete IF-automaton, we define the finite memory diagnoser (M,Σ, up,m0, Dfm) with
M = Q∗ and m0 = {q0}, up(q, a) = T ∗(q, a) and Dfm(U) = > iff U = ∅. Let us show that
the induced diagnoser D is indeed an IF-diagnoser, and that it has at most 2n memory states,
where n is the number of correct states of A.
soundness When D outputs the verdict >, IF(A) is in the state associated with ∅. Thus the

observed sequence is surely faulty.
reactivity If an infinite faulty run ρ is such that D(P(ρ)) =? then, by construction of IF(A)

and definition of D, for every length n ∈ N, there exists a finite correct signalling run
ρn ∈ SRn such that P(ρn) = P(ρ↓n). Using König’s lemma, since A is finitely branching,
one can extract an infinite correct run ρ∞ such that P(ρ∞) = P(ρ), so that ρ ∈ FAmb∞.
Moreover P(FAmb∞) = 0 as A is IF-diagnosable. Putting everything together, for every
faulty run ρ, P({ρ′ ∈ Ω | ρ � ρ′ ∧D(P(ρ′)) =?}) = 0.

size The memory states are states of IF(A), which are themselves subsets of correct states
of A. Therefore, D uses at most 2n memory states, with n = |Qc|.

J

I Proposition 27. There is a family {An}n∈N of IF-diagnosable pLTS such that An has
n+ 1 correct states and it admits no IF-diagnoser with less than 2n states.
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An

q0

l0 l1 l2 . . . ln

r1 r2 . . . rn

f

a a, b a, b a, b

b a, b a, b a, b
a, b c

c

Figure 13 Example of an IF-diagnosable pLTS requiring an IF-diagnoser with exponential size.

Proof. Consider the example of Figure 13 where Σo = {a, b, c} and the initial state is
q0. Consider a finite faulty run including a c event. Its observed sequence belongs to
L = {a, b}∗b{a, b}n−1c+. Since any finite correct run has an observed sequence belonging to
L′ = {a, b}∗ ∪ {a, b}∗a{a, b}n−1c+ and L ∩ L′ = ∅, FAmbn ] CAmbn ⊆ {ρ | P(ρ) ∈ {a, b}n}.
Since limn→∞ P({ρ | P(ρ) ∈ {a, b}n}) = 0, the pLTS is FA-diagnosable and so IA-diagnosable
and IF-diagnosable.
Intuitively, when a c is observed, any IF-diagnoser must have remembered the observable
event that happened n steps earlier to know if the run is faulty or not. Thus, it must
remember the last n observed events, in case a c event occurs.
More formally, assume there exists a diagnoser D = (M,Σ,m0, up, Dfm) with less than 2n
memory states. Then there exist two distinct words w1 ∈ {a, b}n and w2 ∈ {a, b}n leading
to the same memory state: up(m0, w1) = up(m0, w2). The words w1 and w2 differ at least
from one letter say w1[i] = a and w2[i] = b. Consider for k ≥ 1, the signalling correct
run ρ1,k corresponding to observed sequence w1a

i−1ck whose sequence of visited states is
qi0r1 . . . r

k+1
n and the signalling faulty run ρ2,k corresponding to observed sequence w2a

i−1ck

whose sequence of visited states is qi0l0l1 . . . lk+1
n . They also lead to the same memory state.

By soundness, D(w1a
i−1ck) =?. Thus for all suffix ρ of ρ2,1, D(ρ) =? contradicting the

reactivity of D. J

4.2 FA-diagnoser
FA-diagnosability and IA-diagnosability not only consider the diagnosis of faults but also of
correct runs. Different from IF-diagnosers, FA- and IA-diagnosers have three possible verdicts
>, related to faulty sequences, ⊥, linked with correctness, and ? when no information can be
derived from the observation.

I Definition 28. An FA-diagnoser for A is a function D : Σ∗o → {>,⊥, ?} such that
soundness For every w ∈ Σ∗o

if D(w) = >, then w is surely faulty;
if D(w) = ⊥, then w is surely correct.

reactivity P({ρ ∈ Ω | Dinf(P(ρ)) =?}) = 0 where for w ∈ Σωo , Dinf(w) = lim infn→∞D(w≤n).

I Proposition 29. A finite pLTS A is FA-diagnosable if and only if it admits an FA-diagnoser.

Proof. Assume first that there exists an FA-diagnoser D for A. For every n ∈ N, we define
FDn = {ρ ∈ Ω | ∀m ≥ n,D(P(ρ↓m)) = >} the set of runs that are diagnosed faulty after n
observed events, and symmetrically CDn = {ρ ∈ Ω | ∀m ≥ n,D(P(ρ↓m)) = ⊥} the set of
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runs that are persistenly diagnosed correct after n observed events. The sequences (CDn)n∈N
and (FDn)n∈N are non-decreasing. As ? ≺ ⊥ and ? ≺ >, for every run ρ ∈ Ω, Dinf(P(ρ)) =?
is equivalent to ρ /∈ ⋃n(FDn ∪ CDn). Thus

⋃
n∈N(FDn ∪ CDn) = {ρ ∈ Ω | Dinf(P(ρ)) 6=?}.

Since D is reactive, P({ρ ∈ Ω | Dinf(P(ρ)) 6=?}) = 1. Moreover, since D is sound, for every
n ∈ N, FDn ⊆ Sfn and CDn ⊆ Cn \ CAmbn. Thus for every n ∈ N, P(FAmbn ∪ CAmbn) =
1 − P(Sfn ∪ Cn \ CAmbn) ≤ 1 − P(FDn ∪ CDn) and limn−→∞ P(FAmbn ∪ CAmbn) ≤ 1 −
lim infn−→∞ P({ρ ∈ SRn | D(P(ρ)) 6=?}) = 0. This shows that A is FA-diagnosable.
Assume now that A is FA-diagnosable. From FA(A) = (Q∗,Σo, T

∗, ({q0}, ∅)) the FA-
automaton of A, we define the finite memory diagnoser D = (M,Σ,m0, up, Dfm) where M =
Q∗, m0 = ({q0}, ∅), up(m, a) = T ∗(m, a), Dfm((U, V )) = > iff U = ∅ and Dfm((U, V )) = ⊥
iff V = ∅. Let us check that D is an FA-diagnoser, and that its size is at most 2n if n denotes
the number of states of A.
soundness Let w ∈ Σ∗o be an observation sequence. If (U, V ) is the state in FA(A) reached

after reading w, then recall that U (resp. V ) is the set of states in A that can be reached
by correct (resp. faulty) signalling runs labeled by w. By construction, if D(w) = > then
w is surely faulty, and if D(w) = ⊥ then w is surely correct.

reactivity Let ρ be a signalling run such that D(P(ρ)) =?. Due to the characterization
of Proposition 10, the SCC of AFA that ρ has reached cannot be a BSCC. So given
some n, P({ρ ∈ Ω | ∃m ≥ n D(P(ρ↓m) =?}) ≤ P({ρ ∈ Ω | ρ↓n does not reach a BSCC}).
Thus P({ρ ∈ Ω | Dinf(P(ρ)) =?}) = limn→∞ P({ρ ∈ Ω | ∃m ≥ n D(P(ρ↓m) =?}) ≤
lim supn→∞ P({ρ ∈ Ω | ρ↓n does not reach a BSCC}) = 0.

size D has at most 2n memory states because every state of FA(A) consists of a pair (U, V )
with U ⊆ Qc and V ⊆ Qf .

J

In the latter proof, we explicitely built an FA-diagnoser, yielding an upper bound on the
size of FA-diagnosers.

I Proposition 30. For every FA-diagnosable pLTS A with n states, one can build an FA-
diagnoser with at most 2n memory states.

As the pLTS of Figure 13 is FA-diagnosable, and since any FA-diagnoser is also an
A-diagnoser, using Proposition 27 we obtain the following lower bound for the size of
FA-diagnosers.

I Proposition 31. There is a family {An}n∈N of FA-diagnosable pLTS such that An has
2n+ 2 states and it admits no FA-diagnoser with less than 2n memory states.

4.3 IA-diagnoser
Last we introduce IA-diagnosers, that mostly differ from FA-diagnosers on the soundness
requirement. Intuitively, IA-diagnosers may resolve an ambiguity late, while another one has
already been produced, contrary to FA-diagnosers.

I Definition 32. An IA-diagnoser for A is a function D : Σ∗o → {>,⊥, ?} such that
soundness For all w ∈ Σ∗o

if D(w) = >, then w is surely faulty;
if D(w) = ⊥, letting |D(w)|⊥ = |{0 < n ≤ |w| | D(w≤n) = ⊥}|, then for all signalling
run ρ such that P(ρ) = w, ρ↓|D(w)|⊥ is correct.

reactivity P({ρ ∈ Ω | Dsup(P(ρ)) =?}) = 0 where for w ∈ Σωo ,Dsup(w) = lim supn→∞D(w≤n).
(Dsup is well-defined since once the diagnoser outputs >, it always sticks to this verdict.)
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The interpretation of D(w) = ⊥ is that the diagnoser ensures that any signalling subrun
of length |D(w)|⊥ ≤ |w| of a signalling run for w is correct. Of course it may deduce this
information from the last |w| − |D(w)|⊥ observations. This is illustrated on the example
of Figure 14 for which we describe an IA-diagnoser. After observing any sequence wbaa,
with w ∈ {a, b}∗, the diagnoser knows a posteriori that two steps before, that is after
the observation of wb, the run was necessarily correct. Indeed, observing the suffix aa

is not possible after a fault, yet wba is not surely correct. Let D be defined by: for
w ∈ {a, b}∗(ab ∪ aa), D(w) = ⊥, for w ∈ {a, b, c}∗c, D(w) = > and otherwise D(w) =?.
Then D is an IA-diagnoser.

q0 f1 f2
f a

b ca, b

Figure 14 A pLTS which is IA-diagnosable.

I Proposition 33. A finite pLTS A is IA-diagnosable if and only if it admits an IA-diagnoser.

Proof. Assume first that there exists an IA-diagnoser D for A, and let ρ be an infinite run.
By reactivity, almost surely Dsup(P(ρ)) ∈ {>,⊥}. If Dsup(P(ρ)) = > then there exists some
n such that D(P(ρ↓n)) = >. By soundness, ρ↓n is surely faulty and thus ρ is surely faulty.
If Dsup(P(ρ)) = ⊥, we claim that ρ is surely correct. Observe that the diagnoser infinitely
often ouputs ⊥, so by soundness, for all n, P(ρ↓n) is surely correct and thus in particular
ρ↓n is correct. Assume there exists an infinite faulty run ρ′ with P(ρ′) = P(ρ). There exists
a n such that for all m ≥ n, ρ′↓n is faulty. Thus by soundness there can be no more n ⊥
verdicts for P(ρ) contradicting the fact that Dsup(P(ρ)) = ⊥. Thus with probability 1, an
infinite run is unambiguous.

Assume now that A is IA-diagnosable, and denote IA(A) its IA-automaton. For any word
w ∈ Σ∗o, we denote by (Uw, Vw,Ww) the state in IA(A) reached after reading w. For every
finite signalling run ρ of A, we denote by (Uρ, Vρ,Wρ) = (UP(ρ), VP(ρ),WP(ρ)). The function
D is then defined as follows: D(w) = > iff Uw = ∅, D(w) = ⊥ iff Ww = ∅ and Uw 6= ∅, and
in all other cases D(w) =?. Let us prove that D is indeed an IA-diagnoser for A.
soundness For any word w, if Uw = ∅, by construction of IA(A), w is surely faulty. Assume

now that Ww = ∅ and Uw 6= ∅. Let w′ the greatest proper prefix of w such that Ww′ = ∅.
Let ρ be any signalling run with P(ρ) = w. Assume that ρ↓|w′| is faulty. Thus the
states visited by ρ↓n for |w′| < n ≤ |w| were always in Wρ↓n . Since Ww = ∅, this not
possible and so ρ↓|w′| is correct. Thus every time a state with W = ∅, the length of the
greatest prefix, for which all signalling subruns corresponding to this prefix are correct, is
increased. This establishes soundness.

reactivity Let ρ be an infinite run such that Dsup(P(ρ)) =?. Due to the characterization
of Proposition 12, either (1) the SCC of AIA that ρ infinitely often visits is not a BSCC
or (2) ρ does not visit infinitely often all the states of this SCC. The probability of such
runs is null which establishes the reactivity.

J



N. Bertrand and S. Haddad and E. Lefaucheux 23

In the latter proof, when A is IA-diagnosable, an IA-diagnoser is built from the IA-
automaton. We derive an upper bound on the size of IA-diagnosers.

I Proposition 34. For every pLTS A with nc correct states and nf faulty states which is
IA-diagnosable, one can build an IA-diagnoser with at most 2nc3nf states.

The following lower bound can be derived from the proof of Proposition 27, since the
pLTS of Figure 13 is IA-diagnosable, and because any IA-diagnoser is also an IF-diagnoser.

I Proposition 35. There is a family {An}n∈N of IA-diagnosable pLTS such that An has
2n+ 2 states and it admits no IA-diagnoser with less than 2n memory states.

5 Predictability and prediagnosis

In this section we study predictability and introduce prediagnosis, a versatile combination of
predictability and diagnosis.

5.1 Predictability
Fault predictability has been first introduced for LTS in [5]: in words, an LTS is predictable
(resp. k-predictable) if a fault can be predicted (resp. at least before k observations) whatever
the future behavior of the LTS. There are two possible adaptions for pLTS: (1) either one
sticks to the original definition and requires that the fault surely occurs or, (2) one relaxes it
and only requires that the fault almost surely occurs.

In order to reason about predictability, we introduce some particular prefixes of a run. For
a finite run ρ, and k ∈ N, we define prek(ρ), the k-past of ρ, by prek(ρ) = ρ↓|ρ|o−min(k,|ρ|o).
For example, in the pLTS of Figure 15, pre0(q0bq1fq2) = q0bq1 as f is unobservable and
pre1(q0bq1fq2) = q0. In fact for k ≥ 1, prek(q0bq1fq2) = q0.

q0 q1 q2q3 f1
b ca f

ca b

Figure 15 A 0-surely predictable and 1-predictable pLTS.

We also introduce sets of observed sequences defined on their possible future behaviors.

I Definition 36 (ultimately possibly (significantly) correct). Let σ be a finite observed sequence
of a pLTS A. Then:

σ is ultimately possibly correct if {ρ′ ∈ Ω | σ � P(ρ′)} ∩ C∞ 6= ∅. The set of ultimately
possibly correct observed sequences is denoted UPC.
σ is ultimately possibly significantly correct if P({ρ′ ∈ Ω | σ � P(ρ′)} ∩ C∞) > 0. The set
of ultimately possibly significantly correct observed sequences is denoted UPSC.

I Definition 37 ((sure) predictability). Let k ∈ N.
A pLTS A is k-surely predictable if for every run ρfq of A, P(prek(ρ)) /∈ UPC;
A pLTS A is k-predictable if for every run ρfq of A, P(prek(ρ)) /∈ UPSC.

Observe that in the previous definition, one can safely restrict to check the condition on
correct runs ρ by considering the first occurrence of a fault in the run ρfq.

For example, the pLTS of Figure 15 is 0-surely predictable. Every correct run ρ that
is followed by f is such that P(ρ) = bnc for some n ≥ 1. As it is the unique signalling run
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with such an observed sequence, the fault can be predicted. It is not 1-surely predictable
as the 1-past of ρ = q0bq1cq2ff1 is pre1(ρ) = q0bq1 and the infinite run ρ′ = q0(bq1)ω is
correct. However it is 1-predictable as for every signalling run with observed sequence
bn for some n ≥ 1 (thus ending in q1) a fault eventually almost surely occurs. Finally it
is not 2-predictable since the 2-past of ρ = q0bq1cq2ff1 is q0 and the infinite correct run
ρ = q0(aq3)ω has probability 1

2 .

5.1.1 Predictability versus diagnosability
While predictability seems to be a stronger requirement than FA-diagnosability, we show
that this is only true for sure predictability. More generally, we compare diagnosability and
predictability:

I Theorem 38. The following relations between diagnosability and predictability hold.
If a pLTS is k-surely predictable then it is k-predictable.
If a pLTS is 0-surely predictable then it is FA-diagnosable.
There exists a pLTS which is FA-diagnosable and not 0-predictable.
There exists a pLTS which is k-predictable for every k ∈ N and not IF-diagnosable.

Proof. The fact that sure-predictability implies predictability is immediate.
Assume that A is a 0-surely predictable pLTS. We claim that there is no ambiguous sequences.
Let ρ be a finite faulty run decomposed as ρ = ρ′fρ′′ with ρ′ a correct prefix. Pick any run
ρ∗ such that P(ρ∗) = P(ρ). Since P(ρ′) � P(ρ∗), by definition of 0-surely predictability, ρ∗
must be faulty. Thus 0-sure predictability implies FA-diagnosability.
The pLTS of Figure 22, on page 33, is not 0-predictable, yet it is FA-diagnosable as we detail
later in Section 5.2.3.

q0 f1
f

aa

Figure 16 A k-predictable pLTS which is not IF-diagnosable.

Consider now the pLTS of Figure 16. For every k ∈ N, it is k-predictable, because the
probability of correct infinite sequences is zero. However it is not IF-diagnosable since aω is
ambiguous, and q0ff1(af1)ω has probability 1

2 . J

5.1.2 Complexity of predictability
We simultaneously establish a lower bound for the complexity of k-sure predictability and
k-predictability problems.

I Proposition 39. Let k ∈ N. Deciding, given A a pLTS, whether A is surely-k predictable
(resp. k-predictable) is NLOGSPACE-hard.

Proof. We reduce the reachability problem in directed acyclic graphs which is NLOGSPACE-
complete [8]. Let G = (V,E) be a directed acyclic graph and s, t ∈ V . As shown in Figure 17,
we transform G into a pLTS A = 〈Q, q0,Σ, T,P〉 where

Q = V ] {sinkf , sinkc};
q0 = s

Σo = {a}, Σu = {u, f};
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a

a

Figure 17 Reduction of the reachability problem.

T = {(q, a, q′)|(q, q′) ∈ E} ∪ {(q, f, sinkf ) | q ∈ V } ∪ {(t, u, sinkc)} ∪ {(sinkf , a, sinkf )} ∪
{(sinkc, a, sinkc)};
P is the matrix specifying the uniform probability for the transitions outgoing from any
state.

This construction can be done in LOGSPACE.
Assume first that t is not reachable from s in G. Then due to acyclicity, all infinite paths end
up in sinkf , implying C∞ = ∅. Thus A is k-surely predictable (and therefore k-predictable)
for every k ∈ N.
Assume now that t is reachable from s in G and let ρ be a correct signalling run that reaches
t. Then ρfsinkf is a faulty run and the infinite correct run ρusinkca(sinkca)ω has positive
probability. Hence A is not 0-predictable. As a consequence, it is neither k-predictable nor
surely k-predictable for every k ∈ N. J

In order to determine an upper-bound for the complexity of k(-sure) predictability, we
provide graph-based characterizations. In the sequel, in a graph, a trivial strongly connected
component consists of a single state without loop.

I Lemma 40. Let A be a pLTS and k ∈ N. A is k-surely predictable if and only if there
does not exist a pair of runs q0

ρ0=⇒ q1 and q0
ρ′0=⇒ q′1 such that:

P(ρ0) = P(ρ′0);
q1

ρ1=⇒ q′
f−→ q for some q′ ∈ Qc with |ρ1|o ≤ k;

q′1
ρ2=⇒ q2, for some q2 ∈ Qc belonging to a non trivial SCC of A.

Proof. Assume such a pair (ρ0, ρ
′
0) exists. Let ρ = q0

ρ0=⇒ q1
ρ1=⇒ q′ with |ρ1|o ≤ k and

ρ∗ = q0
ρ′0=⇒ q′1

ρ2=⇒ q2. Observe that prek(ρ) � ρ0, so that letting ρp be the signalling run
ρ∗↓|prek(ρ)|o , we have P(ρp) = P(prek(ρ)). Moreover, since q2 is correct and belongs to a non
trivial SCC, there is an infinite suffix ρ′′ of ρ′, ρp that only visits the (correct) states of this
SCC after reaching q2, and thus ρ′′ is correct. This shows that A is not k-surely-predictable.
Assume now that A is not k-surely-predictable. Let ρfq be a run such that ρ is correct
and there exists ρp with ρp ∈ P−1(P(prek(ρ))) and ρ′ ∈ Ω such that ρp � ρ′ ∧ ρ′ ∈ C∞.
We let q1 be the state reached by prek(ρ). In particular, q1 ∈ Qc, and q1

ρ1=⇒ q′
f−→ q where

ρ = prek(ρ) · ρ1 and thus q′ ∈ Qc and |ρ1|o ≤ k. We let q′1 be the state reached by ρp. As
ρ′ is infinite, it ends up in a non trivial SCC of correct states. So we choose for q2 the first
state of this SCC reached by ρ′ from q′1. J

I Lemma 41. A is k-predictable if and only if there does not exist a pair of runs q0
ρ0=⇒ q1

and q0
ρ′0=⇒ q′1 such that:

P(ρ0) = P(ρ′0);
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q1
ρ1=⇒ q′

f−→ q for some q′ ∈ Qc with |ρ1|o ≤ k;
q′1

ρ2=⇒ q2, for some q2 ∈ Qc belonging to a BSCC of A.

Proof. Assume such a pair (ρ0, ρ
′
0) exists. Let ρ be a run of the form q0

ρ0=⇒ q1
ρ1=⇒ q′ with

|ρ1|o ≤ k and ρ∗ = q0
ρ′0=⇒ q′1

ρ2=⇒ q2. Observe that prek(ρ) � ρ0, so that letting ρp be the
signalling run ρ∗↓|prek(ρ)|o , we have P(ρp) = P(prek(ρ)). Moreover, since q2 is correct and
belongs to a BSCC, P({ρ′ ∈ Ω | ρp � ρ′ ∧ ρ′ ∈ C∞}) ≥ P(C(ρ∗)) > 0. This shows that A is
not k-predictable.
Assume now that A is not k-predictable. Let ρfq be a run such that ρ is correct and there
exists ρp with ρp ∈ P−1(P(prek(ρ))) and P({ρ′ ∈ Ω | ρp � ρ′ ∧ ρ′ ∈ C∞}) > 0. We let q1 be
the state reached by prek(ρ). In particular, q1 ∈ Qc, and q1

ρ1=⇒ q′
f−→ q where ρ = prek(ρ) · ρ1

and thus q′ ∈ Qc and |ρ1|o ≤ k. Letting q′1 be the state reached by ρp, we decompose the
probability P({ρ′ ∈ Ω | ρp � ρ′ ∧ ρ′ ∈ C∞}) depending on which BSCC runs ρ′ almost surely
hits:

P({ρ′ ∈ Ω | ρp � ρ′ ∧ ρ′ ∈ C∞})
=

∑

C BSCC reachable from q′1

P({ρ′ ∈ Ω | ρp � ρ′ ∧ ρ′ ∈ C∞ ∧ ρ′ ends in C}) .

From P({ρ′ ∈ Ω | ρp � ρ′ ∧ ρ′ ∈ C∞}) > 0, we deduce that there exists a BSCC C such that
P({ρ′ ∈ Ω | ρp � ρ′ ∧ ρ′ ∈ C∞ ∧ ρ′ ends in C}) > 0. Necessarily, C ⊆ Qc and we let q2 be any
state of C to conclude. J

We are now in position to design efficient procedures for sure predictability and predict-
ability decision problems.

I Proposition 42. Deciding, given A a pLTS and k ∈ N, whether A is k-surely predictable
can be done in NLOGSPACE.

Proof. We design a nondeterministic algorithm operating in logarithmic space to decide
whether A is not k-surely predictable, using characterisation of Lemma 40. This will prove
that sure predictability, the complementary problem, is also in NLOGSPACE by Immerman-
Szelepscényi’s theorem (that is also implicitely used in the rest of the proof).
First guess q1, q

′
1, q2 ∈ Qc, and check that q′1 =⇒ q2, with q2 belonging to a non trivial SCC

of A, and q1 and q′1 can be reached by runs with equivalent observation. All these checks
can be done in NLOGSPACE. More precisely for the last property, one guesses a pair of
observationally equivalent paths, using a counter bounded by n2, with n the number of states
of A. In the positive case one guesses a run from q1 that produces a fault with at most k
observable events, using a counter bounded by k. J

I Proposition 43. Deciding, given A a pLTS and k ∈ N, whether A is k-predictable can be
done in NLOGSPACE.

Proof. We design a nondeterministic algorithm operating in logarithmic space to decide
whether A is not k-predictable, using characterisation of Lemma 41.
First guess q1, q

′
1, q2 ∈ Qc, and check that q′1 =⇒ q2, q2 belongs to a BSCC of A, and q1 and

q′1 can be reached by runs with equivalent observation. All these checks can be done in
NLOGSPACE. In the positive case one guesses a run from q1 that produces a fault with at
most k observable events, using a counter bounded by k. J

Summarizing the previous results, we get the following theorem.
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I Theorem 44. Deciding, given A a pLTS and k ∈ N, whether A is k-predictable (resp.
surely k-predictable) is an NLOGSPACE-complete problem. Moreover, the same complexity
applies assuming k is fixed (and not given as input).

5.1.3 Predictor synthesis
We now define predictors and sure predictors.

I Definition 45. A k-predictor (resp. k-sure predictor) is a function D : Σ∗o → {>, ?} such
that:
soundness For every signalling run ρ such that D(P(ρ)) = >, P({ρ′ ∈ Ω | ρ � ρ′ ∧ ρ′ ∈

C∞}) = 0 (resp. for every ρ′ ∈ Ω such that ρ � ρ′, ρ′ /∈ C∞).
reactivity For every signalling run ρ, if there exists ρ′ with |ρ′|o ≤ k and ρρ′ faulty, then

D(P(ρ)) = >.

The next propositions establish that the existence of k-predictors (resp. k-sure predictors)
is equivalent to k-predictability (resp. k-sure predictability). In addition we show that there
exist finite memory predictors with optimal exponential size.

I Proposition 46. A pLTS A is k-surely predictable if and only if it admits a k-sure predictor.
In the positive case, A admits a k-sure predictor with at most 2nc states where nc is the
number of correct states of A.

Proof. Let A be a pLTS and k ∈ N, and assume there exists a k-sure predictor D for A.
Let ρ0mathbffq be a run of A such that ρ0 is correct. The correct prefix ρ0 decomposes into
ρ0 = prek(ρ0)ρ′0. Since D is reactive and because prek(ρ0) can be extended into ρ0fq which is
faulty with |ρ′0fq|o ≤ k, necessarilyD(P(prek(ρ0)) = >. For every run ρ1 ∈ P−1(P(prek(ρ0)))
observationally equivalent to prek(ρ0), then D(P(ρ1)) = D(P(ρ0)) = >. By soundness, for
every ρ ∈ Ω such that ρ1 � ρ we have: ρ /∈ C∞. This proves that A is k-surely predictable.
Assume now that A is k-surely predictable. Let IF(A) = {Q∗,Σo, T

∗, {q0}} be the IF-
automaton of A, andHk be the set of correct states q of A such that there is a run ρfq′ starting
from q in A with |ρ|o ≤ k. We define the finite memory diagnoser {Q∗,Σo, T

′, {q0}, Dfm},
with finite memory Q∗ = 2Qc , as follows. For every a ∈ Σo and every U ∈ Q∗

If U ∩Hk = ∅ then T ′(U, a) = T ∗(U, a) else T ′(U, a) = U ;
Dfm(U) = > if and only if U ∩Hk 6= ∅.

Let ρ be a run such that D(P(ρ)) = >. Since T ′({q0},P(ρ))∩Hk 6= ∅, consider the first index
i such that T ′({q0},P(ρ↓i))∩Hk 6= ∅ which implies that T ′({q0},P(ρ↓i)) = T ∗({q0},P(ρ↓i)).
By definition of Dfm and Hk, there is a run ρ′fq′ starting from q ∈ T ∗({q0},P(ρ↓i)) with
|ρ|o ≤ k in A. Thus there is a signalling run ρ′′ starting from q0 and reaching q with
P(ρ′′) = P(ρ↓i). Considering ρ′′ · ρ′fq′, the k-sure predictability of A implies that every
infinite run ρ∗ with ρ↓i � ρ∗ belongs to C and in particular those that fulfill ρ � ρ∗. Therefore
D is sound.
Let ρ be a run such that there exists ρ′ with ρ · ρ′ faulty and |ρ′|o ≤ k. By definition of Hk,
T ∗({q0},P(ρ))∩Hk 6= ∅. Consider the first index i such that T ∗({q0},P(ρ↓i))∩Hk 6= ∅. Then
T ′({q0},P(ρ↓i)) = T ∗({q0},P(ρ↓i)) which implies that T ′({q0},P(ρ)) = T ∗({q0},P(ρ↓i))
and that Dfm(P(ρ)) = >. This shows that D is reactive. J

I Proposition 47. A pLTS A is k-predictable if and only if it admits a k-predictor. In the
positive case, A admits a k-predictor with at most 2nc states where nc is the number of
correct states of A.
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Proof. Let A be a pLTS and k ∈ N, and assume there exists a k-predictor D for A. Let
ρ0fq be a run of A such that ρ0 is correct. ρ0 can be decomposed in ρ0 = prek(ρ0)ρ′0. Then,
as D is reactive and prek(ρ0) can be extended in ρ0fq which is faulty with |ρ′0fq|o ≤ k,
D(P(prek(ρ0)) = >. Let ρ1 ∈ P−1(P(prek(ρ0))), then D(P(ρ1)) = D(P(ρ0)) = >. By
soundness, P(ρ ∈ Ω | ρ1 � ρ ∧ ρ ∈ C∞) = 0. This proves that A is k-predictable.
Assume now that A is k-predictable. Let IF(A) = {Q∗,Σo, T

∗, {q0}} and Hk be the set of
correct states q of A such that there is a run ρfq′ starting from q in A with |ρ|o ≤ k. We
define the diagnoser {Q∗,Σo, T

′, {q0}, Dfm}, with finite memory Q∗ = 2Qc , as follows. For
every a ∈ Σo and every U ∈ Q∗

If U ∩Hk = ∅ then T ′(U, a) = T ∗(U, a) else T ′(U, a) = U ;
Dfm(U) = > if and only if U ∩Hk 6= ∅.

Let ρ be a run such that D(P(ρ)) = >. Since T ′({q0},P(ρ))∩Hk 6= ∅, consider the first index
i such that T ′({q0},P(ρ↓i))∩Hk 6= ∅ which implies that T ′({q0},P(ρ↓i)) = T ∗({q0},P(ρ↓i)).
By definition of Dfm and Hk, there is a run ρ′fq′ starting from q ∈ T ∗({q0},P(ρ↓i)) with
|ρ|o ≤ k in A. Thus there is a signalling run ρ′′ starting from q0 and reaching q with
P(ρ′′) = P(ρ↓i). Considering ρ′′ · ρ′fq′, the k-predicatibility of A, implies that P({ρ∗ ∈ Ω |
ρ↓i � ρ∗ ∧ ρ∗ ∈ C∞}) = 0 which then implies that P({ρ∗ ∈ Ω | ρ � ρ∗ ∧ ρ∗ ∈ C∞}) = 0. This
shows that D is sound.
Let ρ be a run such that there exists ρ′ with ρ · ρ′ is faulty and |ρ′|o ≤ k. By definition of Hk,
T ∗({q0},P(ρ))∩Hk 6= ∅. Consider the first index i such that T ∗({q0},P(ρ↓i))∩Hk 6= ∅. Then
T ′({q0},P(ρ↓i)) = T ∗({q0},P(ρ↓i)) which implies that T ′({q0},P(ρ)) = T ∗({q0},P(ρ↓i))
and that Dfm(P(ρ)) = >. Therefore D is reactive. J

As the pLTS of Figure 15 is 0-surely predictable and 1-predictable, one can build with the
methods showed in the proof of Proposition 46 and Proposition 47 a correct 0-sure predictor
and a 1-predictor. This is done in Figure 18 where the states with double lines correspond
to a verdict >.

{q0}

{q3}

{q1} {q2}

a

b c

bb

a

{q0}

{q3}

{q1}

a

b

b, c

a

Figure 18 On the left a 0-sure predictor of Figure 15, on the right a 1-predictor.

A lower bound on the size of the two kinds of predictors can be obtained using the family
of pLTS of Figure 19.

I Proposition 48. There is a family {An}n∈N of 0-surely predictable pLTS where for every
n, An has 2n+ 2 correct states, and An admits no 0-sure predictor (resp. no 0-predictor)
with less than 2n states.

Proof. Consider the pLTS A of Figure 19 where Σo = {a, b, c} and the initial state is q0.
Any correct run ρ immediately followed by a fault has an observed sequence that belongs to
{a, b}∗a{a, b}n−1c and ρ is the single run with such an observed sequence so that A is 0-sure
predictable.
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q0

l1 l2 . . . ln ln+1 ln+2

r1 r2 . . . rn

a

a, b a, b a, b c f

b

a, b a, b a, b

a, b

c

c

Figure 19 A family of 0-surely predictable pLTS requiring predictors with exponential size.

Intuitively, when a c is observed, any 0-predictor (sure or almost-sure) must have remembered
the observable event that happened n steps earlier to know whether the system will commit
a fault in the next step or not. Thus, as it does not know when a c will occur, it has to
remember the last n letters that were observed as long as no c occurs.
Formally, assume that there exists a predictor D with less than 2n states. Then there are two
distinct words w1 ∈ {a, b}n and w2 ∈ {a, b}n leading to the same memory state. The words
w1 and w2 differ at least from one letter say w1[i] = a and w2[i] = b. Consider the signalling
correct run ρ1 corresponding to observed sequence w1a

i−1c whose sequence of visited states is
qi0l1 . . . lnln+1 and the signalling correct run ρ2 corresponding to observed sequence w2a

i−1c

whose sequence of visited states is qi0r0r1 . . . rnrn. They also lead to the same memory
state. Since every infinite run extending ρ2 is correct, by soundness D(w2a

i−1c) =?. But
by reactivity, D(w1a

i−1c) = >. Since D(w1a
i−1c) = D(w2a

i−1c), such a predictor cannot
exist. J

5.2 Prediagnosis
On the one hand, diagnosis is concerned with detection of faults that have occurred: given
a sequence of observations a diagnoser tries to detect that a fault has occurred in the past
of all consistent behaviors. On the other hand, prediction is concerned with anticipation of
faults: given a sequence of observations a predictor tries to detect that a fault will eventually
occur in the future of all consistent behaviors. The notion we introduce now, prediagnosis,
concerns detection of faults both in the past and in the future.

Let us start by introducing two sets of infinite faulty runs that make prediagnosis
impossible. FUPC∞ is the set of faulty runs that admit for all their finite prefixes a
compatible infinite correct run. The condition is strengthened for FUPSC∞ which gathers the
faulty runs that admit for all their finite prefixes, a positive measure of compatible infinite
correct runs.

I Definition 49. Let A be a pLTS. Then:
FUPC∞, the set of faulty, ultimately possibly correct runs is defined by:
FUPC∞ = {ρ ∈ Ω | ρ faulty and ∀i ∈ N, P(ρ↓i) ∈ UPC}
FUPSC∞, the set of faulty, ultimately possibly significantly correct runs is defined by:
FUPSC∞ = {ρ ∈ Ω | ρ faulty and ∀i ∈ N, P(ρ↓i) ∈ UPSC}

The reactivity requirement for prediagnosers will impose that these sets are negligible.
The difference between these two sets impacts correctness: relying on FUPC∞ provides a
sure correctness while relying on FUPSC∞ only provides an almost sure correctness.

I Definition 50 ((Sure) Prediagnosability). Let A be a pLTS. Then:



30 Foundation of Diagnosis and Predictability in Probabilistic Systems

A is surely prediagnosable if P(FUPC∞)=0;
A is prediagnosable if P(FUPSC∞)=0.

5.2.1 Prediagnosability versus diagnosability and predictability
Since prediagnosis does not provide information about correct runs, we only compare it
with the two notions of fault diagnosability, IF- and FF-diagnosability, and also to (sure)
predictability. Surprisingly, sure prediagnosability lies strictly between FF-diagnosability
and IF-diagnosability with equivalence for finite branching pLTS. Also (sure) 0-predictability
implies (sure) prediagnosability. As expected, the less demanding specification is prediagnos-
ability.

I Theorem 51. Let A be a pLTS. The following relations between prediagnosability, dia-
gnosability and predictability hold.

If A is FF-diagnosable then it is surely prediagnosable. There exists an infinitely branching
pLTS which is surely prediagnosable but not FF-diagnosable.
If A is surely prediagnosable then it is IF-diagnosable. There exists an infinitely branching
pLTS which is IF-diagnosable but not surely prediagnosable.
If A is surely prediagnosable then it is prediagnosable. There exists a finite pLTS which
is prediagnosable and not IF-diagnosable (and thus not surely prediagnosable).
If A is 0-predictable (resp. surely 0-predictable) then it is prediagnosable (resp. surely
prediagnosable). There exists a finite pLTS which is surely prediagnosable and not
0-predictable.

Proof. Let us define {FUPCn}n∈N by: FUPCn = {ρ ∈ Ω | ρ↓n faulty and ∀i ∈ N P(ρ↓i) ∈
UPC}. Observe that this sequence of sets is non-decreasing and FUPC∞ =

⋃
n∈N FUPCn.

Therefore, P(FUPC∞) = limn→∞ P(FUPCn).
Now, observe that for every n ∈ N, FUPCn ⊆ FAmbn. Thus limn→∞ P(FAmbn) = 0 implies
limn→∞ P(FUPCn) = 0 which shows the first implication.
Consider the infinitely branching pLTS of Figure 20. It contains no infinite correct sequence,
so that UPC = ∅, and this pLTS is surely prediagnosable. On the other hand, for every
n ≥ 1, P(FAmbn) = 1

2 , so that this pLTS is not FF-diagnosable.

q0 q11 f11

q21 q22 f22

f1

...

a, 1/4 f

a, 1/8 a f

f , 1/2
b

b

a

Figure 20 An infinitely branching pLTS that is surely prediagnosable but not FF-diagnosable.

In order to show the second implication, observe that for every n, FAmb∞ ∩ FAmbn ⊆
FUPCn. Thus limn→∞ P(FUPCn) = 0 implies limn→∞ P(FAmb∞ ∩ FAmbn) = 0. Now, since
limn→∞ P(FAmb∞ \ FAmbn) = 0 (see Lemma 5), this implies P(FAmb∞) = 0.
Consider the infinitely branching IF-diagnosable pLTS of Figure 2, on page 7. For every
n ≥ 1, an ∈ UPC due to the infinite run q0aqn1a . . . qnn−1a(qnnb)ω. Thus P(FUPCn) = 1

2
and this pLTS is not surely prediagnosable.
Since UPSC ⊆ UPC, the third implication is immediate.
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Consider the pLTS of Figure 21. It is not IF-diagnosable since the infinite faulty run q0f(f1a)ω
is ambiguous and has probability 1

2 . However since the set of infinite correct runs is negligible,
UPSC = ∅ and so this pLTS is prediagnosable.

q0 q1 f2f1
f fu

a ba

Figure 21 A pLTS which is prediagnosable but not IF-diagnosable.

Assume now that A is 0-predictable (resp. 0-surely predictable). Let ρ = ρ′fρ′′ be an infinite
faulty run. Due to predictability, P(ρ′) /∈ UPSC (resp. P(ρ′) /∈ UPC). Since P(ρ′′) = P(ρ↓i)
for some i, ρ /∈ FUPSC∞ (resp. ρ /∈ FUPC∞). Thus FUPSC∞ = ∅ (resp. FUPC∞ = ∅) which
implies that A is prediagnosable (resp. surely prediagnosable).
Consider the pLTS of Figure 1, on page 6. It is not 0-predictable since the observation of
the faulty run ρ = q0ff1 is ε, and infinite correct runs have probability 1

2 > 0. On the other
hand, let ρ = ρ′bρ′′ be a faulty run and let σ = P(ρ′)b. Then {ρ∗ ∈ Ω | ρ∗ correct and σ �
P(ρ∗)} = ∅. So ρ /∈ FUPC∞. Since the probability that an infinite run is faulty and does not
produce a b is null, this pLTS is surely prediagnosable. J

As an immediate consequence of the latter theorem and of Corollary 6, we get:

I Corollary 52. A finitely branching pLTS A is IF-diagnosable if and only if it is surely
prediagnosable.

5.2.2 Complexity of prediagnosability
In order to study the complexity of prediagnoability, we introduce some more notations.
Given a pLTS A, we let Hc ⊆ Qc be the subset of correct states from which one cannot
reach a BSCC of A included in Qc. Observe that for any finite run ρ that ends in Hc,
P({ρ′ ∈ Ω | ρ′ correct and ρ � ρ′}) = 0. The set Hc is the key to a characterization of
prediagnosability.

I Lemma 53. Let A be a finite pLTS and AIF its IF-automaton. Then A is prediagnosable if
and only if there no BSCC of AIF contains a state (q, U) such that q ∈ Qf and U \Hc 6= ∅.

Proof. Assume there exists a state (q, U) of a BSCC C of AIF such that q ∈ Qf and U \Hc 6= ∅.
By definition of Hc and the fact that C is strongly connected, every state (q′, U ′) ∈ C fulfills
q′ ∈ Qf and U ′ \Hc 6= ∅. Let ρ be an infinite run that ending up C. Pick any index i0 such
that ρ↓i0 reaches C. Thus for all i ≥ i0, there is a finite correct run ρ′ with P(ρ′) = P(ρ↓i)
and ρ′ ends in a correct state out of Hc. So there is a finite run ρ′′ with ρ′ � ρ′′ and ρ′′ ends
in a correct BSCC of A. This establishes that P(ρ↓i) belongs to UPSC and thus any infinite
run that ends up in C belongs to FUPSC∞. Since the probability that an infinite run ends
up in C is positive, A is not prediagnosable.
Assume there exists no BSCC of AIF containing a state (q, U) with q ∈ Qf and U \Hc 6= ∅.
Pick an arbitrary BSCC C of AIF and ρ any infinite run that ends up in C. Pick any index i
such that ρ↓i reaches C. Thus for every correct signalling run ρ′ such that P(ρ′) = P(ρ↓i),
ρ′ ends in a correct state of Hc which implies that P(ρ↓i) /∈ UPSC and ρ /∈ FUPSC∞. Since
almost surely infinite runs end up in BSCC, A is prediagnosable. J
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Since for pLTS prediagnosability is as demanding as IF-diagnosability, and in particular
for the pLTS used to show PSPACE-hardness of IF-diagnosability prediction does not help,
one obtains the following complexity result.

I Theorem 54. The prediagnosability problem is PSPACE-complete.

Proof. Let us look at A, the pLTS of Figure 11 on page 15, used in the reduction from
eventual universality to IF-diagnosability. All correct states reach a correct BSCC of A
(which is one of the BSCC of the NFA). Thus Hc = ∅ and so A is IF-diagnosable if and only
if it is prediagnosable. This establishes that prediagnosability is PSPACE-hard.
Let us design a non deterministic procedure that checks in polynomial space whether a pLTS
is not prediagnosable. First one computes in polynomial time the set Hc. Then one guesses
a state (q, U) of AIF with q ∈ Qf and U \Hc 6= ∅. Then one non deterministically checks
that (q, U) is reachable and belongs to a BSCC. All these subprocedures can be done in
polynomial space, and we use Savitch’s theorem to conclude. J

5.2.3 Prediagnoser synthesis
Prediagnosis allows to announce faults earlier than diagnosis. The corresponding class of
monitors, called prediagnosers, is now introduced. As for diagnosers, we will assume that
(sure) prediagnosers commit to the > verdict. Intuitively, sure prediagnosers are IF-diagnosers
with the capacity of prediction of sure predictors, while prediagnosers extend IF-diagnosers
with the capacity of almost-sure predictors.

I Definition 55. A sure prediagnoser (resp. prediagnoser) is a function D : Σ∗o → {>, ?}
such that
soundness For every signalling run ρ, if D(P(ρ)) = > then {ρ′ ∈ Ω | ρ � ρ′} ⊆ Sf∞ (resp.

P(ρ′ ∈ Ω | ρ � ρ′ ∧ ρ′ ∈ C∞) = 0).
reactivity For every finite faulty run ρ, P({ρ′ ∈ Ω | ρ � ρ′ ∧D(P(ρ′)) =?}) = 0 where for

w ∈ Σωo , D(w) = limn→∞D(w≤n).

While sure prediagnosability and IF-diagnosability are equivalent for finitely branching
pLTS, there are differences between sure prediagnosers and IF-diagnosers. An IF-diagnoser
is a sure prediagnoser, but a sure prediagnoser may output a verdict > even before a fault.
This phenomenon occurs even if the pLTS is non predictable. The non predictable pLTS of
Figure 22 points out this difference. A diagnoser can output a > only after observing two
a’s, since then surely a fault occurred while a sure prediagnoser can already output a > after
observing the first a. In fact this pLTS is FA-diagnosable since after an occurrence of b, the
run is surely correct.

As we wished, the existence of a (sure) prediagnoser is equivalent to the (sure) predia-
gnosability. Moreover, we provide upper bounds on the size of (sure) prediagnosers.

I Proposition 56. A pLTS A is surely prediagnosable if and only if it admits a sure
prediagnoser. In the positive case, A admits a sure prediagnoser with at most 2nc states
where nc is the number of correct states of A.

Proof. Let A be a surely prediagnosable pLTS, and IF(A) = (Q∗,Σo, T
∗, {q0}) its IF-

automaton. Consider Hs, the set of correct states q of A such that there is no run qρq′

with q′ belonging to a correct non trivial SCC of A. We define the finite memory diagnoser
D = (Q∗,Σ, T ′, {q0}, Dfm) where:
∀a ∈ Σo, T ′(U, a) = U ′ iff (U, a, U ′) ∈ T ∗ and U \Hs 6= ∅, T ′(U, a) = U if U \Hs = ∅,
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Figure 22 A non-predictable pLTS, for which a sure prediagnoser is quicker than all diagnosers.

Dfm(U) = > iff U \Hs = ∅.
D is a finite-memory monitor of size at most 2nc where nc is the number of correct states
of A. Let us show that D is a sure prediagnoser. It is sound as for every run ρ such that
D(P(ρ)) = >, by definition of Hs, the only reachable non trivial SCC are faulty and, as an
infinite run ends in a non trivial SCC, {ρ′ ∈ Ω | ρ � ρ′} ∩ C∞ = ∅. Let ρ be a finite faulty
run and ρ′ ∈ Ω such that ρ′ ∈ {ρ′′ ∈ Ω | ρ � ρ′′ ∧D(P(ρ′′)) =?}. Then for every i ∈ N, the
state U of D reached after observing P(ρ′↓i) satisfies U \Hs 6= ∅. Thus P(ρ′↓i) ∈ UPC and
ρ′ ∈ FUPC∞. Therefore, P({ρ′′ ∈ Ω | ρ � ρ′′ ∧ D(P(ρ′′)) =?}) ≤ P(FUPC∞) = 0 as A is
surely prediagnosable. So D is reactive.
Assume now that A admits a sure prediagnoser D. Let us recall FUPC∞ =

⋃
n∈N FUPCn

where FUPCn = {ρ ∈ Ω | ρ↓n faulty and ∀i ∈ N P(ρ↓i) ∈ UPC}. We claim that for all n ∈ N,
P(FUPCn) = 0.
Since D is sound, for any signalling faulty run ρ of observable length n,

{ρ′ ∈ Ω | ρ � ρ′ and ∀i ∈ N P(ρ′↓i) ∈ UPC} ⊆ {ρ′ ∈ Ω | ρ � ρ′ ∧D(P(ρ′)) =?} .

Since D is reactive P({ρ′ ∈ Ω | ρ � ρ′ ∧D(P(ρ′)) =?}) = 0. Thus:

P(FUPCn) =
∑

ρ faulty signalling run∧|ρ|o=n

P({ρ′ ∈ Ω | ρ � ρ′ and ∀i ∈ N P(ρ′↓i) ∈ UPC}) = 0 .

This proves that A is surely prediagnosable. J

Following the same lines, one can show a similar statement for prediagnosability.

I Proposition 57. A pLTS A is prediagnosable if and only if it admits a prediagnoser. In
the positive case, A admits a prediagnoser with at most 2nc states where nc is the number of
correct states of A.

Proof. Let A be a prediagnosable pLTS, and IF(A) = (Q∗,Σ, T ∗, {q0}) its IF-automaton.
We define the finite memory diagnoser D = (Q∗,Σ, T ′, {q0}, Dfm) where:
∀a ∈ Σ, T ′(U, a) = U ′ iff (U, a, U ′) ∈ T ∗ and U \Hc 6= ∅, T ′(U, a) = U if U \Hc = ∅,
Dfm(U) = > iff U \Hc = ∅.

D is a finite-memory monitor of size at most 2nc where nc is the number of correct states of A.
Let us show that D is a prediagnoser. It is sound as for every run ρ such that D(P(ρ)) = >,
by definition of Hc, the only reachable BSCC are faulty and, as runs almost surely end in
BSCCs, P({ρ′ ∈ Ω | ρ � ρ′ ∧ ρ′ ∈ C∞}) = 0. Let ρ be a finite faulty run and ρ′ ∈ Ω such that
ρ′ ∈ {ρ′′ ∈ Ω | ρ � ρ′′ ∧D(P(ρ′′)) =?}. Then for every i ∈ N, the state U of D reached after
observing P(ρ′↓i) satisfies U \Hc 6= ∅. Thus P(ρ′↓i) ∈ UPSC and ρ′ ∈ FUPSC∞. Therefore,
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P({ρ′′ ∈ Ω | ρ � ρ′′ ∧D(P(ρ′′)) =?}) ≤ P(FUPSC∞) = 0 as A is prediagnosable. So D is
reactive.
Assume now that A admits a prediagnoser D. Let us define FUPSCn = {ρ ∈ Ω |
ρ↓n faulty and ∀i ∈ N P(ρ↓i) ∈ UPSC}. Observe that FUPSC∞ =

⋃
n∈N FUPSCn. We

claim that for all n ∈ N, P(FUPSCn) = 0.
Since D is sound, for any signalling faulty run ρ of observable length n,

{ρ′ ∈ Ω | ρ � ρ′ and ∀i ∈ N P(ρ′↓i) ∈ UPSC} ⊆ {ρ′ ∈ Ω | ρ � ρ′ ∧D(P(ρ′)) =?} .

Since D is reactive P({ρ′ ∈ Ω | ρ � ρ′ ∧D(P(ρ′)) =?}) = 0. Thus:

P(FUPSCn) =
∑

ρ faulty signalling run∧|ρ|o=n

P({ρ′ ∈ Ω | ρ � ρ′ and ∀i ∈ N P(ρ′↓i) ∈ UPSC}) = 0 .

This proves that A is prediagnosable.
J

Let us illustrate the construction of prediagnosers on the pLTS of Figure 23. It is

q0

f1q1

q2

f , 1
3

a, 1
3

f , 1
2b, 1

3

a, 1b, 1

a, 1
2

Figure 23 A non-predictable, non diagnosable yet prediagnosable pLTS.

prediagnosable, and its associated prediagnoser (as defined in the proof of Proposition 57) is
depicted in Figure 24. A fault is announced when the monitor reaches its belief state {q2}.

{q0} {q1}{q2} ba

a b

Figure 24 A prediagnoser for the pLTS of Figure 23.

To obtain a lower bound on the size of prediagnosers, observe that predictivity does not
help on the example of Figure 13, on page 20. Therefore, for this family of pLTS, any (sure)
prediagnoser is also an IF-diagnoser. Relying on the proof of Proposition 27 we thus obtain:

I Proposition 58. There is a family (An) of (surely) prediagnosable pLTS, such that An
has n+ 1 correct states and An admits no (sure) prediagnoser with less than 2n states.

Prediagnosers, can be thought of as monitors that emit verdicts as soon as possible, while
preserving soundness. The prediagnosers built in the proofs of Propositions 56 and 57 are
indeed optimal in that sense.
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6 Conclusion

In this work, we settled the foundations of diagnosability and predictability for partially
observed stochastic systems. In particular, we investigated semantical issues and provided
several meaningful definitions for diagnosability and predictability in a probabilistic context.
We also introduced prediagnosability, that combines the advantages of diagnosability and
predictability. Beyond providing relations between these notions, we obtained tight complex-
ity bounds using graph-based characterizations on the product of the system under scrutiny
and an appropriate monitor. The complexity ranges from NLOGSPACE-completeness for pre-
dictability to PSPACE-completeness for diagnosability and prediagnosability, as summarized
on Figure 25. Last, we proved exponential almost matching lower and upper bounds for the
diagnosers, predictors, and prediagnosers synthesis problems.

FA-diagnosable

IA-diagnosable FF-diagnosable

IF-diagnosable

sure-prediagnosable

prediagnosable

for finitely
branching pLTS

k-sure-predictable

k-predictablefor all k

for all k

PSPACE-complete
(for finite pLTS)

NLOGSPACE-complete
(for finite pLTS)

Figure 25 Summarizing relations between specifications, and associated complexities.

The present contribution opens several interesting research perspectives. First of all, the
decidability status (and in the positive case, the precise complexity) of the approximate
diagnosability (AA-diagnosability) introduced in [13] is still open since we only proved the
algorithm from [3] to be erroneous. Second, beyond diagnosability and its variants (predict-
ability and prediagnosability), we wish to conduct a systematic study of other paradigms
related to partial observability, such as opacity or detectability, in a probabilistic context.
Last, we plan to move to more quantitative versions of diagnosis including optimization
issues. The objective would be to minimize the observational capacities of the monitor,
either spatially or timely by restricting either the observable actions, or the observation time
instants, while preserving diagnosability.
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A An erroneous PTIME procedure for A-diagnosability

This algorithm of [3] is an adaptation of the one in [7] which decides diagnosability for
deterministic discrete-event systems in PTIME. In [3], the correct behaviour is specified by
a deterministic automaton and a fault consists in producing a word not in the language.
Once the synchronized product between the system and the specification is performed, this
framework boils down to ours. So we describe how the procedure proposed in [3] checks the
A-diagnosability in our framework. First it builds a testing sub-pLTS (which means that the
probability of the outgoing edges from a state is less or equal than 1) as follows.

A state is a pair (q1, q2) where q1 ∈ Q and q2 ∈ Qc. The initial state is (q0, q0) where q0
is the initial state of the pLTS.
Transitions are labelled by observable events.
There is a transition labelled by a from (q1, q2) to (q′1, q′2) with probability p1p2 > 0 if:
1. the sum of the probabilities of signalling runs from q1 to q′1 and labelled by a is equal

to p1;
2. assuming that the set of correct signalling runs from q2 and labelled by a is non empty,

then the sum of the probabilities of (correct) signalling paths from q2 to q′2 and labelled
by a, conditionned over all correct signalling paths from q2 and labelled by a, is equal
to p2.

Then the pLTS is A-diagnosable if there is no recurrent class (i.e. a bottom strongly connected
component with for all states the sum of outgoing probabilities being equal to 1) in the
testing sub-pLTS where the first components of the states belong to Qf .

We have illustrated in Figure 26 the testing sub-pLTS associated with the A-diagnosable
pLTS of Figure 1. From q0 by observing a, one reaches q1, f1 or f2. Thus from (q0, q0) we
have three outgoing transitions whose first components are q1, f1 or f2 and second component
is q1, the only non faulty reachable faulty state. From q1, one stays in q1 observing a which
entails a loop around (q1, q1). From f1 reading a leads either to itself or f2 which entails
transition toward (f1, q1) and another toward (f2, q1). From f2, only b is observable which
cannot observed from q1. Thus (f2, q1) has no outgoing state. In this sub-pLTS, the single
recurring class is {(q1, q1)} whose first component is correct. Thus the algorithm soundly
returns that the pLTS is A-diagnosable.

q0, q0 f1, q1

f2, q1

q1, q1
a

a
a

a

aa

Figure 26 The testing sub-pLTS for the pLTS of Fig. 1

Let us look at the pLTS of Figure 27. There is a single faulty run q0f
ω
1 and it has a

positive probability. This run can be mimicked by the correct run q0q
ω
1 . So this pLTS is not

A-diagnosable.
We have illustrated in Figure 28 the testing sub-pLTS associated with the pLTS of

Figure 27. The single recurring class is {(q2, q2)}. So the algorithm incorrectly returns that
this pLTS is diagnosable.
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q0 q1 q2f1
u af

a ba

Figure 27 A pLTS which is not A-diagnosable

q0, q0 f1, q1q2, q2

q1, q2q1, q1

q2, q1 f1, q2

a

a

a

a

aa

a

a

a

a

a

a

b

Figure 28 The testing sub-pLTS for the pLTS of Fig. 27

Since the proof of correctness is provided in [3], let us point out where is the error. The
error is located in the proof of sufficiency. Equation (2) in page 973 claims that given a
faulty run s the probability of a continuing run t in the LTS such that P(st) is ambiguous is
less or equal than the sum of the probability of continuing runs (P(t),P(t′)) following some
(P(s),P(s′)) in the testing sub-pLTS. Now consider the run s = q0ff1af1 and the continuing
run t = f1af1af1. Its probability is equal to 1. The corresponding runs in the sub-pLTS
are (f1, q1)a(f1, q1)a(f1, q2) and (f1, q1)a(f1, q1)a(f1, q1) with probability 1

2 = 1
4 + 1

4 . So
Equation (2) does not hold.

B An erroneous PTIME procedure for AA-diagnosability

In [3] a polynomial time algorithm is also provided that deals with another kind of dia-
gnosticability the authors called SS-diagnosticability (which was first introduced in [13] as
AA-diagnosticability). Unfortunately this algorithm is also wrong as we establish below. So
to the best of our knowledge, the complexity of AA-diagnosability remains an open problem.

I Definition 59 ([3]). A pLTS A is AA-diagnosable if and only if for all ε > 0, τ > 0 there
exists nε,τ ∈ N such that for every faulty run ρ and all n ≥ nε,τ we have:

P({ρ′ ∈ SRn+|ρ|o | ρ � ρ′ ∧ Pamb(P(ρ′)) > ε})
P({ρ′ ∈ SRn+|ρ|o | ρ � ρ′})

< τ

where Pamb(σ) =
P({ρ′ ∈ SR|σ| | P(ρ′) = σ ∧ ρ′ ∈ Cn})

P({ρ′ ∈ SR|σ| | P(ρ′) = σ})

We now introduce an equivalence between (fully observed) pLTS that is used by the
algorithm we are going to detail.
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I Definition 60. Let Ai = 〈Qi, π0,i,Σo, Ti,Pi〉 for i ∈ {1, 2} be two pLTS (where π0,i
denotes the initial distribution). Then A1 and A2 are p-equivalent if for all word w ∈ Σ∗o,

P1(ρ | σρ = w) = P2(ρ | σρ = w)

with Pi the probability induced by the pLTS Ai.

As done in [4], by adapting a classical procedure on probabilistic finite automata, p-equivalence
can be checked in polynomial time.

Let us describe how the procedure proposed in [3] checks the AA-diagnosability. First it
builds the testing sub-pLTS used in the (erroneous) algorithm for A-diagnosability. It then
enriches the label of every transition by a second probability defined as follows. Assuming
there is a transition labelled by a from (q1, q2) to (q′1, q′2), the second probability is p1p2
where:
1. the sum of the probabilities of signalling runs from q2 to q′2 labelled by a is equal to p2;
2. the sum of the probabilities of signalling runs from q1 to q′1 and labelled by a, conditionned

over all signalling runs from q1 and labelled by a, is equal to p1.
Then one looks at the BSCCs such that for all states the sum of outgoing probabilities are
equal to 1 whatever the component of the pair of probabilities is chosen (such BSCC are
called bi-closed) and such that the first component of the state is faulty. For every such BSCC
C of the enriched testing sub-pLTS one computes the pLTS A1 (resp. A2) over the states of
C obtained by considering the first (resp. the second) probability of the label. Finally the
procedure checks whether A1 and A2, with initial distribution equal to their stationnary
distribution, are p-equivalent. If at least one such BSCC yields p-equivalence then the pLTS
is not AA-diagnosable.

q0

f1q1

f , 1
2u, 1

2

a, 1
4b, 3

4a, 1
2b, 1

2

Figure 29 A pLTS which is not diagnosable w.r.t. Definition 59 but diagnosable w.r.t. Defini-
tion 62.

Let us look at the pLTS of Figure 29. It is an example taken from [3] where it is claimed
to be AA-diagnosable. Figure 30 represents the graph that the algorithm associates with the
pLTS of Figure 29. The only bi-closed BSCC is (f1, q1) and it is not p-equivalent. So the
check performed by the testing sub-pLTS returns that the pLTS is AA-diagnosable.

Unfortunately, this claim is false.

I Proposition 61. The pLTS of Figure 29 is not AA-diagnosable according to Definition 59.

Proof. Assume that A, the pLTS of Figure 29, is AA-diagnosable. Then let ε > 0, 1 > τ > 0,
there exists n0 ∈ N such that for every faulty run ρ and all n ≥ n0 we have:

P({ρ′ ∈ SRn+|ρ|o | ρ � ρ′ ∧ Pamb(P(ρ′)) > ε})
P({ρ′ ∈ SRn+|ρ|o | ρ � ρ′})

< τ.



40 Foundation of Diagnosis and Predictability in Probabilistic Systems

(q0, q0)

(f1, q1)(q1, q1)

a, 1
8 ,

1
12

b, 3
8 ,

3
20a, 1

4 ,
1
6

b, 1
4 ,

1
10

a, 1
4 ,

1
2b, 3

4 ,
1
2a, 1

2 ,
1
2b, 1

2 ,
1
2

Figure 30 Construction of Chen and Kumar for the pLTS of Figure 29

Let ρ be the faulty run q0f(f1a)n1f1 with n1 > log2( ε
1−ε ) + n0(log2(3)− 1).

Then for ρ′ ∈ SRn0+|ρ|o such that ρ � ρ′ one gets:

Pamb(P(ρ′)) ≥
1

2n0+n1
1

2n0+n1 + 1
4n1 ( 3

4 )n0
= 1

1 + 3n0
2n0+n1

> ε.

Thus, P({ρ′∈SRn+|ρ|o |ρ�ρ′∧Pamb(P(ρ′))>ε})
P({ρ′∈SRn+|ρ|o |ρ�ρ′})

= 1 < τ which contradicts τ < 1.
Therefore A is not AA-diagnosable. J

As seen in the proof of the previous proposition, the requirement that the integer nε,τ
does not depend on the faulty run could explain the problem of this algorithm. So let us
introduce an alternative definition of AA-diagnosability.

I Definition 62 (AA-diagnosability revisited). A pLTS A is AA-diagnosable if and only if for
all ε > 0, for every faulty run ρ we have:

lim
n→∞

P({ρ′ ∈ SRn+|ρ|o | ρ � ρ′ ∧ Pamb(P(ρ′)) > ε})
P({ρ′ ∈ SRn+|ρ|o | ρ � ρ′})

= 0

where Pamb(σ) =
P({ρ′ ∈ SR|σ| | P(ρ′) = σ ∧ ρ′ ∈ Cn})

P({ρ′ ∈ SR|σ| | P(ρ′) = σ})

I Proposition 63. The pLTS of Figure 29 is AA-diagnosable according to Definition 62.

Proof. Let ε > 0, τ > 0.
Pick λ > 0 with λ < 3

4 − ln(2).
Due to the choice of λ, there exists n0 ∈ N such that ∀n ≥ n0,

1

1+ 3n( 3
4−λ)
2n

< ε.

Consider an observed sequence σ with |σ| = n ≥ n0 such that | |σ|an − 1
4 | < λ. There is a

single correct signalling run and a single faulty signalling run corresponding σ. Thus:

Pamb(σ) =
1

2n
1

2n + 3n−|σ|a
4n

≤ 1

1 + 3n( 3
4−λ)

2n

< ε
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Let ρ = q0ff1x1f1 . . . xkf1 be an arbitrary faulty run where xi ∈ {a, b}.
According to the law of large numbers, as the expected value for a to occur in f1 is 1

4 :

∃n1 ∈ N,∀n ≥ n1,
P({ρ′ ∈ SRn | ρ � ρ′ ∧

∣∣∣ |ρ
′|a
n − 1

4

∣∣∣ ≥ λ})
P({ρ′ ∈ SRn | ρ � ρ′})

< τ

(observe that this integer n1 depends on ρ).
Let m = max(n1, n0). Combining the previous results for all n ≥ m,

P({ρ′ ∈ SRn | ρ � ρ′ ∧ Pamb(P(ρ′)) ≥ ε})
P({ρ′ ∈ SRn | ρ � ρ′})

< τ

Thus the pLTS is AA-diagnosable. J

Unfortunately even with Definition 62, the algorithm of Chan and Kumar is erroneous.
Let us look at the pLTS of Figure 31. In the corresponding construction depicted in Figure 32,
there is a single bi-closed SCC to consider: {(f1, q1), (f2, q2)}. Whatever the component,
the stationary distribution of this SCC is equidistributed. So one may exchange (f1, q1) an
(f2, q2) in one of the components and then one observes that the two pLTS are identical and
so p-equivalent. So the algorithm of Chan and Kumar returns that the original pLTS is not
AA-diagnosable. The next proposition establishes that this is not the case with Definition 62.

q0

f1q1

f2q2

f , 1
2u, 1

2

c, 1
2c, 1

2 c, 1
2c, 1

2

a, 1
8b, 3

8a, 1
4b, 1

4

a, 1
8b, 3

8 a, 1
4b, 1

4

Figure 31 Another pLTS which is AA-diagnosable w.r.t. Definition 62.

I Proposition 64. The pLTS of Figure 29 is AA-diagnosable according to Definition 62.

Proof. Intuitively, the pLTS of Figure 31 is AA-diagnosable since in a faulty run depending
on the parity of the number of c observed, the probability that b occurs is greater than the
one of a or their occurrence probability are equal.
Let ε > 0, τ > 0. Pick λ > 0 with λ < 3

4 − ln(2).
Due to the choice of λ, there exists n0 ∈ N such that ∀n ≥ n0,

1

1+ 3n( 3
4−λ)
2n

< ε.

We inductively define for x ∈ {a, b}, the function evenx from Σ∗o to N by:
evenx(ε) = 0;
If |σ|c is even then evenx(σx) = evenx(σ) + 1 and evenx(σy) = evenx(σ) for y 6= x;
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Figure 32 Construction of Chen and Kumar for the pLTS of Figure 31

If |σ|c is odd then evenx(σy) = evenx(σ) for all y.

Consider an observed sequence σ with evena(σ)+evenb(σ) = n ≥ n0 such that | evena(σ)
n − 1

4 | <
λ. There is a single correct signalling run and a single faulty signalling run corresponding σ.
Thus:

Pamb(σ) =
1

2n
1

2n + 3n−evena(σ)

4n
≤ 1

1 + 3n( 3
4−λ)

2n

< ε

Let ρ be an arbitrary faulty run. Consider a random variable Sn with binomial distribution
B(n, 1

4 ). According to the law of large numbers:

∃n1 ∈ N,∀n ≥ n1,P(
∣∣∣∣

Sn + evena(ρ)
n+ evena(ρ) + evenb(ρ) −

1
4

∣∣∣∣ ≥ λ) < τ

2

In the pLTS, P({ρ′ ∈ Ω | evena(P(ρ′)) + evenb(P(ρ′)) =∞}) = 1. Thus there exists n2 such
that for n ≥ n2:

P({ρ′ ∈ SRn | ρ � ρ′ ∧ evena(P(ρ′)) + evenb(P(ρ′)) < max(n0, n1)})
P({ρ′ ∈ SRn | ρ � ρ′})

<
τ

2

Combining the previous results for all n ≥ n2,

P({ρ′ ∈ SRn | ρ � ρ′ ∧ Pamb(P(ρ′)) ≥ ε})
P({ρ′ ∈ SRn | ρ � ρ′})

≤

P({ρ′ ∈ SRn | ρ � ρ′ ∧ evena(P(ρ′)) + evenb(P(ρ′)) < max(n0, n1)})
P({ρ′ ∈ SRn | ρ � ρ′})

+
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∑
x≥max(n0,n1) P({ρ′ ∈ SRn | ρ � ρ′ ∧ evena(P(ρ′)) + evenb(P(ρ′)) = x ∧ Pamb(P(ρ′)) ≥ ε})

P({ρ′ ∈ SRn | ρ � ρ′})

<
τ

2 +
∑
x≥max(n0,n1)

τ
2P({ρ′ ∈ SRn | ρ � ρ′ ∧ evena(P(ρ′)) + evenb(P(ρ′)) = x})

P({ρ′ ∈ SRn | ρ � ρ′})
< τ

Thus the pLTS is AA-diagnosable.
J


